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Abstract. Advances in human computation bring the feasibility of utiliz-
ing human capabilities as services. On the other hand, we have witnessed
emerging collective adaptive systemswhich are formed fromheterogeneous
types of compute units to solve complex problems. The recently introduced
Social Compute Units (SCUs) present one type of these systems, which
have human-based services as their core fundamental compute units.
While, there is related work on forming SCUs and optimizing their
performance with adaptation techniques, most of it is focused on static
structures of SCUs. To provide better runtime performance and flexibility
management for SCUs, we present an elasticity model for SCUs andmech-
anisms for their elastic management which allow for certain fluctuations in
size, structure, performance and quality. We model states of elastic SCUs,
present APIs for managing SCUs as well as metrics for controlling their
elasticity with which it is possible to tailor their performance parameters
at runtime within the customer-set constraints. We illustrate our contri-
bution with an example algorithm.

Keywords: Social Compute Units, Elasticity, Adaptation, Collective
Adaptive Systems.

1 Introduction

In recent years, new forms of collective adaptive systems(CASs) that consider
heterogeneous types of compute units/resources(e.g., software services, human
based services and smart-devices) have emerged [20]. These systems allow com-
pute units to be flexibly added and/or removed from them, and different collec-
tives can overlap with each other by utilizing each other’s resources. Compute
units within collectives are collaborative, manageable and may be given decision
making responsibilities. With the advance of human computation [17] there is
a possibility of forming CASs that include human-based services [21] as com-
pute units. Social Compute Units(SCUs), introduced in [6], can be considered as
one type of these collective adaptive systems. They are virtual compositions of
individual human compute units, performing human computation tasks with a
cloud-like behavior. SCUs are possible today because of the human resource pools
that are provided by human computation platforms (e.g., crowdsourcing plat-
forms, social networking platforms and expert networks), which have brought
the possibility to investigate ways of utilizing human computation under the
service oriented computing paradigm. However, due to the unpredictability of
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human behavior, human-based services bring considerable challenges in their
management. This is especially the case with collective adaptive systems such
as SCUs, where the ways to manage resources are obviously different and more
complex than the management of crowd workers that work individually, and that
of collaborations with fixed number of resources. In this context, traditional plat-
forms that support virtual fixed-sized collaborations might not be as efficient as
those that support SCUs with elastic capabilities that offer opportunities for
variable resource numbers with variable scalable capabilities. There are several
reasons for this. First, unexpected tasks might be generated at run-time which
may require new type of elements with new type of capabilities. In fixed-resource
collaborations, usually existing members need to learn these tasks and thus the
work might be delayed and/or executed with lower quality. Next, there might
be a human-compute unit that is temporarily misbehaving or its performance
is degraded. Its exclusion would bring degradation of the collaboration and the
performance of the collective, if another appropriate one is not employed in its
place. Furthermore, due to badly planned delegations, it is often the case that
some resources are overloaded while others are underutilized. The latter comes
as a consequence of the problem of the reliance on human resource availability as
one of the fundamental ones in social computing. In this context, the willingness
of a human resource to execute a particular task at a specific time point is often
overlooked. However, this is crucial for platforms supporting work that includes
human computation because even if we assume that human resources can use
”unlimited” software-based resources, e.g., using the cloud, human behavior is
dynamic and highly unpredictable.

The aforementioned problems show that there is a need for management mech-
anisms to support elasticity by scaling in size and computing capabilities of
SCUs in an elastic way. Authors in [8],[21] identify the underlying challenge in
provisioning SCU elasticity to be the lack of techniques that enable proactive
provisioning of human capabilities in a uniform way in large scale. Nevertheless,
assuming the possibility of utilizing human-based services in a cloud-like way,
systems should support runtime elastic coordination of collectives. To address
the aforementioned issues, in this paper, we investigate and provide runtime
mechanisms with the elasticity notion in mind, so that platforms would be able
to provide elastic capabilities of human-based compute units/SCUs, that can be
managed flexibly in terms of the number of resources, as well as their parameters
such as cost, quality and performance time. Hence, our key contributions are:

– conceptualizing and modeling the SCU execution phase and states,
– defining SCU-elasticity properties and APIs,
– designing an SCU provisioning platform model with elastic capabilities.

The rest of this paper is organized as follows. In Section 2 we present a motivation
example and discuss challenges in elasticity provisioning. In Section 3 we describe
the SCU concept, model the execution mode of an SCU and present our platform
for managing elastic SCUs. Section 4 illustrates the feasibility of our approach.
We present related work in Section 5 and conclude the paper in Section 6.
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2 Motivation, Background and Research Statement

Scenario. Let us consider a concrete scenario of a software development project
e.g., for a health-care specific system, and assume that a software start-up com-
pany is engaged for its execution and completion. To deliver the end-artifact,
these type of projects require diverse set of skills. Hence, in addition to the com-
pany employees, some specific parts of the project might need to be outsourced,
e.g., to experts with experience in health-care but also to IT professionals with
skills that the start-up is lacking. Hence, to solve the problem of skill deficiency,
an SCU including human-based resources/services both from the software devel-
oping company but also ”outside” experts is formed. The SCU utilizes software
services for collaboration and task execution. On the other hand, the human-
based services and the software services that they utilize are supported by an
SCU provisioning and management platform that coordinates their performance.

The challenges that arise in this scenario come from the importance of perfor-
mance and quality of results in paid expert units. A software solution needs to
be delivered on time and in accordance with customer requirements and budget
limitations. Fixed composite units with a known number of resources, includ-
ing outsourced ones, often have problems with overloaded resources and may
result in project delays with good quality or on time delivery of solutions with
a lower quality than the desired ones. Problems such as those mentioned in the
introduction also appear. However, with the availability of online resource-pools
from human clouds [10], human-based services can be acquired and released
from SCUs on demand, so as to best meet the customer performance and qual-
ity requirements. Hence, we assume that the ”outside” experts for our software
development SCU can be recruited from human clouds on demand. Under these
assumptions and if the SCU supporting platform incorporates mechanisms that
allow elasticity, an initial SCU will be able to adapt at runtime with respect to
certain parameters, such as the number of its compute units, unit types, structure
and performance. This can be particularly important in agile software develop-
ment, where both the customer requirements and the development process evolve
in an iterative way, and teams have high collaboration with the customer and are
more responsive to change. Our hypothesis is that in consequence of these elas-
tic capabilities, SCUs will provide higher efficiency at runtime. Thus, platforms
that include mechanisms and techniques for runtime support of coordination of
SCUs with elastic capabilities are crucial.

Background and Challenges. As aforementioned, our approach is based on
the concept of Social Compute Units [6], which fundamentally represent virtual
collective systems with human-based resources as compute units that are brought
together to work on a common goal with a deadline. These compute units, can
belong to an enterprise, they can be invoked from a crowdsourcing platform, an
expert network or any platform that hosts pools of available resources for human
(including social) computation. In relation to the work of the coauthors in [21], in
this paper, we use the term Individual Compute Units (ICUs) for SCU members,
which represent human-based services that can be programmed in a manner that
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they can execute tasks on-demand. Thus, an SCU is composed on request from
a customer who defines requirements and sets constraints(e.g.,budget,deadline).
It has its compute (performance) power, it can be programmed (managed) and
is intended to work utilizing a collaboration platform hosted on the cloud. The
behavior of an SCU is cloud-like, in the sense that its duration and performance
depends on its goal, customer constraints as well as events generated during its
execution.

Considerable related research focus has been put on formation algorithms
[1],[13] and performance optimization within fixed teams. However, SCUs have
a different nature than teams, as the SCU structures and capabilities can be
programmed and SCU members can be elastically managed at runtime. Thus,
even if some work for teams can be utilized, there is a research gap concerning
SCU elasticity during the execution phase, in terms of resource numbers but
also in terms of non-functional parameters(NFPs) such as cost, reliability, per-
formance time etc. There has been a classification of human cloud platforms,
where one category of platforms is said to be focused on project governance and
complex coordination between resources [10], as opposed to crowdsourcing ones
where the responsibility of project governance is not entirely on the platform.
Examples of these type of platforms are TopCoder1 and workio2. Even though
these type of platforms can manage the lifecycle of collaborations, we argue that
they lack the adaptation techniques and flexibility of resource management in
terms of elasticity at runtime. For example, the pricing in these cases is not set
by the customer like in crowdsourcing, rather the human-based services set their
own prices. Thus, there is a possibility that with these models a collective of
human resources can be automatically ”programmed” so that if the number and
type of resources changes the cost does not exceed the customer’s total budget.
This is one example of NFP elasticity in terms of cost. Consequently, identifying
possible elastic operations that can be triggered at critical time points present
important challenges for optimizing an SCUs performance. In the context of
the aforementioned scenario and what lacks in current platforms, some of the
research questions that we confront are:
– Given an initial formed SCU and a set of monitored team performance met-

rics, what are the set of actions that can enable SCU elastic capabilities, in
situations when performance is degraded and violates a threshold value for
a customer set constraint?

– When is optimization(e.g, load balancing) within an SCU not enough and
a reorganization needed? Which tasks need to be reassigned, when and to
whom(to a resource within/out of the SCU?

To sum up, this paper investigates the following fundamental challenge:What
are the mechanisms that a human computation system needs to deploy so as to
provision SCUs with elastic capabilities, both in terms of resource scaling and in
terms of variable properties?

1 http://www.topcoder.com/
2 https://www.workio.com/
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3 Social Compute Units and Elasticity

3.1 Elastic Social Compute Units

Elastic SCUs have elastic capabilities that can be triggered at runtime to tailor
their performance to best fit client requirements at runtime. With human based
resources being unpredictable and dynamic, their skills, price, interest and avail-
ability can change with time and within a specific context. However as stated
in [6] the concept of SCU does not have a notion of elasticity in itself, thus an
SCU provisioning platform which creates, deploys and supports the execution of
SCUs needs to include mechanisms for scaling it up or down as needed, and as
aforementioned, with this scale an SCUs performance parameters vary as well.
These mechanisms should ensure that at each time point these parameters are
within desired levels and comply with customer constraints. For our purposes,
we conceptually define the elasticity of SCUs as follows:

Definition 1. The Elasticity of Social Compute Units is the ability of
SCUs to adapt at runtime in an automatic or semi-automatic manner, by scaling
in size and/or reorganizing and rescheduling, such that the variations in the
overall performance indicators such as capability, availability, effort, productivity
and cost, at each point in time are optimal within the boundaries of the customer-
set constraints.

To support elasticity for SCUs, we identify as a prerequisite to have an execu-
tion model for an SCU, as previous work identifies SCU phases but do not go
into details into its execution phase. An SCU lifecycle consists of the following
stages: request, create, assimilate, virtualize, deploy and dissolve [6]. The elastic-
ity mechanisms are needed after the virtualization stage, in the execution phase,
which we model next.

3.2 SCU Execution Model

We denote a cloud of ICUs (e.g.,from online platforms and/or enterprise inter-
nal pool) as the universal set R = {r1, r2, r3...rn}, and the set of ICUs that
are members of a particular SCU as S = {s1, s2, s3...sn}, where S ⊂ R. Let
the set of tasks to be executed from a specific SCU be T = {t1, t2, t3...tn}. For
each task ti ∈ T , we denote the set of matching, appropriate and possible ICUs
that can perform the task ti as P = {p1, p2, p3...pn}, where P ⊂ R. Depend-
ing on constraints the following can be valid in different situations: P ⊂ Sc,
P ⊂ S or P = S. To provide elasticity, ICUs from S can be released and new
ICUs from P can be added to S, therefore, |S| might change at runtime. We
model an ICU belonging to the cloud of ICUs R, with the following set of global
properties, ICUgl

prop = {Idicu, skillset, reputation, price, stateglobal}. Moreover,
an ICU from the perspective of the specific SCU of which it is a member, is
modeled with its local properties, as ICU lscu

prop = {Idscu, ICUgl
prop, statelocal,

productivity, trust}, where reputation, state productivity, and trust are aggre-
gate metrics that we discuss further in this section.
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States. An SCU in execution mode, at a specific time point τ , can be in one of
the following action-states, SCUstate(τ) = {running, suspending, resuming,

expanding, reducing, substituting, stopped}. These states are listed in Table 1.
The mentioned states are basic/atomic ones and a combination of them makes a
complex SCU execution state. For example, an SCU might be running but due to
an adaptation action, at the same time multiple ICUs (a cluster of ICUs) within
an SCU might be suspended, while a new ICU is being added in expanding
state. In this case because running, suspending and expanding are all execution
states of an SCU, then running∧ suspending∧ expanding is also an SCU state.
However, some states are mutually exclusive if they refer to the whole SCU and
cannot be aggregated, i.e., an SCU cannot be in running ∧ stopping state. If
one of the atomic states refers to (a change in) individual or a cluster of ICUs,
an SCU can be in running∧ extending state or for example an SCU can be in a
running ∧ reducing state. Thus, the aggregate states are valid in the context of
the scope that a state-changing action takes place. Table 1 also shows the scope
for which the state-changing actions are valid, in terms of the whole SCU, a
cluster of ICUs, or ICUs only. The importance of the state of an SCU as a whole
is tightly coupled with ICU states and is crucial when applying elastic strategies
in two ways: 1) the state of the SCU can be a trigger for elastic operations on
the SCU, and 2) it can be a desired result after applying these operations.

Table 1. Fundamental state alternatives of the SCU Execution phase

Trigger action State Scope
Triggering Role

Platform Customer ICU

Run Running SCU
√ √

Suspend Suspending SCU/ICUcluster/ICU
√ √ √

Activate Resuming SCU/ICUcluster/ICU
√ √ √

Add Expanding ICUcluster/ICU
√ √ √

Exclude Reducing ICUcluster/ICU
√ √ √

Stop/Exclude/Add Substituting ICUcluster/ICU
√ √ √

Stop Stopping SCU
√ √

SCU Elasticity Management. Table 1 shows ways of adaptation triggering:
platform based, customer based and ICU based. To clarify, a platform that sup-
ports an SCU should have the mechanisms to support all of its execution states
elastically. Thus all state-changing actions can be triggered in an automated
way as shown in Table 1. Referring to our motivational scenario, in rare cases
the customer could suspend the whole SCU of software development until he
has consulted and decided for crucial changes. There are other triggering state-
changing actions that the customer can also make(shown with light gray check
signs). Table 1 also shows which state-changing actions can be most affected by
communication and ICU feedback, which we illustrate in Section 4. We show an
example for a software developing SCU in execution mode in Fig. 1. At a specific
time point ICUs with developer skills are in running state while designers are sus-
pended. Next, due to an event when expert information is needed(e.g.,health-care
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Fig. 1. An illustrative example of an SCU in execution: expanding and reducing states

information in our scenario), the SCU is expanded by including ICU with spe-
cific expertise and consultancy skills while a designer-ICU is resumed. At another
time point each ICU is running, while before dissolving, the SCU is reduced as
ICUs with designer and consultancy skills have finished their tasks. Adaptation
actions on an SCU can change its execution model not only in terms of the state
but also in terms of its execution structure. These changes are interdependent
with task structure changes and ICU state changes.

Basic ICU and SCU Metrics. The decision to apply an elastic adaptation
action depends on events that are triggered by two level monitoring of global and
local metrics, namely to detect: 1) a violation of preset threshold values for over-
all SCU performance, and 2) which ICUs have affected the SCU’s performance
degradation. The focus of this paper is not to investigate extensive metrics, as
many are context dependent. Thus, in this section we list and define some basic
ones that we identify to be useful for SCUs at runtime.

Project Effort and Productivity have been listed as performance measures
for software projects [12]. Modified versions of these metrics can be reused for
SCUs on software and other goals. Thus, we define the SCU Effort as the sum
of the average time spent by each ICU on each assigned task. The SCU task
completion ratio, gives the fraction of completed tasks within those assigned.
However this does not always mean that the results of all completed tasks are also

Table 2. Notation and description of basic ICU metrics and parameters

Metrics Description

nreq Number of willingness requests sent from the scheduler to an ICU

nack Number of willingness acknowledgments sent to the scheduler by an ICU

nreasgn Number of tasks reassigned to an ICU

nsucreasgn Number of successfully executed reassigned tasks by an ICU

napproved(si) Total number of successfully executed/approved tasks for an ICU

τ (si, tx) Processing time for task x executed by an ICU

c(si, tx) Cost for task x when executed by an ICU

c(s
nw
i , tx) Cost for task x when reassigned to a new ICU
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approved. Thus, we also consider the number of valid or approved tasks, which
we use for calculating the productivity of an SCU. We define SCU Productivity
as the ratio of approved tasks to SCU Effort, giving an average number of tasks-
per-time-unit value. The SCU Reputation is a weighted sum of the reputation
score of each ICU regarding its expertise for the skill for which is included in the
SCU. We model the SCU Reputation in this way because some ICUs in a specific
SCU are more crucial than others by executing more critical tasks. We define
the, reputation(si) as a function of (Success Rate, Approved Tasks, Timeliness,
Reliability, SocialTrust). The SCU Cost is an aggregate sum of the cost of each
ICU for each task according to its type and skill-type requirements. The metrics
are given in Table 3, where si ∈ S and tx ∈ T . See Table 2 for notation on
individual metrics, some of which we use in calculating those in Table 3. The
described metrics are dynamic and a platform supporting elastic SCUs should
be able to monitor and utilize them in runtime adaptation strategies.

From all that was discussed, we can now characterize the elastic profile of an
SCUwithin time τ , asSCUexec(τ) = {SCUsize(τ), SCUstructure(τ), SCUstate(τ),
SCUeffort(τ), SCUproductivity(τ), SCUcost(τ), SCUreputation(τ)}.

Table 3. Example metrics of SCU performance

SCU Metrics Definition

SCU Total Completed Tasks CT (scui) =

|S|∑

i=1

ncompleted(si)

SCU Approved Tasks AT (scui) =

|S|∑

i=1

napproved(si)

SCU Success Rate ST (scui) = AT (scui)/CT (scui)

SCU Effort Effort(scui) =
1

CT (scui)

|S|∑

s=1

m∑

x=1

τ (si, tx)

SCU Productivity Productivity(scui) = AT (scui)/Effort(scui)

SCU Reputation Reputation(scui) =

|S|∑

i=1

wexpertise ∗ reputation(si)

SCU Cost Cost(scui) =

|S|∑

i=1

m∑

x=1

c(si, tx)

Elasticity APIs. To be able to provide SCU elasticity capabilities, which in-
clude ICUs having the aforementioned (and other domain-dependent) properties,
we need to have common APIs for their description and management. Currently
we develop APIs which we categorize in ICU-description APIs for manipulating
ICU profiles, ICU-scheduling APIs for ICU management and elastic operations,
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Table 4. Example API, abstract methods for ICU manipulation

Scheduling methods Description

abstract AddICU() adds an ICU to the SCU

abstract void SuspendICU(SCU scu) brings an ICU to idle state, still included
in the SCU

abstract void ExcludeICU(SCU scu) excludes an ICU form the SCU

abstract void ResumeICU(SCU scu) restart an ICU and its associated tasks

abstract void ReserveICU(Task t) reserves an alternative ICU for an already
assigned task

abstract void SubstituteICU() substitutes an ICU with a reserved one

public List <ICU> getAllICUinSCU(SCU
scu)

returns ICUs within the SCU

public List<ICU>getSuspendedICUs(SCU
scu)

returns suspended ICUs within an SCU

public List<ICU>getIdleICUs(SCU scu) returns idle ICUs in an SCU

public List<ICU>getReservedICUs(Task
t)

maintains an ordered list of top appropri-
ate ICUs for a certain task (ICUs might be
in/out of the specific SCU)

and communication operations. Table 4 describes some specific methods that we
develop to be utilized in strategies providing SCU elastic capabilities.

3.3 Elastic SCU Provisioning Platform

Figure 2 shows a model of our concept of an elastic SCU provisioning platform,
that utilizing our SCU execution model, metrics and API is able to support
elastic SCU management. Thus, the platform supports the following behavior:
a customer/SCU consumer submits a project/request with multiple tasks to
it. When submitting tasks and request for SCU formation, the client specifies
functional and non-functional ICU requirements such as: skill, reputation and
cost. In addition he specifies overall SCU constraints, such as total budget and
deadline. The platform integrates an SCU formation component with ICU se-
lection/ranking algorithms. The resource selection and initial task assignment is
not in our focus. The SCU creation/formation component’s output is an initial
SCU created by selecting ICUs from human cloud providers. This SCU is ”fed”
to a controller -a component that hosts monitoring and adaptation algorithms
utilizing APIs for elasticity control, which provide SCU runtime management.
The challenge of this component, is to monitor and adapt the SCU in accordance
to customer set constraints, such that the SCU gives the maximum performance
and quality within the preset boundaries for time related, cost and quality re-
lated indicators. Different scheduling and ICU management algorithms can be
plugged into the platform, which would support the SCU during its lifecycle.
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Fig. 2. Conceptual platform model supporting elastic SCUs

4 Illustrating Example

In this section we show the benefit of having explicit state management, metrics
and elasticity for supporting elastic SCU. We present the way our framework
can simplify the complexity of the development of elasticity strategies for SCUs.
Typically, an elasticity strategy for an SCU is a domain-specific problem. In the
following, we illustrate how an ICU Feedback-based elastic SCU management
strategy can be implemented.

As ICUs within an SCU are inherently dynamic and unpredictable, we cannot
always fully rely on the system-based availability information concerning an ICU
and fully automated task assignment and scheduling might not always be the
most suitable approach, especially when there is a possibility of unexpected
generation of tasks at runtime. Hence, we propose an SCU adaptation strategy
that uses ICU acknowledgments for their willingness to work on specific tasks.
More specifically, these acknowledgments are sent in response to system requests
for availability guarantees for the execution of tasks that need reassignment.
This strategy supports elasticity in the sense that it departs from the idea that
a customer knows in advance which and how many ICUs will contribute and
the final cost for his ”project”. However, the customer budget is kept within its
limits as the cost may vary within these limits, just as the size and structure of
the assembled SCU may vary with time until the final result is returned.

Our example of elastic SCU mechanism is a semi-automatic task scheduling
strategy where part of the coordination for task re-assignment is delegated to
ICUs. With this approach a task is being re-assigned to a more available ICU,
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on an ICUs own approval and when certain conditions apply (e.g, when a thresh-
old is reached). Thus, the task reassignment decisions are partly based on feedback
from ICUs and in this way the elastic SCU management is influenced from “hu-
man in the loop” decentralized coordination.With this example, we show how new
SCU metrics can be derived and how APIs for elastic capabilities can be used.

Deriving New SCU Metrics. By utilizing APIs for obtaining SCU metrics
at runtime, one can calculate the willingness of an ICU and the willingness
confidence score as: (See Table I for notations):

Willingness =
nack

nreq

, Successreasgn =
nsucreasgn

nreasgn

,WCnf =
nack

nreq

×
nsucreasgn

nreasgn

.

We derive the willingness confidence value from the basic indicators, ICU will-
ingness, and the rate of success in executing the reassigned tasks. The willingness
confidence score WCnf, is computed from the number of acknowledgments that
an ICU has sent to the scheduler in response to its Requests for Willingness, and
the number of successfully completed tasks that are assigned to it as responses
to these acknowledgments. Thus, it is an indicator about the reliability of the
alternative ICUs guarantee about its willingness to work.

Programming an Elasticity Strategy Using Elasticity APIs. Consider-
ing worker willingness, provides a way to measure and control the unpredictabil-
ity/reliability of ICUs by asking them for task-execution guarantees because it
provides a way to compare their ”statements” with their actual behavior. This
is what the value of Willingness Confidentiality indicates. In this strat-
egy we assume that each incoming task is assigned to the ICU at the top of a
ranked list which is returned by a ranking algorithm, and references to the first
x most appropriate ICUs from the ranked list are stored as reserves/alternatives
for each task. The algorithm can be summarized with the following steps:
1. When a preset threshold, related to a task which is already assigned to

the most appropriate ICU matching the requirements is reached, e.g.,the
tasks waiting-time in an ICUs task-queue, the scheduler sends a request for
execution willingness to the next top x number of ICUs that it has references
to (reserves from the initial ranked list), which at the same time are idle,
or their task queues are smaller than that of the ICU to which the task
was initially assigned. With this request for willingness, it notifies them that
there is a task that they can work on. This request is a resource availability-
check; it is a request for a resource’s willingness to work on a specific task
as a form of a worker-side commitment or guarantee that the task will be
executed by it.

2. Each ICU that receives this request and is ready and wishes to work on the
task then sends the scheduler a willingness acknowledgment(Ack)/feedback
to this request.

3. The scheduling component reassigns the task on threshold to the alternative
resource that has sent a willingness acknowledgment and that is idle or has
the smallest task queue. Priority is given to less loaded ICUs that are already
members of the SCU.
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Algorithm 1. Task-reassignment with ICU-side assurance

Require: scuTasks for SCU
Require: customer constraints on NFP
1: for all tasks in T do

rank matching ICUs and return the first 10 appropriate
2: P ← getReservedICUList(Taskt) ⊲ store reserve ICUs
3: assign task t to top ranked ICUs r
4: if r is not an element in SCU then do
5: SCU ← addICU() ⊲ add ICU r to SCU x and update its profile

6: if task.taskQueueT ime == task.timeThreshold then do
7: if r == idle then do
8: SCU ← removeICU() ⊲ reduction: remove ICU r from SCU

9: for all ICU in P do

10: getICUState(ICUICUid)
11: if ICU STATE==idle AND icuReserve.tQueue() <r.tQueueSize()/2

then do
12: willingnessReqMessage()

13: for all icuReserve.sentAck == true in ascending order of
icuResource.taskQueue do

14: if resource belongs in SCU then do
15: substituteICU() ⊲ re-assign task to SCU member and update its

profile
16: break

17: substituteICU() ⊲ re-assign task to external ICU and update its
profile

18: SCU ← addICU() ⊲ expansion: include resource y in SCU

When multiple reserve ICUs send acknowledgments that they are ready to exe-
cute the task, the reassignment decision is made based on the information from
the Acks combined with monitoring information about their task queues and
logged information about the WCnf score. This type of scheduling combines the
freedom of choosing tasks that workers have in crowdsourcing environments,
with policy based assignment of tasks. It is these ICU-side guarantees that are
combined with task queue analysis, that can avoid problems such as delegation
sinks. We outline the steps of this strategy in Alg 1. Alternatively, the request
for willingness can be sent immediately after the task’s initial assignment so that
when a threshold is reached the scheduler only checks the task queues of ICUs.

Executing an Elasticity Strategy. We implemented the algorithm using
methods described in the API section. We created tasks with different skill re-
quirements and modeled an ICU with a single skill for simplicity, and assigned
each of them different costs. When a decision is made about which tasks are go-
ing to be reassigned to which ICU, the new cost calculation includes the prices
of each of the new ICUs, as follows:

Costadapt(scui) = Costprevious(scui)−

m∑

i=1

j∑

x=1

c(si, tx) +

m∑

i=1

j∑

x=1

c(s
nw
i , tx),
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where Costadapt(scui) ≤ Allowed Budget. Due to space limitations and to the
fact that it is not our goal to show how good this strategy is, we provide a
supplement material3.

Generally, the results show that SCU productivity raises with the number of
ICUs and the same effort, while it declines if the effort is high for a low number
of tasks and a small number of ICUs.

5 Related Work

Resource Management and Adaptation. Work on a retainer model for
crowdsourcing environments and examples of its application are presented in
[4],[3]. The model is designed for recruiting guaranteed workers by paying them
a small additional amount, and in this way keeping them in reserve and in ready
state for handling real-time tasks. The similarity of our ICU-feedback based
strategy is in that our scheduler keeps references to the top x number of re-
sources that are previously ranked as most suitable for a specific task. Hence,
these resources are the reserve resources in our approach. However, the differ-
ence in our approach is that no prior payment is made for reservation of these
resources, rather the scheduler sends them a notification asking for feedback for
their willingness to execute a task that is already assigned to another resource
but for which a threshold is reached. Our model is not concerned with initial task
assignment and it is not intended for crowdsourcing tasks, although ICUs may be
invoked from a crowdsourcing platform. Authors of [15] present a programming
language and framework called CrowdLang for systems that incorporate human
computation, and what is of interest to us is that they provide cross-platform
integration of resources, in this way making a human cloud possible. There is a
considerable amount of work conducted on adaptation and more interestingly on
self-adaptation strategies. For example, authors in [16] have presented an archi-
tecture that includes a self-adaptation framework for service-oriented collabora-
tion systems. The part that this work relates to, is their approach on identifying
worker misbehavior patterns (e.g., as a result of uncontrolled task delegations)
and providing a solution of reassigning tasks to other alternative resources by
taking into account their task-queue size. Our strategy differs from theirs in that
tasks are not delegated if ICUs are not willing to accept tasks. Rather, the task
reassignment is managed with consent from alternative ICUs. [9] describes a
delegation model and related algorithms that concern trust updates. The au-
thors mention adoption as a process where the delegation is initiated by the
”delegatee”. Our algorithm stands in between delegation and adoption.

Collaborative Communities and Teams. The concept of the SCU that we
utilize in our work is presented by one of the coauthors in [6]. However, while this
is the fundamental work introducing the SCU, it describes its life-cycle and does
not go into details into the SCU execution phase as this was not its aim. This is
tackled in [19], where researchers have looked into a specific case of incident man-
agement to investigate how SCUs and their evolution(adaptation) perform better

3 dsg.tuwien.ac.at/research/viecom/prototypes/viecas

dsg.tuwien.ac.at/research/viecom/prototypes/viecas
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over traditional process management. Resource discovery in crowdsourcing and
team formation strategies and algorithms have been the subject of investigation
in many works, such as [1], [2], [14], [13],[5]. The algorithms in these works can be
utilized for SCU formation and some also for ICU selection when an SCU needs
to be extended. Task executing collaboration models and runtime collaborations
are also investigated in works such as [18]. However, the mentioned works focus
on fixed teams without elasticity assumptions.

Elasticity. The notion of elasticity is treated in several domains and contexts
and has especially gained importance with the advance of cloud computing. In
[8] authors discuss the reasons, challenges and their approach toward virtualizing
humans and software under the same service-based model that will enable elastic
computing in terms of scaling both software and human resources. The concept
of elasticity in Cloud computing, is being extended to concepts like application
[22] and process [7] elasticity, e.g., in [7], the authors identify resource, cost
and quality elasticity as being crucial in modeling processes in service oriented
computing. Mechanisms and a middleware to support scaling services in and out
from applications utilizing SaaS are presented in [11].

6 Conclusion

Our research focus in this work was to provide mechanisms for effective provi-
sioning of SCUs with elastic capabilities and their efficient runtime management.
We have modeled an SCU at runtime and provided exemplary algorithm that
utilizes operations for provisioning of elastic capabilities. We have shown that
platforms supporting human computation in collective collaborations are more
reliable by working based on the elasticity concept of scalability in terms of both
resources and their parameters. Our future work includes further development of
an SCU execution framework, which will include the presented model, metrics,
API and algorithms so as to be able to deploy our approach in real environments.
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