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ON THE FIGENVALUE SPHCTRUM
OF CERTAIN OPERATOR IDEALS

BY

HERMANN KONIG (KIEL)

The aim of this paper* is to give a survey on some recent results
on the distribution of eigenvalues of certain operators in Banach spaces.
All classes of operators which are considered extend the Schatten classes
8,(H) on Hilbert spaces to operator ideals on general Banach spaces.
The main question under study is whether and in which way Weyl’s ine-
quality for the eigenvalues of §,(H)-operators may be extended to opera-
tors in Banach spaces. It turns out that, for some operator ideals extending
8,(H), the summability order of the eigenvalues remains the same in
Banach spaces as in Hilbert spaces, namely p, whereas in other cases
only weaker summability properties can be derived in general Banach
spaces which may be improved in special spaces like L, (x). Some appli-
cations to Hilbert space characterizations, to trace formulas and to in-
tegral operators in L,(u)-spaces will be mentioned.

Most of the results presented here will appear somewhere else. Never-
theless, to be self-contained, this paper contains complete proofs of some
of the more important new theorems and sketches of the proofs of others.
The paper is a written version of some lectures given by the author at
the Winter School on Functional Analysis in Nowy Sacz, Poland, in
January 1978. The author would like to use this opportunity to express
his thanks to the organizers of the meeting — Prof. A. Pelczynski and
Prof. P. Wojtaszezyk.

1. Introduction. Unless stated differently, all Banach spaces will be
complex. We shall consider only operators T which are either compact
themselves or have a compact power. Hence their spectrum (except 0)
will consist of a zero sequence of eigenvalues of finite multiplicity. Denoting
them by (}.n(T)),,EN,we always assume that they are ordered in decreasing
absolute value, and counted according to their multiplicity.

* Supported by the Polish Academy of Sciences and the SFB 72 at the Uni-
versity of Bonn.
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The space of all linear [eompact] operators from a Banach space X
into another one Y is denoted by Z(X, Y) [ (X, Y)]. We are interested
in the spectrum of the following ideals of operators:

(1) The absolutely (p, q)-summing operators (11, 4, 7, ,), 1 < g<Pp< o0

Tell, (X, Y) iff there is a constant ¢ > 0 such that for all (x;);.,
< X we have

(D 1Tz <o mp (3o (@)™
i=1 y

Izl g o<1 Vi

The infimum over all possible choices of ¢ is denoted by =, (T).
For p = ¢ we write (I, n,).

(2) The nuclear operators (N, v,), 0 < p < 1:

T e & (X, Y) iff T admits a representation

T =Y 2®y, aeX,yeX with D (Il lyl)* < oo.
ieN N

Let
ro(T) = int {( 3 Iy},
ieN

where tﬁe infimum is taken over all representations of T of the above
form.

(3) The operators (83, a3) of type 1, 0 < p < oo:
TeS (X, Y) iff

A1) :=( Y salTP?)" < + o0,
neN

where s,, is an s-number sequence in the sense of Pietsch [22], i.e. 8 is a map
associating to any continuous linear operator T between Banach spaces
a decreasing sequence s,(T) of non-negative numbers with &,(T) = ||T}|
such that

(1) Snsmor(8+T) < 8,(8)+8,(T) for §,T e L(X, Y);

(ii) 8,(R8T) < |R|s,(S)IT| for T e F(X,,X), Se#(X,Y) and
ReZ(Y, Y,);

(iii) 8,(T) = 0 for any operator T with rankT < n;

(iv) s,(Id: I3 - 13') =1 for m > n, where [} denotes the m-dimen-
sional Hilbert space.

Examples of s-numbers are:

the approximation numbers of T € (X, Y)

0, (T) =inf{|T —T,|: Ty € Z(X, Y), rankT, < n};
the Kolmogorov numbers of T e (X, XY)
8,(T) = inf(sup[inf{|Tz —yl:y € Z < Y}: |2 =1]: dimZ < n);
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the Gelfand numbers of T e (X, Y)
yYo(T) = inf{liT|,ll : Z ¢ X, codimZ < n};
the Hilbert numbers of T € (X, Y)
h,(T) = sup{e,(RTS): 8 ¥(H, X), Re #(Y, H), IIS|| = |RI = 1}.

The operator classes (1)-(3) are stable under composition with contin-
uous linear operators: The absolutely (p, ¢)-summing operators (17, ,, 7, ,)
form a complete normed ideal of operators whereas the p-nuclear oper-
ators (4, v,) and the operators (8, o;) of type I, are a complete quasi-
normed ideal, i.e. v, and o, allow only a triangle inequality with a constant
factor on the right-hand side. Concerning the definition of operator ideals
we refer to [27].

We shall use standard notation as L,(u), 1,,1; for 1< p < oo and
denote the conjugate index of p by p' (1/p+1/p’ = 1).

In Hilbert spaces, all s-number sequences coincide with the singular
numbers: 8,(T) = 4,((T*T)") (cf. [22]). Hence we get the Schatten classes

S,(H) := 8,(H)
— {T Eg(H): O'p(T) j— (28n(T)p)l/p - (tr(T*T)plz)l/p} < o00.

For p<<1 we have 8,(H) = 4 ,(H) with equality of the (quasi)
norms a,(T) = v,(T) (cf. [23]). In general Banach spaces, only the inclu-
sion 83(X, Y) € #,(X, Y) holds. Concerning the absolutely (p, q)-
-summing operators, we have the following identities in a Hilbert space
(cf. [20] and [14]):

II,(H) = 8,(H), 1<p< oo, and [II,,(H)=28,H),2<p< oo,

A classical inequality of Weyl [29] gives information on the distri-
bution of eigenvalues of §,-operators in Hilbert spaces:

THEOREM 1. Let 0 <p< oo and T € o' (H). Then, for any ne N,

(2",‘ A (T)P)*? < (jf] s,(TP)".
i=1 =]

We are interested in generalizations of the Weyl inequality to oper-
ators in Banach spaces. Note that the left-hand side makes sense also
for T € o (X), whereas we may think of the right-hand side — forn — oo —
a8 being o} (T) or v,(T) if p <1 or #,(T), 1 < g< oo, if p = 2. This poses
the problem to derive summability properties for the eigenvalues of §3-,
N p- or Il -operators in Banach spaces, since they all extend certain S, (H)-
-classes to operator ideals on Banach spaces.
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The following notation will be useful later on:
6,0 X) ={TeL(X): (4(D)) el ), 0<p< o, 0<g< x,

assuming that the spectrum of T consists of eigenvalues only. Here

l (neup.q = (3 g < + o0, g< oo)]
= 1(&,)n € Co¢

neN
1£llp,00 = SUP En? < 400
neN

l

D.Q

is a Lorentz sequence space with £* denoting the non-negative decreasing
rearrangement of the zero sequence &,. Then, of course, I, =, ,. We have
the ineclusions

anQl g lp-az for ql < q’,
l

1oty < l,,’,q2 for p, < p, and for all g¢,, ¢,.

This means that the essential summability order is given by the
first index. By this notation, Weyl’s inequality states 8,(H) <= &,(H).
Here, of course, &, = &, ;. '

To assess the scope of the results we can expect in Banach spaces,
we shall first consider the distribution of eigenvalues of the minimal
and maximal extension of 8,(H): By [24] there is a minimal [maximal]
operator ideal S;',“n [87°*] on all Banach spaces which coincides on Hilbert
spaces with 8, (H). This is meant in the sense that for any other extension

o, of 8,(H) to an operator ideal the inclusions
| (X, Y) € o#p(X, Y) = 83*(X, T)

hold for all X and Y. By [24], S2*(X, Y) is the set of all T e (X, ¥)
which can be factored over an §,(H)-operator, ' = BSA, A € Z(X, H),
SeS,(H) and Be £(H, Y). Let

op'™(T) = inf (iAo, (8)IBIl,

the infimum extended over all possible factorizations. Similarly, 87'**(X, Y)
oonsists of all maps T ¢ #(X, Y) such that for any 4 e ¥ (H, X) and
Be¥(Y,H) we have BTA € §,(H). Let

0p"*(T) = inf{g,(BTA): [A|| = ||B]| =1}.
Both operator ideals (82, ¢™*) and (83°%, 03**) are complete and
quasinormed by o™ and oF°F, respectively.
ProPOSITION 1. (a) For 0 < p < oo, S2(X)  &,(X).
(b) For p<2 and 1/q = 1/p—1/2, 87°X(X) S &,.(X).
If X = L,(u), the same 18 true for 1/q = 1[p —|1/2 —1]r|.
Proof. (a) This was shown by Pietsch [25] using the technique

of related operators. We omit the proof, since (a) is contained in Theorem 3
in the sequel.
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(b) Using the alternative description of S7'** of [24], it is easy to
see that the inclusion 87°*(X, ¥) < I, ,(X, ¥Y) is valid (1/¢ = 1/p —1/2).
Hence, by [19], we infer for any T e 83**(X) that 7% e ¥ (X) if N >
(2/p —1)~". Note here p < 2. Therefore, the spectrum of any T e 83**(X),
P < 2, consists only of eigenvalues. Let (4,(T))7., denote the first n eigen-
values. By a perturbation argument we may assume that their multiplicity
is one. If X, is the span of the associated eigenvectors (a;);.,, then
dim X, = n. By [6], the absolutely 2-summing and the 2-nuclear norm of
the identity map I, on X, is Vn (which holds for real and complex X,).
I, may be extended to P,: X — X, with 2-nuclear norm ¥n. This means
that there are operators A: X — Iy and B:ly — X, with [A]j |B] < Vn
and BA|y, =1I,. Let T,:X, X be the restriction of I and let
S = AT, B e #(I}). Then A(T) = A;(8) for ¢ =1, ..., n. By Theorem 1,

(3D} = (3 ISP < 0y(8) ="eB(8)
=1 fo=]

< 4] | Bllef**(T,) < #**e5**(T).
Therefore

A (T)] < m 2 2 (D) < mogpex (),

=1

14 (T lg, 0 < 05" (T).

If X = L,(u) and r > 2, there are maps A: X -1} and B: I} - X,
with BA|y = I, and the better estimate |4l |Bl< "1 (cf. [16]).
Using this we get the second part of (b) for r > 2 by the same argument.
For 1 < r < 2 it is enough to note that T e S2** (L, (u)) iff 1" € S5**(L(n)).

CoNJECTURE. Let p <2 and 1/¢ = 1/p —1/2. Can (b) be improved
slightly to yield 87°*(X) < £,(X)?

This is true at least for p = 1 and g = 2, since then

SP(X) € I (X) © &£4(X);
for the second inclusion compare the next section.

2. Absolutely p-summing operators.

LemmA 1. Let Re #(X, ¥Y) and S € (Y, X). Then the spectrum of
RS € Z(Y) coincides with the spectrum of SR e Z(X), and the mulliplic-
ities of any non-zero eigenvalue are the same.

This useful lemma is due to Pietsch [26]. Let II{ (X, ¥) denote
the set of all operators T € ¥ (X, Y) which can be factored as T =
=Tyo ...oT,, where T, € II,(X,_,, X;) with X, = X and X, = Y. Here
the Banach spaces X, may depend on 7. The infimum being taken over all
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factorizations,

2M(T) = inf [ [ 2y(T)
i=1
detines a quasinorm, under which (II{*, z{") is a quasinormed operator
ideal.
PROPOSITION 2. For any N e N, II{™(X) < &,5(X) with

(D) 14D < 2 ().
neN

Especially, for » =1, the eigenvalugs of absolutely 2-summing
operators are square summable. In this way, I, is a ‘‘good” extension
of the Hilbert-Schmidt operators. Proposition 2 is due to Pietsch [26]
for N =1 and to Retherford and the author [8] for N > 1.

Proof. For simplicity, we give the proof only for N =1, which
already illustrates the method of reducing the problem to Hilbert spaces.
Let T € II,(X) and &> 0. By the factorization theorem [17] there are
maps Rell,(X,H) and S e ¥(H, X) with T = SR and

7ty (R)ISN < 7o (T) +&.

But, by Lemma 1, Q : = RS € II,(H) has the same eigenvalues as T.
Hence, by Weyl’s inequality,

(D 18D = (3 14@1%)" < 0x(@) = m:(@)
ieN 1eN
< 1y (R)I8I < 7y(T) +e.

For 1 < p < 2, the inclusion I7,(X) < &,(X) holds and is also optimal,
since II,(X) < II,(X) and II,(H) = II,(H). It is an easy consequence
of Proposition 2 that, for p = 2n and n € N, II(X) < &,(X). The fol-
lowing theorem duc to Maurey [8] generalizes this fact to 2 < p < oo,
solving a problem of Pietsch [25].

THEOREM 2. (a) For 2 < p < o0, I (X) = &,(X) with

/
(D) 1(mP)™ < 2, (1)
ieN
the eigenvalues of absolutely p-summing maps are p-th power summable.
(b) For T =Tyo...0oT, e £(X) with T eIij(X,-_l, X;), where

1 "1

» &

X0=XN=X’ 2<p,<00 and

ji=1
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we have

.
(3 12Dy} < o, [ ] 70,(T)
ieN j=1

with a constant o, depending only on p.
Proof. (a) Giving Maurey’s first proof, we will only show

(2.1) (3 1(T)P)* < 22,(T)  for T e IT,(X),
teN

since this argument is technically easier and conceptionally more comprehen-
sible, and in a quick way generalizes to prove (b).

(i) The first step is the reduction to I : It is enough to prove (2.1) for

T e #(17). This follows from the factorization diagram of the absolutely
p-summing operators, i.e.

X r > X
y ;
C(K)-1> L, (K, p)-L> ¢(K)

where K is the unit ball of X’, ¢ and j are the canonical imbeddings, u a
probability measure on K and |7} < 7,(T). Since 7,(j) =1, we have
np(i',) < @, (T). Further, all eigenvalues of T in X are also eigenvalues
of T in C(K). Hence it is enough to prove (2.1) for T e I1,(C(K)). Let X,
be the space spanned by the first n eigenvectors of T. For any &> 0,
there is a finite-dimensional subspace Y, < C(K) with X, < ¥,, and
a(XY,,%)<1+e¢ and onto which there is a projection P: X — Y, of
norm less than or equal to 1+¢ (¢f. [17]). Then PT|y : Y, - ¥, has

among its eigenvalues all first n eigenvalues of 7 and we get, by assumption
on Hp(lﬁ),

(Zn (D) < Y) 144(PT 1y, )17)

<21+ &), (PTy, ) < 2(1 +&)2n,(T).

(ii) We now want to show (2.1) for all T € £ (I"). The idea is, given T,
to construct an equivalent Hilbert space norm on [ under which

6,(T:H — H) < ny,(T: 13, - 17).

We write I» =C(K), K = {1,...,n}. Without loss of generality,
we may assume that Te; # 0. Since the extreme points of the dual of
C(K) are just the +unit vectors of I}, the measure characterization of

the absolutely p-summing operators [17] yields that there is a probability
measure 4 on K such that

(2.2) mo(T) = IT : L(K, 4) — C(K)].



8 H. KONIG

Let o be an arbitrary probability measure on K. Since

”P’(j: C(K) — p'(K7 9)) <1,
we get

(2.3) 2, (T: C(K) - Ly (K, o) < my(T).

There is a canonical measure ¥#(g) on K, given by

;(9)1' = ”Tej”/(j ||T0k||),
k=1

such that
(24) m(T: C(K) - Ly (K, o)) = |T: L (K, 7(e)) - Ly (K, o).

Here < is clear by the measure characterization, and > follows from
the triangle inequality. Let »(g) = }(2+#(g)). Then, for any g, »(e) is

a probability measure on K with »(p) > $4, and the map g + #»(p) is con-
tinuous on the compact convex set

{9: ¢ probability measure on K with ¢ > %}.}
in 1. By Brouwer’s fixed point theorem, there is u = »(u) with u > §4.
Applying (2.4) and (2.3) for u = }A+7(u)), we get
WT': Ly (Ko ) — Ly (K, p)ll < 27, (T).
Similarly, (2.2) implies
172 L, (K, ) > OUE < 2y (7).

We now apply complex interpolation to the last two inequalities
and conclude from Proposition 3 that
0, (T: Ly(K, p) — Ly(K, p)) < 27, (T: C(K) — C(K)),
which, by Weyl’s inequality, implies (2.1).

PROPOSITION 3. Let u be a probability measure on K = {1,...,n}
and assume \

IT: Ly(K, u) > C(EM <1 and |T: Ly(K, p) > L (K, p)i <1.

Then
“p(T: L, (K, p) — L, (K, I-‘)) <1.

Proof. Let m =[p/2] and 1/r;:=1/2—j/p, j =0,...,m. Then
T Sp<r,. We get, by complex interpolation [1],

IT: L, (K,p) > L(K,mi<1l, j=1,..,m,
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gsince 1 /r, =1/r,_,—1/p. A similar statement holds for the Hilbert space
adjoint ,

nT‘ By ) > L (B, pI<1,  j=1,...,m.
Thus, if m is even, then

r*T)™*: L, -~ L, I <1
If m is odd, then

WI*T)™-YRT: L, > L, | <1

There is a unitary operator U in L, such that (I*T)'* = TU. Hence
for any m, even or odd,

WT*T)™*: Lo(K, p) — Lo (K, p)ll < 1
Since p < r,,, complex interpolation yields
(2.5) WT*T)**: Ly(K, p) ~L, (K, u) < 1
with

1 1l—s/m 38/m , P o p_]
- 2 +"m’ 1.e. 8-—2 1<m—[2.

Consgider
8/
Ly(K, p) D% 1 (K, p) Z> O(K) L L(E, p),

where n3(I) = 1. Using (2.5), the assumption and ideal norm propertiess
we get
GP(T: L’ — L’) = Oy ((T*T)Pla: Lg "*L’)
= ﬂg(T(T.T).Iz: LS —*Lg) < 1

This proves Proposition 3.

(iii) Part (b) of Theorem 2 can be proved by using the following
extension of part (ii) due to Johnson [8). Let T = Tyo...0T,, where
T; e #(1;). Then there is a probability measure g on K = {1,...,n}
such that, for¢ =1,..., N,

IT: Ly (K, ) — O(E)| < 2N, (Ty),
ITs: Iy(K , p) = Ly(K, w)ll < 2N, (T,).

This, Proposition 3 and Weyl’s inequality yield (b) with constant
= (2N)" which seems to depend on N. But composing the operators T';
together in a suitable way shows that ¢, depends only on p,

N1

1
4 »;
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Part (a) of Theorem 2 is easily seen to be equivalent to the following
matrix inequality for which no direct proof is known:

PROPOSITION 4. For 2<p< oo and any (nXn)matriz T = (1),

(2 (T ”p)”p< (2 (Z lt,-;.-l”')p/p')l/p, % + % =1.

i
This follows from Theorem 2, since x,(T: I; — I3) is smaller than the
double sum on the right.

Starting from the inequality, we get (2.1) like this: It is a consequence
of (2.2) that there is a 8 e I3\ {0} such that
p')p/p')llp

(T2 1% —10) > (2(2
J k

But ((8;/8;));,. has the same eigenvalues as T.

COROLLARY. Let (Q, u) be &« measure space and let K: * —~C be a
measurable kernel with

9
_6: tlk

= (f(f | K («, y)lp'd,u(y))plp’ dy(a:))up< oo, where 2 < p< oo,
n Q

Then
Tf(@) = [K(w,9)f(y)dy
2

defines a map T: L,(u) — L,(u) with p-th power summable eigenvalues
1A4;(D)llp < ¢,

An immediate corollary to this is the Hausdorff-Young inequality
Ifll, < Ifll,- for p>2 and fe L, (0,1). Just consider the kernel K(z, y)
= f(z —y).

The weaker form II,(X) < &, .(X), p > 2, of Theorem 2 follows
from Proposition 1 (b) and from the fact that I, extends S,(H). Thus,
considering /7,, we loose some order of summability of the eigenvalues
in Banach spaces starting from Hilbert spaces. Since II,,(H) = 8,(H)
for 2 < p < oo — with of course I1,(X) < I1,,(X) — it is more natural
to ask for the solution of the following

ProBLEM (P 1192). Are the eigenvalues of absolutely (p, 2)-summing
-operators still p-th power summable with

(21 DP)" < 7,0 (T)1
J

Note that the spectrum is a pure eigenvalue spectrum since, by [19],
T¥ is compact for T e II, ,(X) and for some N € N. The answer is open,
we can only give the following weaker result:
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PROPOSITION 5. Let 2<p< 4 and 1/q = 2/p—1/2. Then the eigen-
values of T e II, ,(X) are of order j~', i.e.

I, (X) S 8,0(X)  with [|A;(T),e < €7, (T).

Proposition 5 is implied by Lemmas 2 and 3 given in the sequel.
A quasinormed operator ideal (of, A) is called injective if, for any
T e¥%(X, Y) and any isometric imbedding ¢: ¥ — C(K), ¢T € o implies
T e o with A(iT) = A(T). The ideal 11, , is injective. The adjoint ideal
of o is defined by
A (X,Y) ={8eZ(X, Y): A*(8) < oo},
where

A*(8) = sup{|tr(ST)|: A(T: Y - X) =1, T of finite rank}.
Here tr(38T),
tr(8T) = D' 4(8T),

is the trace of the finite rank operator ST.
LEMMA 2. Let 1 <7< oo and let (o#, A) be an injective quasinormed
operator ideal with pure eigenvalue spectrum. Then the following are equivalent:
(1) de(X) S &r,0(X);
2) 3 V A*1d: X, > X,) <en'r.
¢>0 X, dimXp,=n
Proof. By an indirect argument of Pietsch [25], (1) is equivalent to

1) 3V V 4D, < dn'lr,
d>0 X Ted(X)

To show that (1') implies (2), let T € ¥(X,), dim X,, = n. Then

(D = | 3 4(D] < 3 MDD 3i71) < ran (1)
i=1 i=1

i=1

which implies (2) with ¢:=r'd. To derive (1) from (2), let » € N and
decompose the eigenvalues (}.,-(T)),’-;l into real and imaginary parts with
positive and negative components to find that there exists a subset

I<{1,...,n} such that
D 1(T) < 4] X 2(T)).
i=1 iel

Let X, be the span of the eigenvectors (;);.; belonging to the eigen-
values (4;(T));.; which we may assume to have multiplicity one. Denoting
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by T; the restriction of T, we get

D) (D) < 4ite(Ty: Xy — X))

t=]

< 44%(1d: X; -~ X)A(T;: X; > X)) < 40" A(T: X — X).

In the last inequality, we used the assumption and the injectivity
of (&, A). This implies

(T, 0 < dosup (n7 37 |4,(T)1) < 404 ().
n i=1

LeMMA 3. For 2 <<p < 4 and for every n-dimensional space X,,
7ipo (Id: X, > X,) < 20°2727,

Proof. By [6], the identity map on a real Banach space X, of di-
mension n can be written as

8
14, = 21}”{0} QAx;, s 3,
F=1
where

8
Il = lolx, =1, Dk =n
and

&5 (A}%2)) 1 = Sup_ (lelw (av,)l’)"2
=

Using Hoélder’s inequality, we get

oy (4;%a)) : = (jz‘,l‘ WA gl ) = (,2:’ ) gl (g}‘ hf" < wi-atp,

Henece any 8: X, - X, can be written as

S — 2 1/2 '®S( ll2wj),

j=1
and using Holder’s inequality again, we obtain

it (8 < D 14 a5l 18 (4} z)lx,,

j=1
< o (B2a)) 7,5 (8)es (A4)%m) < 0¥2Pm, 0 (8),

which implies the lemma for complex spaces with an additional constant 2.
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ProBLEM (P 1193). For any n-dimensional space X, , do there exist
v;eX,, ©;eX,, j=1,...,8 with < en, such that

8
14, = Zw}@mj, ol <1 and  e(wy) <11
i=1 "
If the answer were positive, the argument above would imply
IT, ,(X) € &, ,(X) such that the eigenvalues of I ell,,(X) would be
“almost” p-th power summable.

3. Operators of type [,. In Hilbert spaces, all s-number sequences
coincide with the singular numbers. However, Weyl’s inequality

(31) (X @E)? < (Y y@r)”, Tesm),
J J

does not generalize to all s-number ideals 87 on general Banach spaces.
For any s-number sequence, at least an additional constant ¢, in (3.1)
is necessary, as easy examples [8] show. Markus and Macaev [18] proved,
using methods of complex analysis, the weaker result 8,(X) < &,(X)
for p < ¢ in Banach spaces. The following theorem due to the author [8]
strengthens their result to a direct generalization of (3.1), answering
a problem of [18].

THEOREM 3. Let 8, denote either the approximation or the Gelfand or
the Kolmogorov numbers, s € {a,y, 6}. Then, for any p (0<p < ),
8p(X) < €,(X). In fact, there i3 a ¢, such that, for all X, T € o' (X) and

n €N,
(2 I}v(T)lp)l/p < op(Zsj(T)p)l/p-

We give now a simplification due to Johnson of the original proof.
First of all we need

LeMMA 4. Let 0 < p < oo and T € 8,(X, Y). Then there exist operators
D, e £(X, Y) with

[ ]
d;:=rankD,; <32, T = ZD,
i=0
and

(3.2) (5:1 d;"Dj”p)llp < 0,0;(1' )

J=0
with some constant depending only on p.

This lemma is due to Pietsch [23] and contained in his proof of
8} < #,. The procedure is to choose operators T'; of rank less than 2’
such that
IT — I, < 20,,(T)
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and let D; =1,,,—-T;, j =0,1,... (with Ty = 0). Then

T = 5;’1),..
j=0

Inequality (3.2) can be checked using the monotonicity of the approxi-
mation numbers.

Proof of Theorem 3. (i) Since the Gelfand numbers are dual to
the Kolmogorov numbers, 4,(T) = y,(TI") for T € # (X), and since they
are smaller than the approximation numbers, y,(T) < a,(T), it is enough
to give the proof for the Gelfand number ideals 8}. We remark that the
Gelfand numbers are injective and that y,(T) = a,(¢T) for T' e (X, Y)
and for any isometric imbedding ¢: ¥ — C(K). For these facts see [22].

If 0<p< oo is given, choose N e N with s:=2/N < p. Since
A is a quasinorm, it is equivalent to an r-norm for some 0< r <1
(cf. [13]), which means

(3.3) n;M(Z 8;) < en (Zn (8 )')"'

where ¢, depends only on N . We may assume without loss of generality
that also r < p.

(ii) Let T € 83(X). Then iT € 83(X, C (K)) for an isometric imbedding
t: X — C(XK). By perturbation we can assume that the first 2" eigen-
values of T have multiplicity one. Let X, denote the 2"-dimensional
subspace of X spanned by the corresponding eigenvectors. If T,,: X, — X,

is the restriction of T and %k: X, - X %> C(K), we have
0p(kT,) < o, (iT) = op(T).

By Lemma 4, there are operators D;e % (X , C(K)) of rank equal
to d; < 3-2*, j =0,1,...,n+1, such that

n+1 n+l
(3.4) kT, = X' D;, (Y 4IDP)"” < ayal(T).
=0 i=0

Note here that it is enough to extend the sum up to »n41, since
rank kT, = 2"; all operators D; in the construction proving Lemma 4
may be chosen to be zero if j > n 1. Let I; be the identity map on D;(X)
c C(K). Since dimD;(X) = d;, by [6] we have =,(I;) < dj*. Hence,
in view of the ideal property of II, and the injectivity of the z,-norm,

wV(D;) < (L) |1Dy)| < dN* | Dy

Using this, (3.3) and (3.4), we can estimate the eigenvalues of T
by Proposition 2:
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2D < 27 ( D (D)) < 22T X, ~ )
=1

n+1 / n+l 9
y b i/r e W 1/r
copa (St} <owaree San)”, oo 2.
j=0 i=0

We write each term in the last sum as
aNP\DIT = 7T (dP) D)

and apply Holder’s inequality with the exponent @ := p/r > 1 to the
sum to conclude

o (1)1 < cN.z_u/s‘Sl )l/r l/p(z djllpjllp)l/p
Jj=0

ji=0
with a:= (1/s —1/p)/(1/r —1/p). Since s < p and r < p, the first sum is
of order (2")'*~'?. Hence, for some other constant d, depending only

on p (and the choice of s, N and r), we have
n+l

A1) < 2772 3T d1D,1P)' < 6),-27Pa2(T),
j=0
where we used (3.4), ¢, : = a,d,. This inequality extends easily from the.
subsequence {2"},.n Of {m},.n to
A (T)| < e;m™"Pal(T).

Applying this to the m-dimensional eigenvector spaces, we conclude —
in view of the injectivity of the Gelfand numbers — that it is enough
to extend the sum in o}(T) only up to the m-th term,

(3.5) 2 (T)] <

(Z‘w(T) )

(iii) A classical inequality of Hardy [7] states for 0<r<p< oo
and sequences a €l, that

) [ 2(2 Yl (S

Replacing p in (3.5) by r : = p/2 and using Hardy’s inequality, we get.

(2 an(D)P) m[ 2( 3y )p,r]”p
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This shows that 8} (X) < &,(X). The second statement of Theorem 3
is an immediate consequence if the last inequality is applied to the restric-
tion of T € &' (X) to n-dimensional eigenvector spaces. This proves The-
orem 3.

The original proof of Theorem 3 (see [8]) also yields ¢, < max(e, o'?)
for some absolute constant ¢ and the following decomposition result:

PROPOSITION 6. Let 0 < p;< oo for ¢ =1,...,N and

N
1 1
— = —, where 0<p<1.

P &~ D

Then the following statements are equivalent:

(1) T'e 8,(X, X).

(2) There are Bamach spaces X; and operators T;e 8 (X, X;)
with X, = X, Xy = Y such that

N
T =Tyo...oT, and D) d5(T,) < a,o5(T).
i=1

We now mention some applications of Theorem 3; first — an iso-
morphic characterization of Hilbert spaces [8]:

THEOREM 4. X 1is tsomorphic to a Hilbert space if and only if the
nuclear operators on X coincide with the operators A '(X) = S1(X) of type l,.

Proof. By [23], 4 (H) = 8{(H). If, on the other hand, 4",(X)
= 83(X) for a complex Banach space X, then the eigenvalues of nuclear
operators are absolutely summable by Theorem 3. But then a theorem
of Johnson and Retherford [8] implies that X is isomorphic to a Hilbert
space.

If X is a real Banach space, consider its complexification ¥ = X@PiX.
Then T € #,(Y) implies T € 8§(Y) if #,(X) = 8}(X). This can be seen
by decomposing T into real and imaginary parts. Hence Y is (complex)
isomorphic to a Hilbert space and X is (real) isomorphic to a Hilbert
space.

" THEOREM 5. Let 0 < p < o0 and 0 < r < oco. Then there is a o,,> 0
suoh that, for 8; € {a;, v;, 0;} and for any T € X (X) with |i8;(T)ll,,, < oo,

"}'j (T)"p,r < op,r”sj (T) "p,r .

This can easily be derived from (3.5) by a generalization of Hardy’s
inequality [9]. The analogon of Theorem 5 in general sequence spaces
replacing 1,, is false. An example for this can be given (cf. [9]) in

{& € 0, sUp &3 -2" < 0},
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By [2], the asymptotic order of the approximation numbers of So-
bolev-Besov imbeddings over bounded domains 2 < RY is given by

@y (Bh,0o(R2) > L, (R)) ~i~*V, 1<p< oo.

Hence we get, using Theorem 5 for r = oo, the following
COROLLARY. Let T € £(L,(Q)) with Image(T) < Bj ..(2)." Then the
eigenvalues of T in L,(82) are of order

A (T)] 5 0™,

The third application of Theorem 3 concerns the trace formula for
8i-operators. For any T € 87(X), X being an arbitrary Banach space, a trace
can be defined as follows:

For any finite rank operator T € ¥ (X) the trace is given by

tr(T) = _21.-('!)

with only finitely many non-zero eigenvalues A;(T).

But, by [23], the finite rank operators are o{-dense in S{(X) and
Itr(T')| < 861(T) for any finite rank map 7. Hence there exists a unique
oi-continuous extension of tr(-) to all of 8(X), denoted again by tr(-).
For the so-defined trace we have the following theorem which answers
a problem of [18] positively.

THEOREM 6. (a) Let T € S;(X). Then
tr(T) = D 4(T).

ieN
(b) For 8, T € 83(X),

D MBI = Y 4(8)+ Y ().
ieN ieN teN

(e) If {e;} i8 an unconditional basis in X with coefficient functionals
{f;}, then for any T e 8}(X)

D f(Te) = D ad(D).

jeN ieN

For the proof we refer to [9]. The main point is to show (a). For
this, the estimates of the proof of Theorem 3 are essential. Note that (a)
makes sense, since the sum > 4,(T) is unconditionally convergent for
T e 81 (X). N

We now turn to the study of the eigenvalue distribution of general
s-number ideals 8, where s is an s-number sequence possibly smaller
than s, € {a,, y,, 9,}. Hence the result which we can derive will be weaker.
An s-number sequence is called multiplicative if for any 8 e Z(X, Y)

2 — Colloquium Mathematicum XLIV.1
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and T e 2(Y, %)
8nim1(8T) < 8,(8)8,(T), n,meN.

The sequences a,, ¥, and 4, are multiplicative. The following useful
result is due to Carl [3]:

PROPOSITION 7. Let 0 < p < oo and let 8, be a multiplicative 8-number
sequence. Then for any T € #(X) and any ne N

( ¥ A (D)P) < ¢ (In(n+1)) ( by 5(T)7)"”,
i=1 J=1

where ¢, is a constant depending only on p. Hence, for any q > p, 83 (X)
€ &,(X).

Proof. We will assume again that the eigenvalues have multiplicity
one. Let X, be the span of the eigenvectors belonging to the first n eigen-
values. Similarly as in the proof of Proposition 1, there are operators

A:X —1? and B:1} > X, such that BA|y =1Id and |A|||BI<Vn.
Let T, : X, — X be the restriction of T and let

S:=AT,B:1; - 1.

Then A,(8) = 4(T) for 1 <4< n. For any Hilbert space map R,
by [29] we have
|21 (R)...2,(R)| < 8,(R)...8,(R).

Applying this to B = 8’ with je N, we get

(B.7) 4D = 12,(8)] = 12,(8) " < 14,(8%). .. 2, (87"
< (8,(87) ... 8, (89 < w¥P (8, (T7) ... 8, (T9))"™,

using for the last inequality §/ = A(TY),B and
8;(87) < 14111Bl18;(T?) < n's,(T7).
The geometric form of Hardy’s inequality, derived from (3.6) letting

r — 0, states for a €l,
Dllay...q,""<e Z la,].
neN neN

This inequality, applied to (3.7), yields
. k ,.‘
(3 13u(D) ) < i ( 3 [82(T) .. 8, (T9)7P1)
n=1 n=1

k
1
< 'Pp ( 2 8, ( Tj)pu) o

n=]
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By a standard monotonicity argument, using the multiplicativity
of the s-numbers 8,, the sum on the right-hand side is smaller than

e ( ij sn(T)p)llp .

Choosing j = [In(n +1)], we therefore get

(j V»,,(T)lp‘,l/p < ¢, [In(k +1)JHP ( Zk:s"(T)p)llp.

Under even weaker assumptions on 8,, only the following holds:

PROPOSITION 8. Let 0<p< 2 and let 8, be an arbitrary s-number
sequence. Let 1/q = 1/p —1/2. Then

85(X) € 8,,(X)  with |A,(T)l,p < 6705 (T).

If X = L,(u), then the same holds with 1/q = 1[p —|1/2 —1/r|.
Proof. Apply the same technique as in the previous proof with
j = 1. Thus
A (T)In™ < (82(T) ... s, (1)),
<

A (TNlg,p = A (TI ™2, < ||(82(T) - 8, (T))allp < €Plig (T,

For X = L,(u) and r > 2, apply Lewis’ result [16] that 4 and B
can be chosen with |4 |B]} < #'~Vr, If r < 2, use this estimate for 7".

Since 1,, < l,, Proposition 8 yields a slightly better eigenvalue
space for §; than the worst possible space 1, (or l,, respectively) for
87 (cf. Proposition 1). In general, Proposition 8 is optimal with respect
to Lorentz spaces: Let 0 < p < 2 and let A, denote the Hilbert numbers.
Then there is an operator T' e 84(l,) such that the eigenvalues of T belong
to 1, , but to no smaller Lorentz space l,, (with 8 <p, 1/¢ = 1/p —1/2).
This. map can be constructed similarly to the example in the next section
using Walsh matrices. The estimates proceed similarly to the ones of
Section 4 of [9].

Proposition 7 also holds for the so-called entropy numbers [4].
This has been applied successfully by Carl [3] to the study of Sobolev-
Carleman operators, and especially to the study of the eigenvalues of
certain integral operators.

Let us mention that, in general, there is no estimate for the single
eigenvalues |4, (T)|, T € o (X), against the single s-numbers s, (7). However,
we have the following formula [10] which generalizes the spectral radius
formula for compact operators in Banach spaces:

PROPOSITION 9. Let 3, be an s-number sequence. Then, for any
Tex(X) and n € N,

1A.(T)| = lims, (T)".

J)—>00



20 H. KONIG

However, for a special class of s#-operators, which generalize the
self-adjoint maps to Banach spaces, one can prove the asymptotic -equi-
valence of |4,(T)| and s,(T) (cf. [9]).

4. p-nuclear operators. In this section the previous results are
applied to the study of the distribution of eigenvalues of p-nuclear opera-
tors in Banach spaces. In view of A4,(X) < II,(X), nuclear operators
have square-summable eigenvalues. This is optimal:

LeMMA 5. For any sequence o €l, there exists a muclear operator T
on 1 such that the o; are (among others) eigenvalues of T.

Proof. Let @:1, -1, be a quotient map and let D,: 1, -, be the
diagonal map (#,) + (¢,2,). The map @ is absolutely 2-summing by [17],
and D, is absolutely 2-summing since o €l;. Hence their composition
D,Q is nuclear, D,Q € #7,(l;, l,) (cf. [21]). Thus also the dual map @'D,
is nuclear, Q' D e A4 (l4, 1). Consider @': l; — I, as an isometric imbedding.
By the nuclear extension property, @’D, admits a nuclear extension to
an operator on I with o, among its eigenvalues.

For p-nuclear operators, the loss of summability of the eigenvalues
in Banach spaces compared with Hilbert spaces is similar to the general
s-number ideals §5. The situation is studied in the next two theorems.

THEOREM 7. Let 0 < p < 1. Then
(1) #p(X) = 8,(X) with 1/q =1[/p—1/2 and
(D) AT < e (T).
1eN
(2) If X = L,(u), then the same i8 true for 1/q =1[/p —|1[2 —1]r|.
Proof. Theorem 7 will follow from Theorem 2. Part (1) is due to
Grothendieck [6]. By definition, T € 4",(X) has a representation

T = ) au;Qy; with |gjll = lly;l =1 and |al, < 2v,(T).
: jeN

We may assume that a, > 0 is decreasing. Let

_[afL 1. (nt+2p P
na—[2(—p——1)], d:=1 5 wi=o

‘Then >0, >0 and 2 < u < oo. Let 0: X —1, be the map given
by @ > (ajxj(2));en, further let P:1, —1,, @:13 -1, and R:ly —1, be
the diagonal maps induced by (a??),, and, finally, §:1, - X,

(&j)jen — 2 Y-
jeN

Then T = SRQ"PO. The operator O is absolutely u-summing, whereas
P and Q are absolutely 2-summing. Hence, by Theorem 2,
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1

’ 1 1 1 1
A(T)) el,, where »tl ‘
e q

u 2 p 2

with the corresponding estimate. Since R’ eIl (l,,ls), for r > 2 we have
R'8 ell,(X',1,) < IT,(X',1,). For X = L,(u) this implies, by [15],
SR e I1,(1,, X). Hence '

. 1 1 1 1 1 1 1
(4:(D)) e, Wlth—q——;—g—}-?_;_( )

For r < 2 one can argue by dualization.

Ags is indicated by Lemma 5, Theorem 7 is optimal for p = 1. However,
if 0 <p< 1, Theorem 7 can slightly be improved to

THEOREM 8. Let 0 < p < 1. Then

Hp(X) S 8,,(X)  with AT, < 0,,(T),
where
(a) 1/q =1/p—1/2 for general Banach spaces X,
(b) 1/g =1/p—11/2 -1/r]| for X = L (p).
We will only give a very rough idea of the proof. The complete proof
can be found in [11]. Instead of using Theorem 2 of Section 2, it is a modi-
fication of the proof of Theorem 3 in Section 3. For 8 € 4, (X, Y) let

a,(8) := inf {», (8 —8,): rankS, < n}, mneN,

denote the approximation numbers relative to the nuclear norm. Starting
with a nuclear representation of T e 4, (X),

T =D an®s, lj=Ilel=1, legl,<2v(T), >0,
jeN '

we eclearly have
G (T)< D) a;.
j>n

Using this, one can show for 1/t = 1/p —1 that
"a;(T)"‘,p< cpvp(T), 0<p< 1.'

Roughly, we lost a summability order of one. Instead of considering
the ideal 87, we now consider similar ideals defined by the approximation
numbers relative to », with quasinorm |ia}(7)l|, ,. For the normal approxi-
mation numbers, the summability order would be ¢, but the nuclear norm
allows an additional summability order 1/2 so that the final loss will
be only of order 1 —1/2 = 1/2, namely yielding summability ¢ with 1/¢
= 1/p —1/2. The point in the proof of Theorem 3 which has to be changed
is the estimate

2" (D;) < dY* Dl
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Instead of this, use now -
”;N, (Dj) < d;N_l)/z”a(Dj) < dgN—lm’ﬁ (-Dj)7

where the operators D, are now constructed relatively to the new approxi-
mation number ideal. The method yields

A (D) < ay( 3 a5 (T~ )"
j=1
For 8 < p/(1 —p), Hardy’s inequality implies
")‘n(T)"q,p < bp"a;(T)”t,p < dpvp(T) .

For X = L, (u), a similar technique can be applied.

Example. Theorem 8 is optimal in general: For any 0 <p <1,
we now construct an operator T € 47,(l,) such that the eigenvalues ().,-(T))
of T belong to I, , but to no smaller Lorentz sequence space I, for 8 < p
and 1/¢ = 1/p—1/2. A similar example exists in I, with 1/¢ =1/p —
—i1/2 —1/r|.

Let

A y |

A,o = (1)7 Azn+l = (Az" _2’;“)7 n € No;

o
be the Walsh matrices. Then A4}, =2"Id and |4,(4,,)| =2 for all
1<1<2". Choose oel,\l, and define
A= ZNo,'.(z"r”PA,,.: (@) ~ (@)

as a block wise sum of multiples of the 4,,’s. Thus A:1, —1,. Letting a
denote the rows of 4,,, we get

an on
A= D006, (4,0 < Dlajl% =2"

j=1 =1

rp(A)P < D) 0827y (4,,)° < lloglih < oo

n=l

Therefore, A is p-nuclear in !,. However, we have the following
igenvalue estimation:

DG, = 3 ATt~ 32" (a, 27" 2mye (gn) e
N neN
= [loplly = oo.
This means that 4 ¢ &,,(l,). To modify the example in I, — showing

the optimality of (b) —use for 1< r< 2 the factor o,(2")~"»~¥) jn.
stead of o,(2%)"'7,
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Remark. Grothendieck [6] conjectured that the following compo-
sition formula is valid for p-nuclear operators:
it 1 1 1 1
ApO Ny SN, 7=;+E—'2-, 0<p,q,r<1
As recognized by Pisier, it follows from Theorem 8 that this is false
in general: Choose o €l,\I, ,; and split the sequence as o = uv, where
» - 0 and p € l,\1, ;5. This is always possible. Then the induced diagonal
maps D,: 1, - ¢, and D,: ¢, — I, are nuclear. However, their composition
D,:1l, -1, is not (2/3)-nuclear, since otherwise the eigenvalues o; would
form an [, ,,-sequence. A more natural conjecture for a composition
formula seems to be

P 1 1
NpoNgeaN, H—=—+—-1, 0<p,q,r<1.
r r g
We have seen in Theorem 7 that the summability order ¢ of the eigen-
values of nuclear operators in X is somewhere between 1 and 2 and depends
on X. So it is natural to ask for the geometric properties of X such that
the summability order is some fixed ¢, 1 < ¢< 2.
ProOPOSITION 10. Let 1< g<< 2. Then the following statements are
equivalent:
(1) #UX) S 8g,0(X).
(2) There is a constant ¢ > O such that for any n-dimensional subspace
X, of X there ewists a projection P of X onto X, of morm |P| < en'@,
Proof. We shall only prove the easy direction (2) = (1). The impli-
cation (1) = (2) is due to Johnson; the proof uses methods similar to
those of the proof of Theorem 3.11 in [8]. To show that (2) implies (1),
assume that T € #7,(X) has only eigenvalues of multiplicity one. Given
» € N, there is a subset I < {1,...,n} such that

Zm,(T 4|Z z,(T)| Altr(Ty: X, — X,

iel

where X, is spanned by eigenvectors belonging to the eigenvalues (}.,(T)),, I+
Since #HI < n, by assumption we get

Z‘m (T)| < 49, (T2 X; — Xp) < 49, (T: X—>X)|P: X X,
j=1
< 4on'® »(T),

which implies

13 (T)lg 0 < SUDR™H le (T)] < 4o, (T).

j=1
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Part (2) of Theorem 7 and part (b) of Theorem 8 remain valid for
subspaces or quotients of L (u). Hénce, by a result of Rosenthal [2§],
we infer that for any reflexive subspace X of L, (0,1) there is a ¢ << 2
with #(X) = &,(X).

5. Product ideals. In Sections 2 and 3 we considered the eigenvalue
distribution of absolutely p-summing operators and operators of type I,
separately. The next theorem gives information on the eigenvalues of
operators which can be factored as products of these two different types
of operators. If &«,, ..., &, are operator ideals, we write &,0 ... o, (X, Y)
for the set of all operators 7 € (X, Y) which can be factored — over
possibly different Banach spaces —as 1 =T,0...07T, with T;e o;.
Then &/,0 ... 04, again is an operator ideal. The results in this section
are extensions of the ones of [12].

THEOREM 9. Assume that 2 < p; < 00,1 =1,...,m, and 0 < g; < oo,
i =1,..., m; moreover, lel

1 =1
L3St e 13
m qf @ &g

If Tell,o...oll, 080 ... 08 (X), where the order of the operator
ideals 8 nol essentml wnd may be arbztmry, then the eigenvalues (A;(T) Jienw
belong to the Loreniz space 1, , with

'Mj(T)"p,q o(pﬂ QC)A(T)7

where A is the product ideal quasinorm.

Proof (idea). Let us choose N ¢ N and §; with 2/N < ¢;< g; for
1<j<<m. Let

1 5 1 N 1

— — + nr and — = >

r Ced Py 2 § 4

Let X; denote again the first I-dimensional eigenvector space of 7. If
T=28...8T...Ty, 8yelly, T;e8;

g5

we get by Theorem 2, part (b),

(AT el < 01”“ (Si)n M (T}),

j=1

where the T} are restrictions of rank less than or equal to I of the T’s
to certain image spaces of X'. Similarly as in part (ii) of the proof of
Theorem 3 one can show that there is a constant ¢; » such that, for any
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operator S of rank I,

—1/g: Y
$(8) < ‘J'«‘;}(N)INI2 l/q"’;j(s)a

N>
2

]

Applying this to the operators T, we get

(TP < | (D < veH (80 [T (e (T,

(5.1) |).(T)|l”‘ 02” g, (8)) n (a (T~ Ya),

=1 J=1

Note that 1/p —1/¢ = 1/s. Thus
"AI(T)"p,q = "z'l(T) lll‘"q'

Hence, using Hoélder’s inequality for

m
=2
— 9
from (5.1) we get

4(Dllpg < a [ | 25, (80) [ ] (07 (TPE ) -
i=1 je=1

Each of the last m factors can be estimated by Hardy’s inequality
in view of g; < ¢;. This yields

(D)l < €(Ps 45) [T 7089 [] 7 (T))

im]
which is the statement of Theorem 9.

Without further knowledge on the order of the operators and the
spaces concerned, Theorem 9 is optimal: In general, the eigenvalues
of T are not absolutely p-summable, as will be seen by Lemma 6. However,.
since they belong to [,,, they are absolutely r-summable for any r > p.
Thus, the summability of the eigenvalues of the operators considered
in. Theorem 9 is slightly worse than the best possible, whereas for the
p-nuclear and Sz-operators we found the summability to be slightly

better than the worst possible. For the ideal 17,0 8,, Theorem 9 is optimal::
LEMMA 6. We have

Mo 8y(H) = 8,4(H) < &,,(H) 2 6,(H),

where, of course, 8, ,(H) = |T € o (H): (8,(T)) €l,,,}.

Proof. Let T €Il,08,(H). Then (T*T)"* = UT e II,08,(H) with
some unitary operator U. By Theorem 9, the eigenvalues s, (T) = 4, (T*T)"*?)
belong to 1, ., T €8, ,(H).
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If Te&S,q(H), we can use a trick of Kwapiedl [14] and write
T =UD,V, where V is a unitary map, D, a diagonal map in H =1,
with the sequence (o,) = (s,,(T)) €l,,5, and U an isometry on Image(D,V).
Hence it is enough to show that D,: I, —I,, (z,) — (0,2,), belongs to the
factorization ideal II,0 8,(l,) if o €l, ,. Without loss of generality we can
‘assume that o, > 0, g, being decreasing. Then, by [22],

aj(D,: 1y ~ 1) = (_\J 0'3;)1/2,
n=j

6;(Dy:ly > 1) = (2 a;(D,: Iy — ll)z)llz< (2 263»)1/2
jeN i nzj
= ( X n02)"* = lloll,s < oo.

neN

Hence D, € S,(l,, 1,). Since the identity map -I:1, —1, is absolutely
‘2-summing, D, € I1,08,(l,).

On the other hand, S8,0ll,(H) = 8,(H) < &,(H). Hence the second
Lorentz index ¢ in Theorem 9 may depend on the order of the operators
whereas the first and main index does not.

By an argument similar to the one just used we can now give a counter-
example to a conjecture of Retherford, which could have enabled a simple
proof of Si(X) c &,(X):

Example. In general, operators T e 8%(X, Y) of type l, cannot
be written as the product of two absolutely 2-summing operators. Let
X =1, and Y =1, and consider the diagonal map

D,:1l3 -1, where o,:= [nln(n+1)]"%2,

Then D,:1l; —1, € 8], since

Do) < Y (D A" ~ i I +1)1 ¥ < oo
jeN jeN npj jeN
However, if D,: 1, —1, were in II*)(l,, 1,), then D,:l, —1,, a8 & map
in 1y, would be in IT{®(l,), since the identity I, — I, is in I7,. But then the
eigenvalues (o,) of D, in !, would have to belong to 1,,, (¢f. Proposition 2),
‘which is false. Hence

D,: 1, 1, € §I\ITY.

However, the conjecture is “almost” correct: For p <1, any
T e 83(X, Y) can be written as the product of two absolutely 2-summing
-operators.

The use of Hardy’s inequality in the proof of Theorems 3, 8 and 9

reflects interpolation properties of the operator ideals .4/, and 8j, (cf. [12]).
Denoting by (,)s, the real interpolation method of Peetre, for any X, ¥
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and 1/r = (1 —0)/p+ 06/q we have
N (X, Y) € (Wp(X, X), N (X, X))o,y 0<p,gr<1, 0<0<1,
85X, Y) = (S;(Xy Y), ’S;(Xy Y))o,n 0<p,¢,r<< 00, 0K 0L,

The absolutely p-summing operators on ¢, are stable under the complex
interpolation method (,):
For 1/r = (1—-6)/p+0/q,

Hr(co) = (Hp(co)7 Hq(co))[o]r 1<_’P, q,T< °°1 0< 0< 1-

However, IT (¢,) is no real interpolation space which is one reason
why Theorem 9 does not yield T € £,(X).

Added in proof. Since the redaction of the paper new results have
been obtained.

1. The eigenvalues of any map T €/1,,(X) are in 1, ,, but in general
not in I, improving Proposition 5 and solving the problem P 1192 men-
tioned there (cf. [31]).

2. Theorem 3 has been improved to hold for the so-called Weyl num-
bers instead of the larger Gelfand numbers (cf. [32]). This concept yields
an easier proof of Theorem 9.

3. Concerning Proposition 7 and the comments there it should be
mentioned that estimates of single eigenvalues against single entropy
numbers have been derived (cf. [30]).

4. In Proposition 6, the assumption p < 1 is unnecessary.
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