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ABSTRACT 

Following an examination of the basic gas-discharge concepts, 
the Townsend breakdown criterion is derived for nonuniform 
fields and a reformulation of the streamer criterion is under- 
taken. A direct application of the Townsend criterion to a 

practical situation is hardly possible, whereas the streamer cri- 
terion leads to applicable criteria for the onset of breakdown 
in air as well as in strongly electronegative gases. In this ap- 

proach, a knowledge of the relevant ionization coefficients is not 

required, because these are replaced by parameters obtained 
from uniform field Paschen curve data. In addition, the criteria 

developed do not contain any arbitrary constants, i.e. they are 

free from ‘fiddle factors’. By introducing the electrode surface 

mean curvature, it is shown that the calculation of breakdown 
data for widely different electrode shapes can be addressed 
through a single formula. Finally, it is emphasized that the in- 
herent roughness of practical electrode surfaces demands that 
caution be exercised in all design criteria. 

INTRODUCTION 

knowledge of spark breakdown for various gap ge- A ometries is essential when designing gas-insulated 

HV apparatus. A large amount of experimental data  is 

available in standard textbooks on HV engineering and 

electrical breakdown of gases. Many empirical formu- 

lae are available from which breakdown or corona onset 

field strengths may be calculated. Such formulae are, 

however, valid only within certain ranges, and extrapo- 

lation can lead to large errors. It may, therefore, be of 

interest to consider the possibilities for a direct applica- 

tion of the physics of gaseous breakdown in the design 

of gas-insulated HV equipment. 

The classical Townsend theory of the growth of ion- 

ization is fundamental to any discussion of breakdown 

of gaseous dielectrics. It is generally accepted that the 

Townsend theory of breakdown can account for the on- 

set of breakdown in uniform fields under quasi-static 

conditions. However, in order to give a detailed descrip- 

tion of the many observed phenomena of engineering im- 

portance, the Townsend theory must be supplemented 

by the streamer concept of breakdown. Based on these 

physical concepts, quantitative criteria for ‘the onset of 

breakdown have been proposed. These are, however, of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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limited value to the HV engineer. The main problem 

is that  such criteria are difficult to apply to practical 

situations. The necessary physical data  may either not 

be available or, if so, are presented in a form which is 

alien to engineering applications. 

Another complication is related to the fact that  the 

growth of ionization is exponential. This can, owing to  
the mathematical nature of exponential functions, lead 

to procedures which appear to give acceptable results. 

A closer analysis may reveal, however, that  quite mean- 

ingless properties are hidden in the criteria. For exam- 

ple, the electron avalanche may contain an impossibly 

large number of electrons, but the criteria can still yield 

acceptable breakdown data. It is in a way too easy to 

formulate a criterion for breakdown. The effects of these 

mathematical difficulties can be minimized, however, by 

formulating the quantitative criterion in such a way that 

it does not contain any parameter which is chosen ar- 

bitrarily and thus acts ils a sort of ‘fiddle factor’. An 

example of such a parameter can be the K-factor in 

the streamer criterion for breakdown. A consistent and 

physically mejningful approach to the evaluation of K 

is adopted in the present paper. 

practical relevance with respect to the design of electri- 

cal insulation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
BASIC CONCEPTS 

THE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACURRENT IN THE LEAD 

HE currents flowing in the gas between the elec- 

T trodes during the formation of a breakdown are re- 

lated to  the motion of electrons and ions in the applied 

electric field. These spatially distribJted currents can 

be described by the current density J given by 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J-= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP d i ”  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U = O  

where p is the charge density and ii the drift velocity, 

v = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 refers to electrons and n is the number of possible 

species of positive and negative ions. The relationship 

between these distributed currents and the current flow- 

ing in the lead to  an  electrode often causes conceptual 

difficulties . 

Following a discussion of the basic concepts, quanti- 

tative criteria will be derived for the onset of breakdown Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI denote the current flowing in the lead towards 

in atmospheric air and similar weakly-electronegative 

gases. Thereafter, a comparable criterion is formulated 

for strongly-electronegative gases such as SFG. These 

criteria contain no quantities other than those which 

can be obtained directly from breakdown voltage mea- 

surements in a uniform field, i.e. from Paschen curve 

data. No specific data  are required for the ionizing coef- 

ficients of the gas. The advantage, from an engineering 

point of view, is that  it is much easier to perform reli- 

able Paschen curve measurements than it is to measure 

ionization growth parameters. The price paid is that  

criteria formulated in this way cannot be employed to 

yield unknown Paschen curves. 

The criteria can be applied to any nonuniform field 

configuration provided the electrostatic field distribu- 

tion is known. Moreover, in many cases, a simple ana- 

lytical approximation to the field distribution can render 

an extensive calculation of the electrostatic field unnec- 

essary. 

the electrode and let It be the current which represents 

the transfer of charge from the electrode into the inter- 

electrode space. These currents are, as a consequence of 

the principle of the conservation of charges, related to 

the net charge Q on the electrode in the following way 

dQ I = & + -  
dt 

The charge Q would, in the absence of inter-electrode 

space-charges, simply be given by the capacitance C of 

the system and the applied voltage U, i.e. Q = CU. In 

the presence of inter-electrode space charges, an addi- 

tional charge, the induced charge q, will however occur 

on the electrode. The net charge thus becomes 

Q = q i - C U  (3) 

The following discussions will deal exclusively with 

situations in which the onset of breakdown in the sys- 

tem is synonymous with the onset of a corona discharge. 

Breakdown situations in which corona stabilization is 

operative are not addressed because these are of limited 

The induced charge depends in a unique way on the 

magnitudes and locations of the inter-electrode space 
charges, but it is independent of the applied voltage. 

An infinitesimal charge dQ somewhere between the elec- 

trodes will induce a charge dq on the electrode and dq 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 23, 2009 at 02:46 from IEEE Xplore.  Restrictions apply. 



IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATransactions on Electrical Insulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVol. 24 No. 5, October 1089 723 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
will, in view of the principle of superposition, be pro- 

portional to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdQ,  i.e. 
addition, the following condition must be fulfilled at  all 

dielectric interfaces 

The dimensionless quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'p is a positive scalar func- 

tion which depends on the location of dQ only. The en- 

tire induced-charge on the electrode will thus be given 

by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q = - J J J w d n  (5) 

in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is the volume-charge density at the location of 

the volume element dR. The volume integral is extended 

over all the space between the electrodes. 

In the absence of polarizable material the function 
'p is, as shown by Maxwell [l], a solution to Laplace's 

equation 

V2p = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) 

with the boundary conditions 'p = 1 at  the surface of the 

measuring elec,trode and 'p = 0 at  all other electrodes. 

Any available method of electrostatic field calculation 

can be used to evaluate 'p. Let V, be the potential a t  a 

point in the inter-electrode space in the absence of any 

space charges when the potential of the electrode is U ,  
and all other electrodes are a t  zero potential. V, is then 

given by 

V2VC = 0 (7) 

(8) 

This means that 
vc 
U, 

'p=-  

It is important to note that V, and U, are entirely 

fictitious quantities such that U, can be given any ar- 

bitrarily chosen value, i.e. U, is not synonymous with 

the applied voltage during the formation of a gaseous 

discharge. For this reason the expression V,/U, should 
not be inserted in Equation (5). 

In the presence of polarizable materials, e.g. when 

discussing gaseous breakdown within voids in solid di- 

electrics, the function 'p must be replaced by another 

dimensionless function X [2,3,4]. This function is also 

given by Laplace's Equation but in the following form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v . ( E V A )  = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9) 

in which E is the permittivity of the polarizable dielec- 

tric. The boundary conditions are X = 1 a t  the surface 

of the electrode and X = 0 at  all other electrodes. In 

ax ax 
E + ( - ) +  = &-(- ) -  

an an 

where the signs + and - refer to the two sides of the 

interface and X is differentiated in the direction normal 

to the interface. Any standard method for calculation 

of space-charge-free electrostatic fields can be applied to 

evaluate X from the equations 

E + ( - ) +  avc = E - ( - ) -  a Vc 
an an 

U, is the arbitrarily chosen potential of the electrode 

and V, is the potential of a point in the inter-electrode 

space. All other electrodes are a t  zero potential. 

The current flowing in the lead towards the electrode 
in 

(14) 

Differentiation of Equation (5) with respect to the time 

t vields 

which by means of the continuity equation 

- aP V . J + - = O  
at 

can be written in the form 

or 

Application of the divergence theorem of Gauss to the 

first volume integral shows, since 'p = 1 at  the electrode, 

that  

+ JJJ V .  ( ' p f )dR  = o (19) 

Insertion in Equations (18) and (14) gives the following 

expression for the current I flowing in the lead towards 
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the electrode when charges are in motion in the inter- 

electrode space 

It should be noted that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t ,  i.e. the current represent- 

ing the actual transfer of charge from the electrode to 

the gap, does not appear explicitly in the expression for 

the current in the lead. The reason is that  this transfer 

of charge is associated with a corresponding simultane- 

ous change in the induced charge without any transfer 

of charge through the lead to  the electrode. The charges 

which are transferred to the gap from the electrode con- 

tribute to  the current in the lead solely by the effects of 

their motions in the gap between the electrodes. 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa solution to  Laplace's equation, see Equa- 

tions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6), (7) and (8), the gradient of 'p can be found 

from 

(21) 
E' v'p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2 
U, 

in which l?, is the field strength in the space charge free 

electrostatic field between the electrodes when the elec- 

trode is given the arbitrarily chosen potential U, and 

all other electrodes are a t  zero potential. It must be 

emphasized that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  is not synonymous with the applied 

voltage during discharge activities. Insertion of Equa- 

tion (21) in Equation (20) should therefore not be made. 

Formulae similar to  Equation (20) have been given 

by many authors, see for example von Engel and Steen- 

beck [5], Shockley [6], and Ram0 [7]. These formulae 

are referred to  by some authors as the Ramo-Shockley 

theorem. It should, however, be remembered that quan- 

titative treatments of this problem based on the concept 

of induced charges date back a t  least to  Maxwell. This 

will be found in the first edition of his Treatise [l], but 

not in the third edition edited by J .  J. Thomson. 

In experimental studies of breakdown, the time-inte- 

gral of the current I in the lead, i.e. the charge flowing to  

the electrode from the power source, is often measured. 

Integration of Equation (14) shows that this measured 

charge Qm is given by 

The transferred charge Qt will be equal to  the net charge 

in the inter-electrode space provided that no charge has 

been transferred to  or removed from the gap a t  any of 

the other electrodes, i.e. 

Qt = / / /pd.  (23) 

The measured charge Qm can thus be written in the 

form 

Q~ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcu -t- / J J ( 1 -  c p ) p d ~  (24) 

It should be noted that the measured charge can- 

not simply be identified with the sum of the capacitive 

charge and the transferred charge, an assertion which is 

often seen in the literature. Such an  identity would re- 

quire that  the induced charge be reduced to  zero a t  the 

.end of the integration interval. This condition would 

be fulfilled only if a charge equivalent t o  the transferred 

charge left the gap via the other electrodes. 

T H E  EFFECTIVE COEFFICIENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF 
IONIZATION 

Growth of ionization can be approached in two dif- 
ferent ways. From a molecular point of view, it is the 

individual ionizing collision processes described in terms 

of probabilities and collision cross sections which are of 

primary interest. In HV engineering, it is the collapse of 

the voltage across a gap as a result of gaseous breakdown 

which is of paramount importance. This phenomenon 

involves so many collision processes that  it is natural 

to  consider the event as a macroscopic phenomenon de- 

scribed in terms of macroscopic swarm parameters such 

as primary and secondary coefficients of ionization. The 

number of electrons participating in the ionizing pro- 

cesses is then so large that, in view of the Law of Large 

Numbers [8], it  makes sense to  represent the actual num- 

ber of electrons, which of course can take only integer 

values, by a continuous function. This makes it possible 

to  apply mathematical concepts such as differentiation 

and integration to  the analysis of the growth of ioniza- 

tion in electron avalanches. 

From a pragmatic point of view, the effective coeffi- 

cient of ionization 6 is defined by means of the differen- 

tial equation 

d N ( z )  = G ( z ) N ( z )  dz (25) 

with z being a coordinate along the field line in the elec- 

tric field along which an electron avalanche is develop- 

ing. N ( z )  is a continuous, differentiable function which 
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represents the actual number of electrons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANe participat- 

ing in the collision processes. It should be noted that 

the effective coefficient of ionization is the difference be- 
tween Townsend’s first coefficient of ionization and the 

electron attachment coefficient. 

Equation (25) has no physical sense unless swarm con- 

ditions exist; i.e. N ,  must be sufficiently large such that 

Ne can be represented by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ( z ) .  Moreover, Ne must be 

so large that the Law of Large Numbers is operative. 
This ensures that,  for a given value of N ( z ) ,  propor- 

tionality exists between d N ( z )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdz. If Ne is so small 

that the Law of Large Numbers is inoperative the sta- 

tistical nature of the individual collision processes must 

be taken into account. Application of Equation (25) 

to a single electron or to a few electrons has no mean- 

ing. The conventional written definition of 6 in terms of 

number of ionizing and attaching collisions per electron 

per length in the direction of the field is, therefore, a t  

variance with the proper mathematical definition. 

From a mathematical point of view, swarm conditions 

imply that 6 is defined for a continuum, and that d N ( z )  

is a differential which represents the actual number of 

electrons A N ,  produced by Ne electrons drifting a dis- 

tance AZ in the direction of the electric field. Hence 6 
is essentially a coefficient of proportionality. 

Although zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& results from a statistical average of a large 

number of collision processes, & itself is not a statistical 
variable. It is a macroscopic quantity similar in nature 

to, for example, the temperature or the pressure of a 
gas. 

ELECTRON AVALANCHE DEVELOPMENT 

The application of Equation (25) to  the growth of 

an electron avalanche is normally restricted to  the later 
stages of the development. The reason is that  initially 

Ne will be so small that  swarm conditions do not ex- 

ist. An important consequence of this limitation is that  

the growth of an  electron avalanche will initially not be 

exponential. The exponential growth will begin when 

the number of electrons attains such a value that swarm 

conditions exist. Let z1 denote the lowest value of z 

for which Ne is so large that swarm conditions exist, 

then the development of the avalanche for z > z1 will 

be exponential in these circumstances and given by 

N(z1)  represents the minimum number of electrons 

for which Equation (25) is valid. It should be noted that 

the values of both N ( z 1 )  and z1 are unknown and vari- 

able. The transition from discrete behavior to swarm 

conditions is moreover likely to be gradual. This means 

that specific values for z1 and N ( z 1 )  cannot be given 

for the growth of an  electron avalanche in a given elec- 

tric field. Evidence for this variation is clearly provided 

by the scatter observed in the magnitude of single av- 

alanche current pulses recorded under constant experi- 

mental conditions; see Raether [9]. 

It should be emphasized that the application of the 

differential Equation (25) to the development of an ava- 

lanche implies that  this part of the growth is, in princi- 

ple, deterministic; i.e. if N(z1)  and z1 were known, N ( z )  

would be given exactly by Equation (26). In general, 

however, z1 and N(z1)  will not be known, and hence 

the actual magnitude of N ( z )  can never be predicted. 

THE ONSET BREAKDOWN VOLTAGE 

The formation of a spark breakdown requires that a t  

least one electron is present a t  a suitable place in the gap 

when the voltage is applied. These requirements intro- 

duce a statistical time-lag t ,  in the formation of a spark. 

This time-lag is of particular importance if the applied 

voltage increases in time, since finite values of t ,  will 

lead to higher breakdown voltages. t ,  = 0 implies that ,  

with respect to  the instantaneous value of the applied 

voltage, the initiatory electron is in the correct spatial 

location, such that a minimum voltage is required to 

break down the gap. Such conditions are most readily 

met in near-uniform field geometries under the appli- 

cation of a highly stabilized dc voltage, together with 

suitable irradiation of the cathode surface. This mini- 

mum breakdown voltage is called the onset breakdown 

voltage. Precision breakdown voltage measurements in 

SFG have indicated that the standard deviation in a se- 

ries of measurements of the onset breakdown voltage can 

be as low as 3 V in 62 kV [lo]. It is thus an extremely 

well defined quantity. 

A knowledge of the onset breakdown voltage is of 

paramount importance in the design of gas insulated 

systems, and it is a necessity when the reliability of such 

systems is under consideration. Since the precise physi- 

cal mechanisms of spark breakdown are as yet not fully 

understood, all existing criteria for the prediction of on- 

set breakdown voltages are essentially empirical. How- 

ever, because of the dominating influence of the expo- 

nential growth term in the mathematical expression for 

T 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 23, 2009 at 02:46 from IEEE Xplore.  Restrictions apply. 



726 Pedersen: On the Electrical Breakdown of Gaseous Dielectrics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the development of an electron avalanche, all such cri- 

teria [9,11,12,13] can in effect be reduced to  the same 

mathematical expression, viz. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j n h ( z ) d z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK 

0 

(27) 

in which z is a distance coordinate along the field line 

in question, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzo is the critical avalanche length and K is 

a dimensionless parameter. This simple expression was 

originally proposed by Schumann [14,15] but is today 

normally referred to  as the streamer breakdown crite- 

rion. 

CRITERIA FOR BREAKDOWN 

T H E  TOWNSEND CRITERION 

The Townsend concept of breakdown is associated 

with the transition from a steady-state gas-amplified 

current to  a self-sustained discharge [16, 17,181. When 

this concept was conceived, the main interest was in low 

pressure discharges for which a discussion in terms of 

uniform fields was adequate. The Townsend breakdown 

criterion was therefore formulated with special reference 

to  uniform fields and to  situations which could be de- 

scribed as one-dimensional. However, with respect to  

HV insulation problems of today the nonuniform field 

situation a t  high gas pressures is of particular impor- 

tance. 

Let us consider a nonuniform field between two elec- 

trodes. One of the electrodes, the cathode, is irradiated 

such that a steady current I is flowing in the external 

circuit when a dc voltage is applied, i.e. the number of 

electrons emitted from the cathode per area and time is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so large that swarm conditions exist. In the absence of 

ionizing processes in the gas the current in the lead will 

be given by 

I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/ J;, . e‘ds (28) 

The surface integr4 is extended over the surface of one 

of the electrodes. Jo denotes the current density a t  the 

surface element dS and e‘is a unit vector normal to  and 

directed away from the electrode. 

The current in the external circuit will attain a higher 

value if the applied voltage is increased to  a level a t  

which ionizing processes are active in the gas. The effect 

upon the current of these ionizing processes can be taken 

into account by expressing the current in the following 

form 

I = / / G & . Z d S  (29) 

in which G is a dimensionless scalar function. The value 

of G depends on the location of dS. 

The current in such an externally maintained pre- 

breakdown Townsend discharge will normally be so low 

that  it is justified to  neglect the effect of the charge car- 

riers on the electrostatic field distribution. This means 

that the flow of the electrons and ions will follow the field 

lines in the space-charge-free Laplacian field between the 

electrodes. The contribution d I  to  the current which is 

associated with the surface element dS will thus flow 

in a Faraday field tube defined by the contour of dS. 
‘Since the cross section of such a field tube is infinites- 

imal, we can consider the development of d l  to  be one 

dimensional. 

An expression for G in terms of the primary and sec- 

ondary ionizing parameters can be derived in the follow- 

ing way. Let us consider the ionizing processes associ- 

ated with NO electrons which are emitted from the cath- 

ode within the surface element dS. No is so large that 

swarm conditions exists. The total number of negative 

charge carriers, i.e. electrons and negative ions, which, 

in the absence of secondary processes, will arrive a t  the 

anode will be No plus a number which is equal to  the 

total number of ionizing collisions within the Faraday 

field tube. The number of primary ionizing collisions 

between z and z + dz is 

in which a is Townsend’s first coefficient of ionization 

and 

is representing the number of electrons a t  z. The total 

number of ionizing collisions within the field tube thus 

becomes 

nl(q = NOS(1) (32) 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g ( 1 )  = / C Y ( . )  exp [ e(.’) d d ]  dz (33) 

where 1 is the length of a field line within the field tube. 

If secondary ionizing processes are active an additional 

number of electrons will be emitted from the cathode 

within the surface element dS. Let d n z ( z )  denote the 
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number of such secondary electrons leaving the cathode 

due to collision processes between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ dz, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dnz (2 )  = w ( z ) N ( z )  dz (34) 

in which W ( Z )  is a generalized secondary coefficient of 

ionization, see [17,18]. Integration of Equation (34) 
yields 

nz(l)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANoh(1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(35) 

with 

in which nz(1) is the total number of the first gener- 

ation of secondary electrons emitted from the cathode 

within the surface element dS. It is evident that  sec- 
ondary electrons are related directly to collision pro- 

cesses within the field tube defined by ds.  Additional 

secondary electrons will be liberated within dS due to  
collision processes in adjacent flux tubes. These extra 
secondary electrons are taken into account by including 

them in No. The total number N ( 1 )  of negative charge 

carriers which eventually will reach the anode as a re- 

sult of the emission of No electrons within the surface 

element dS thus becomes 

This series will converge if h(l) < 1, and we obtain 

1 + s(l) 
N ( l )  = No---- 

1 - h(1) 

The function G in Equation (29) is thus given by 

In a uniform field C Y ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, and w will be constants and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
will be equal to the gap length d. Consequently Equa- 

tion (39) simplifies, and following this, Equation (29) 

leads to the well-known uniform field formula 

1 + [exp(ad) - 11 

1 - % [exp(ad) - 13 
I = Io 

The series given by Equation (37) becomes divergent 

if hll’l is eaual to or ereater than one. The Townsend 

criterion for the onset of breakdown in a nonuniform 

field is thus given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A direct application of the Townsend criterion to re- 

alistic electrode arrangements requires a knowledge of 

the parameters 6 and w .  Whereas 6 is relatively well 
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\ I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
.. 

P 

documented for many gases of engineering importance, 
meaningful information on w is hardly available. The 

reason is that w depends not only on field strength and 

gas pressure, but also on the overall geometry of the 

system. 

In an attempt to overcome these difficulties, Schu- 
mann [14] noted that the Townsend criterion would im- 

ply a polarity effect in the onset breakdown voltage if it 

is applied to a gap geometry for which the field distribu- 

tion is not only nonuniform but also asymmetric. The 

field along the axis of the standard sphere-gap with one 
sphere grounded is such a nonuniform and asymmetric 

field distribution. If the applied voltage is of positive 

polarity the grounded sphere will be the cathode, and 

the direction of the integration in the Townsend crite- 

rion is then from the grounded sphere towards the HV 

sphere, whereas the direction of the integration is re- 

versed for negative polarity. This will, because of the 

mathematical structure of the Townsend criterion, lead 

to a polarity effect in the dc onset breakdown voltage. 

Schumann noted that such a polarity effect is absent 

[19], and that this effect disappears from the Townsend 

criterion if one assumes that W ( Z )  is proportional to & ( z )  

[14]. The insertion of W ( Z )  = IC6(z), where IC is a con- 

stant, in the Townsend criterion leads to 

or to the simple form known as the Schumann criterion 

1 

1 a ( z ) d z  = K (43) 

0 

where K is a dimensionless parameter with an ascribed 
value of about 18. 

It is a common misunderstanding that the Schumann 

criterion should be entirely empirical. It is in fact closely 

linked with the Townsend theory. 
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THE STREAMER CRITERION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Whereas the Townsend theory of spark breakdown de- 

pends on many generations of avalanches, a single elec- 

tron avalanche mechanism is the fundamental charac- 

teristic of the streamer concept of breakdown zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9,20]. It  

is, however, likely that more than one avalanche in fact 

is required in order to create the background for the 

growth of the avalanche which eventually precipitates 

the formation of a spark channel [21]. Field distortion 

and photo-ionization in the gas have been considered as 

possible active mechanisms. A proper physical theory 

for the streamer concept of breakdown has, however, 

never been formulated. In spite of this situation it is 

nevertheless possible, by utilizing the inherent mathe- 

matical nature of exponential growth, to formulate a 

quantitative criterion from which the onset value of the 

breakdown voltage can be calculated if the electric field 

distribution is known [22,23]. 

I t  is tacitly Assumed that breakdown occurs when the 

number of electrons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANe in an electron avalanche reaches 
a critical value N,.  The actual value of Nc is not known, 

but i t  is assumed to  be of the order of lo', irrespective 

of the specific conditions under consideration. 

The growth of an avalanche initiated at  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 0 by one 

or more starting electrons will, as discussed earlier, not 

be exponential until z has reached a value z1 where the 

number of electrons N(z1) is so large that swarm condi- 

tions exist. Thereafter, the growth of the avalanche will 

be controlled by Equation (26). 

The length of the avalanche when it attains the critical 

size N ,  is called the critical avalanche length 20. In a 

uniform field, or a weakly nonuniform field, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 will be 

synonymous with the gap length d. In a nonuniform 

field zo is the distance from the electrode along the field 

line in question to the point beyond which the growth 

of the avalanche ceases, i.e. to the point a t  which 6 = 0. 

Owing to  the random nature of the initial stages of 

the avalanche growth, i.e. for z < 21 the value of z1 

will vary considerably for a series of single avalanches 

developing along the same path. Consequently, for any 

value of z > 21 ,  a maximum value, N ( z ) ~ ~ ~ ,  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ( z )  
will be obtained for a minimum value of 21. Therefore, 

for a finite avalanche length, the onset of breakdown will 

be associated with the avalanche possessing the largest 

number of electrons. 

The criterion for the onset of breakdown can thus be 

expressed in the following form 

bl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ 

The criterion can be re-written in the following manner 

This procedure is valid mathematically. It is, however, 

important to realize that,  whereas the exponential term 

in Equation (45) has a meaningful physical interpreta- 

tion, this is not the case for the two exponential terms 

in Equation (46) when considered individually. They do 

of course have a mathematical meaning since 6 is a con- 

tinuous function of the electric field strength and thus 

of 2. 

The variation in the size of the electron avalanches 

means that the value of N(zl) can differ considerably 

from the value of the exponential term in the denom- 

inator of Equation (46). In addition, a t  the onset of 

breakdown, the numerical value of their ratio will have 

attained a maximum, corresponding to  a minimum value 

for 21. It  is, therefore, evident from Equation (46) that 

a t  the onset of breakdown 

(47) 

LO 

i .e.  
2 11 

In Nc # / 6 ( z )  dz (48) 

0 

The true size of the electron avalanche at the onset of 

breakdown is consequently not given by the integral in 
(48), an assertion which is frequently seen in the liter- 

ature. Nevertheless, because of the exponential nature 

of the variation of 6 with E, this integral will be so 

dominant a parameter in Equation (46) that it will ef- 

fectively control the onset condition for breakdown, such 

that breakdown will occur when this integral attains a 

certain value K .  Thus the streamer criterion can be 

written as 

r 6 ( z ) d z  = K (49) 
0 

I t  is evident that  this criterion is strictly empirical. 
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In the literature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK is often given the value 18; this 

being the natural logarithm of the value generally as- 

sumed for N, ,  via. 10’. However, since it follows from 

(48) that 

K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# lnN, (50) 

there is no reason apart  from tradition for retaining K 
equal to 18. 

So far it has been tacitly assumed that the electric 

field E ( z )  varies monotonically with z between 0 and 20,  

such that the integral of & would also be a monotonically 

varying function of z .  In general such a variation will be 

encountered. However, in some situations E ( z )  will not 

vary monotonically within the interval 0 < z < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzo. An 

example of this is the axial field between two spheres for 

which the ratio of gap length d to sphere diameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD is 

such that zo = d. In such situations the application of 

the streamer criterion is valid if, for all values of z in 

the interval z1 < z < 20, 

2 

/ &(z’)dz’  2 0 
J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 1  

since this implies that  N ( z )  will never be less than N(zl) ,  

thus ensuring swarm conditions. However, since the 

value of z1 is unknown, (51) is with reference to numer- 

ical calculations of little practical value. As a substitute 

the less rigorous condition 

J dz‘ > o 
0 

can be used as an indication for the validity of any cal- 

culations. I t  should, however, be noted that fulfillment 

of (52) does not automatically imply swarm conditions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ENGlN EERlN G APPLICATIONS 

FIELD DISTRIBUTION ALONG A FIELD 
LINE 

knowledge of the electrostatic field is a necessity for A an application of the breakdown criterion. Many 

methods are available from which the required informa- 

tion can be obtained. However, since we are interested 

only in the field along certain field lines, most standard 

procedures lead to an excess of data. Whereas the entire 

field is a solution to a second-order partial differential 

equation, i.e. Laplace’s equation, the field distribution 

along a field line is given by a first-order ordinary dif-. 

ferential equation. 

In a Laplacian field the field strength E a t  a given 

point P in space and the mean curvature H of the 

equipotential surface through P are related by the first- 
order ordinary differential equation, Green’s differential 

equation, namely 

d E ( z )  dz + 2H(z )E(z )  0 (53) 

in which z is a coordinate along the field line through P .  
For a regular surface the mean curvature H is defined 

bv 

(54) 

where R1 and Rz  are the radii of curvature of the curves 
through P of the normal sections of two mutually per- 

pendicular planes. In practice, R1 and R2 are normally 

taken to be the two principal radii of curvature, i.e. the 

maximum and the minimum values of all the possible 

sets of R1 and Rz. It should be noted that the sum of 

1/R1 and 1/R2 is constant as long as these are referred 

to  two mutually perpendicular planes [24]. 

Although it was expressed in terms of potential, Equa- 

tion (53) was first derived by Green in his famous Es- 
say on potential theory [25]. Since then, Equation (53) 
has been rederived several times [26,27]. Integrating 

Green’s Equation we obtain the following general ex- 

pression 

where z’ is a dummy variable [28]. An exact application 

of this expression would require a knowledge of H ( z ) .  
It  is possible, however, by means of suitable approxima- 

tions for the unknown H ( z )  to  utilize Equation (55) for 

breakdown onset calculations. For example, if we are 

primarily interested in the field along a field line in the 

proximity of a HV conductor, we may consider H ( z )  to 

be constant. A first approximation to Equation (55) for 

small values of z will then be 

E ( z )  = E(0)[1 - 2H(O)z] (56) 

in which z is the distance along the field line from the 

surface of the electrode. E(0)  and H ( 0 )  are the values 

of field strength and mean curvature a t  the location of 

the field line on the electrode. The range of validity of 

Equation (56) can be estimated by examining the fields 

of two simple geometries, namely the isolated sphere 
and the isolated circular cylinder. These are the sim- 

plest geometries which encompass the overall (RI,  R2) 

variation of interest, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T 
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1. R1 finite, R2 finite and R1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= R2 

2. R1 finite, Rz infinite. 

For these fields, the associated variations of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( z )  are, 

on the basis of Equation (54), 

for the isolated sphere, and 

H ( z )  = H ( O )  
1 + 2H(O)z 

(57) 

for the isolated circular cylinder. Upon insertion in 

Equation (55) and integration, we obtain expressions for 

the two field distributions in terms of conductor mean 

curvature. For the isolated sphere we obtain 

and for the isolated circular cylinder 

E ( z )  = 
1 + 2H(O)z 

(59) 

For H ( 0 ) z  < 1, these exact expressions can be expanded 

in terms of H ( 0 ) z .  Thus for the isolated sphere we ob- 

tain 

= 1 - 2H(O)z + 3[H(O)zI2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4[H(O)zI3 +.  . . (61) 
E(O) 

and for the isolated circular cylinder 

= 1 - 2H(O)z + 4[H(O)zI2 - 8[H(O)2I3 + . . . (62) 
W O )  

from which it is seen that,  for H ( 0 ) z  < 0.1, Equa- 

tion (56) represents a rather good approximation to the 

field near a HV electrode. 

An important area of application of Green’s differen- 

tial Equation (53) is in the assessment of numerical field 

calculations. As a knowledge of the conductor geome- 

tries is a prerequisite of any numerical method of solving 

Laplace’s equation, the determination of the mean cur- 
vature of the different conductors is independent of the 

field calculations. Consequently the fulfillment of the 

differential Equation (53) a t  a conductor surface can be 

used to check the accuracy of the numerical field calcu- 

lation. If the conductor as a whole is considered to be 

associated with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 0, then for the selected location we 

compare the value obtained for 

with the corresponding value of 2H(O). This method of 

checking is an intrinsic feature of the charge simulation 

method of field calculation developed by Steinbigler [29]. 

The field distribution in the proximity of a conductor 
surface can be checked by means of Equation (56). For 

example, if the field distribution E(z) /E(O) is plotted 

as a function of the normalized distance H(0)z  along 

the field line, then the gradient of the resulting gkaph 

at H ( 0 ) z  = 0 will be independent of both H ( 0 )  and 

,E(O) and have a value of -2 for convex surfaces. This 

characteristic gradient of -2 can be used as a checking 

fact or. 

Apart from concave surfaces which will yield a gra- 

dient of $2, the only exception to the general rule is a 

plane sutface for which H ( 0 )  = 0. The gradient should 

thus be zero a t  the conductor surface. Other surfaces 

can also display H ( 0 )  = 0. However, since this implies 

that  R1 = -R2, such locations are invariably associated 

with low field regions and are therefore of little interest 

in gas breakdown studies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
BREAKDOWN IN ATMOSPHERIC AIR 

No other gas is so widely used as an insulating medium 

as atmospheric air. Since the dielectric properties de- 

pend on temperature, pressure and humidity it is cus- 

tomary to refer to a set of standard conditions. These 

are 20’C, 101.325 kPa, and a water vapor content of 11 

g/m3. However, since air is also used as an insulating 

gas a t  higher pressures, it is convenient to  use 100 kPa 

= 1 bar as the reference pressure. In view of the di- 

mensions actually encountered in HV design work, field 

strengths will be quoted in kV/mm rather than MV/m 

although these units are identical. Similarly E / p ,  where 

p is the gas pressure, will be given with the unit kV (mm 

bar)-l; we have 1 kV (mm bar)-’= 10 V (m Pa)-’. 

From a practical point of view the only realistic ap- 
proach to breakdown voltage calculations is the appli- 

cation of the empirical criterion 

& ( z ) d z  = K [ (63) 
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air are available in the literature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[11,30]. It is, how- 

ever, extremely difficult to measure these quantities a t  

realistic gas pressures in the range of E / p  values of engi- 

neering interest. Furthermore, although the calculated 

breakdown voltages are very insensitive to  the value of 

K ,  the fact that  K is unknown makes it problematic to  

apply the breakdown criterion in a direct way. 

These difficulties can, as shown by Schumann, be cir- 

cumvented in the following manner. By applying Equa- 

tion (63) to a strictly uniform field of gap length d and 

pressure p we obtain the following expression 

where 60 is the effective coefficient of ionization for air 

which is associated with the uniform-field onset break- 

down field strength Eo a t  the gap length d ,  and pressure 

p reduced to 20°C. Paschen curve data for atmospheric 
air are known with sufficient accuracy. These can be 

expressed in tlie form [ll, 14,311 

or as 

[ E ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- pB] 'dz = pC' 

The unknown constant K is thus replaced by two 

known constants B and C. Since the critical avalanche 

length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzo is the distance from the electrode beyond which 

a net growth of ionization is impossible, it follows from 

Equation (68) that  zo can be obtained from 

731 

(71) 

in which B and C are constants. Equation (65) can be 

rewritten as 

unless, of course, the field distribution is such that the 

avalanche is crossing the gap, making zo = d. 

The field strength E ( z )  in a divergent field can be 

written as 

E ( z )  = E ( O ) f ( z )  (73) 

If f (z )  is known from a general calculation of the elec- 

trostatic field for the entire system, insertion in Equa- 
tions (71) and (72) will yield the onset breakdown field 

strength a t  the electrode Eo. 

(65) If the field distribution is not known then the exact 

values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(z) will be given by 

Thus, from a comparison of (64) and (67) we can de- 

duce that,  on the basis of (63) and (65),  the functional 

dependence of 6 / p  for atmospheric air can be expressed 

as 

This is a well established relationship, which was first 

deduced by Schumann [15]. Experimental studies [ll, 

321 of 'Y IP indicate that K / C 2  is constant, and hence 

K becomes a constant. The values obtained by Boyd et 

al.[32] for B and C are 

B = 2.42 kV (rnrn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbar) - l  (69) 

C = 2.08 kV (mrn bar)-'/' ( 70) 

Insertion of Equation (68) in (63) shows that the crite- 

rion for the onset of breakdown in air can be written in 

the form 

(74) 

In this situation the only value of H ( z )  which is known 

will be H ( 0 ) .  If, however, the field is known to be di- 

vergent everywhere in the region of interest, we may as- 

sume that the exact value of H ( z )  will be somewhere 

between the values of H ( z )  for the circular cylindri- 

cal field and the spherical field, i.e. the values given by 

Equations (58) and (57), respectively. This means that 

the required onset breakdown field strength Eo is to be 

found in the interval between the values of Eo given by 

these two limiting field configurations for the specified 

value of the mean curvature H ( 0 )  of the electrode sur- 

face. These two very simple field situations are therefore 

of paramount importance. 

Since the breakdown onset field strength Eo will de- 

pend on the mean curvature of the electrode surface it is 
convenient to introduce a dimensionless curvature factor 
( defined by 

c = -  Eo 
PB 

(75) 

with 5 > 1, which means that the breakdown criterion 

(71) can be written in the form 
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z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn practice these two curves can be represented by one 

equation, namely 

1 10 100 1000 

Figure 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Curvature factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC for air. Full line: spherical 
field distribution. Dashed line: cylindrical field 
distribution. 

The critical avalanche length zo is related 

by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C f ( Z 0 )  = 1 

(76) 

to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC and f ( z )  

(77) 

For the spherical field distribution f (z )  is given by 

where Ho is the mean curvature of the electrode surface. 

Inserting in (76) and integrating leads to the following 

relation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp / H o  and C for the spherical field 

(82) 
bar rnm 

It is thus seen that the introduction of the mean cur- 

vature in the analysis leads to one formula, which con- 

tains the onset breakdown da ta  for air for all possible 
shapes of electrodes. Moreover, since the formula is 

written as an adapted quantity equation, p / H 0  need not 

be inserted in the unit ‘bar mm’. The reason is that the 

expression within the bracket is a dimensionless number 

if p / H o  is inserted as a [number]x[unit]. The formula is 

,therefore valid irrespective of the choice of units. 
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figurations which are associated with divergent fields. - -  

(79) 

Figure 2. 

Discharge onset field strength Eo in air at a pres- 
sure of 101.3 kPa as a function of the radius 
R of the electrodes. Full line: rod-plane and 
sphere-plane gaps. Dashed line: coaxial cylin- 
ders. Crosses: experimental data. 

Similarly we obtain for the circular cylindrical field, for 

which 

(80) 
1 

f ( z )  = 

the following expression 

In Figure 1 is shown C = f ( p / H o )  calculated from 

Equations (79) and (81). The full line refers to  the 

spherical field and the dashed line to the circular cylin- 

drical field distribution. These two curves can be con- 

sidered to  be the limiting curves for all electrode con- 

The large range of validity of Equation (82) can be 
illustrated by applying it to three very different gap ge- 

ometries, viz. a hemispherically-tipped rod-plane gap, 
a sphere-plane gap, and a coaxial cylindrical gap. All 

three arrangements are in air a t  atmospheric pressure, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i.e. p = 101.3 kPa. The planes and the outer cylinder 

are a t  zero potential. Plotted against the mean curva- 

ture of the electrodes a single curve can represent the 

variation of the discharge onset field strength Eo = CBp 

for all three systems. Two curves are needed, however, 

to show the variation of E0 with the radius R of the 

HV electrodes. Data for the rod-plane gap and the 

sphere-plane gap can be combined in one curve since 

in this instance their electrodes have the same value of 
R. A separate curve is needed to  represent the cylin- 

drical gap because the mean curvature of a cylinder is 
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only half of the corresponding value for the rod and 

sphere; see Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(54). These two curves are shown 

in Figure 2. The full line refers to the rod-plane and 

the sphere-plane gaps whereas the dashed line refers to  

the coaxial cylinders. It has been tacitly assumed that 

the critical avalanche length is a small fraction of the 

total gap length. Experimental values for rod-plane and 

sphere-plane gaps are given by Steinbigler [29], and simi- 

lar data  for cylinders are given by Schumann [14]. These 

data  are shown as crosses in Figure 2. 

The onset breakdown voltage U0 for the electrode ar- 

rangement can be calculated from 

in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 is the field utilization factor introduced by 

Schwaiger [33]. It  is defined as the ratio between the 

average field strength of the gap and the maximum field 

strength a t  the electrode surface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB is the limiting value 

of E / p  below which growth of ionization is impossible, 

see Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(69), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd is the gap length. The field uti- 

lization factor is known if the field distribution is known. 

Information about for many standard electrode con- 

figurations can be found in the literature, for example 

[28,29,33,34,35,36].  

1.2 1 I I I I I I / I (  I I I I I I l l j  I I I I I I I I I  

1 10 100 1000 

Figure 3. 
Normalized critical avalanche length Hozo for 
air. Full line: spherical field distribution. 
Dashed line: cylindrical field distribution. 

that  the approximation given by Equation (56) can be 

used only for relative large electrode dimensions; i.e. 
p / H o  > 100 bar mm, see also [37]. 

BREAKDOWN IN STRONGLY 
ELECTRONEGATIVE GASES 

In practice the E / p  range of interest for any strongly 

electronegative gas or gas mixture will be around the 

limiting value ( E / p ) l i m ,  i.e. the value of E / p  for which 

the effective coefficient of ionization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 is zero. In this 

range of E / p ,  the magnitude of d / p  is the difference be- 

tween two much larger, approximately equal quantities 

which vary rapidly with E / p ;  viz. those quantities rep- 

resenting the electron production and attachment pro- 

'cesses. The variation of d with E and p can, conse- 

quently, be written in the form 

in which 0 and k. are constants. 

Measurements of d for such gases are very difficult 

to perform, the reason being that an extremely high 

degree of field uniformity is required in order to obtain 

meaningful data  [38]. 

Applying the breakdown criterion to the breakdown 

of such gases in a strictly uniform field leads to 

This Equation can be written in the form 

E 

P 
Uo = ( M  + pd)( - ) r im 

in which it4 = K/i? is the figure of merit for the gas 

[23]. The part of the Paschen curve which can be linked 

with the streamer breakdown criterion thus leads to a 

linear Paschen curve. This linear dependence has been 

verified experimentally for a large number of electroneg- 

ative gases. The Paschen curve as a whole is of course 

nonlinear and exhibits a minimum. 

In order to  evaluate the effects of approximations in 

the field distribution it is of interest to consider the vari- 

ation of the dimensionless quantity Hozo with p / H o .  

These relationships are found from Equations (77), (78) 
and (80). The results are shown in Figure 3 where the 

full line refers to the spherical field and the dashed line 

to the circular cylindrical field distribution. I t  is seen 

Applications of the streamer criterion to breakdown 

in nonuniform fields are best performed through the use 

of Paschen curve data. In many cases this will be the 

only possible approach simply because of the lack of 

reliable ionization growth data.  Furthermore, the diffi- 

culty with the unknown K-factor is bypassed through 

this approach. 

T 
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Introducing the curvature factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ,  Equation (75), 

defined by 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEO is the onset breakdown field strength, the fol- 

lowing expressions can be derived from the streamer cri- 

terion [23] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L,, 

M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[(f(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 11dz = - 

P 

The dimensionless function f ( z ) ,  Equation (73), de- 

scribes the variation of the field strength along the field 

line where the discharge can develop. A knowledge of 

(E /p ) l im  and M is sufficient, therefore, for a calculation 

of breakdown onset values in any strongly electronega- 

tive gas. 

The required data can be obtained from measure- 

ments in a ‘uniform field’ gap of the linear part of the 

Paschen curve. A true uniform field is, however, an 

idealization. This is not simply because ‘uniform field’ 

electrodes are difficult to design, the reason is of a funda- 
mental nature. It is namely a logical consequence of the 

Maxwell theory that a true uniform electric field cannot 

be established within a volume of finite dimensions. To 
obtain valid data a low degree of field nonuniformity is 

a necessary requirement [39,40]. If the degree of field 

nonuniformity associated with ‘uniform field’ gaps is de- 

fined as (Eau - Emin)/Eau,  where Eau and Emin are the 

average and minimum field strengths along the gap axis, 

then valid data are obtained if the following condition 

is fulfilled 
Eau - Emin M 

Eau Pd 
< -  

aspect has been discussed in detail with reference to a 

recent experimental study [43]. 

Since the value of M is obtained by extrapolating from 

the pa! interval where the curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis linear, a small uncer- 

tainty in the slope of this section, i.e. in (E /p ) l im ,  can 

result in a large uncertainty in the evaluation of M .  
Consequently, to fully exploit the inherent advantages 

of this method considerable experimental precision is 

essential. An interesting alternative method by which 

M ,  but not (E /p ) l im ,  can be obtained from measure- 

ments in a nonuniform field has been suggested by Qiu 

and Liu [44]. 

The use of Equations (88) and (89) can be illustrated 

by considering a rotationally symmetric electric field. 

The field distribution near the surface of the highly 

stressed electrode will, as a first approximation, be given 

by Equation (59), i.e. f ( z )  will be given by Equation (78). 

Insertion in Equations (88) and (89) yields the following 

expressions for the curvature factor C and HOZO 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

M 
Hozo = 

where Ho is the mean curvature of the electrode at the 

axis of the system. In many applications M << p / H o  

and Equation (91) can then be written in the form 

C = 1 +  - /F (93) 

With reference to SFG this restriction was observed in 

the work of Boyd and Crichton [41]. Since in the liter- 

ature reference is often made to the Paschen curve for 

SFG adopted by CIGRE [421 it must be emphasized that 
this Paschen curve is derived from experimental data 

which do not obey the condition given in Equation (90). 
Valid values for ( E / p ) l i m  and M cannot, therefore, be 

obtained from the CIGRE curve. 

If M < O.Olp/Ho then Hozo < 0.1, which means that 
the simple approximation of the field distribution given 

in Equation (56) may be used. 

The figure of merit and (E /p ) l im  for SF6 are 0.040 
bar mm and 8.9 kV (mm bar)-’ respectively. For other 

strongly electronegative gases M varies with ( E / p ) l i m  

as shown in Figure 4. The curve is valid for both unary 

gases and binary gas mixtures [45]. 

The basis of Equation (90) is that Emin > Elim, such 

that zo = d. With the non-fulfillment of this inequality, 

zo < d and thus the breakdown voltage measurements 

cannot be analyzed in terms of the Paschen curve. This 
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The figure of merit M as a function of ( E / ~ ) I ; ~  
for strongly electronegative gases and gas mix- 
tures. 

SURFACE ROUGHNESS A N D  B R E A K D O W N  

The successful application of compressed SF6 as a 

dielectric in gas-insulated substations stimulated a re- 

newed interest in gaseous dielectrics. This lead to a 

search for gases or gas mixtures with better dielectric 

properties than SF6. Such gases or gas mixtures will in- 

evitably be strongly electronegative. An important ap- 

proach to this search is that  suggested by Christophorou 

and his colleagues [46,47,48]. 

In this molecular approach it is tacitly assumed that 

a gas for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E /p) l ; ,  is higher than that for pure 

SF6 is a better gaseous insulant, provided that it can 

be applied under similar circumstances. From a molec- 

ular point of view this is a natural assumption, since 

no net gain of ionization is possible for E / p  lower than 

( E / P ) ~ ; ~  However, from an  engineering point of view 

( E / P ) ~ ; ~  is on its own not a suitable parameter for an 

assessment of possible design values for the maximum 

macroscopic ( E / p )  which can be accepted in practice. 

This is clearly illustrated by referring to  pure SF6. The 

maximum macroscopic design field strength Ed, which 

can be tolerated in an overvoltage situation in an SF6 

insulated GIS without seriously affecting the reliability, 

is considerably less than that indicated by (E/p) l im [49, 

501, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi.e. 

(94) 

in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc is a constant which for compressed SF6 has 

a value of - 0.5. The reason for this relatively large 

difference between the maximum design value and the 

limiting value is related to  the influence of small mi- 

croscopic field perturbations caused by the unavoidable 

presence of electrode surface defects and freely moving 

particles. The severity of this influence is likely to in- 

crease, the more electronegative the gas or gas mixture 

is relative to SF6. 

A high value of (E/p) l i ,  will thus not automatically 

ensure that such a gas could be a suitable alternative to 

SF6. The (E/p) l , ,  must be supplemented with other 

data  before an  assessment can be undertaken of the rel- 

evant dielectric properties. The required additional in- 

formation is the figure of merit M [51,52]. 

A direct numerical analysis of the effect of surface 

roughness is not possible since the field distributions 

associated with actual surface defects are inherently un- 
known. To circumvent this difficulty, models of defects 

of various degrees of complexity have been proposed [53, 

541. However, the use of models can lead to specific 

conclusions which do not have general validity, since on 

examination these are shown to be associated with prop- 

erties unique to  the model [54]. 

The only electrostatic field which can be dealt with in 

a unique way is the macroscopic field distribution. This 
can be calculated from the idealized geometry of the 

system, neglecting the effects of all defects. All design 

parameters must, therefore, refer to this macroscopic 

field distribution. Hence the parameters for considera- 

tion are the gas pressure p and the design field strength 

Ed, i.e. the maximum macroscopic field strength which 

can be tolerated under any circumstances in the system. 

The true maximum field strength E,  which can occur 

in the system is larger than Ed because of the pertur- 

bations of the field due to surface roughness, i.e. 

Ern = mEd 

m > l  
(95) 

where the field enhancement factor m is independent of 

the selected value of Ed. Although m is generally an 

unknown constant the value of this factor will normally 

be of the order of 10 or less, see Loeb [56]. Recently, an 

experimental technique has been developed [57] which 

allows the m value of a practical surface to be deter- 

mined. Results confirm that an upper limit of 10 for 

such surfaces is a reliable measure. 
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Since the actual field distribution associated with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, 

is entirely unknown we cannot calculate the true break- 

down strength of the system. However, breakdown must 

not occur a t  Ed. We can, therefore, from the streamer 
breakdown criterion for strongly electronegative gases, 

see Equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(88) and (89), obtain that the following 

condition must be fulfilled at  E d ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g(z0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 

in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( z )  is the unknown field distribution associ- 

ated with Em. Although this integral cannot a t  all be 

evaluated, it is clearly seen that,  the larger M / p  is, the 

larger are the values of the integral which can be toler- 

ated. The larger M becomes, the less sensitive is that 

particular gas to the effect of field disturbances from 

defects. M can therefore be used as a figure of merit 

describing this effect [51,52]. 

The lack of knowledge concerning the E, field distri- 

bution may be circumvented using a comparative tech- 

nique [23]. If the discharge characteristic for the sys- 

tem in question is known, then this technique allows 

the direct assessment of a possible replacement gas to  

be made based solely on this characteristic and the M 
and ( E / P ) ~ ; ~  data of the two gases [58]. 

The real macroscopic breakdown onset field strength 

Et is called the technical breakdown field strength of the 

system. When surface roughness influences the break- 

down voltage, Et is less than the theoretical breakdown 

onset field strength Eo obtained from the breakdown 

criterion. This reduction can be described by a surface 

roughness factor ( defined by 149,531 

(97) 

Design values for ( cannot be calculated. These val- 

ues, which must be fixed on the basis of experience, will 

depend on the treatment of the conductor surfaces [49, 
551. The technical breakdown voltage Ut for the system 

can be written in the form 

in which q is the field utilization factor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi.e. the ratio 

between the macroscopic average and maximum field 

strengths related to  the gap length d,  and ( is the cur- 

vature factor which can be obtained from Equations (91) 
or (93). 

CONCLUSIONS 

RITERIA for the electrical breakdown of gaseous di- C electrics are, when expressed in terms of ionization 

growth parameters, of limited use to  HV design engi- 

neers. In many cases, the lack of fundamental data will 

make application of these criteria difficult or even impos- 

sible. Furthermore, since these will in practice contain 

at least one parameter which must be chosen arbitrarily, 

results may be no better than results obtained from rule- 

of-thumb methods. It is possible, however, to formulate 

quantitative, nonuniform field, breakdown or onset cri- 

teria which are free from such uncertain or unknown 

parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs. 

All the necessary data for the application of these 

breakdown criteria to  a particular gaseous dielectric are 

obtained directly from the associated Paschen curve, 

i.e. from uniform field breakdown measurements. No 
knowledge of the specific values of the ionization and 

attachment coefficients for the gas is required, although 

a functional dependence 6 ( E )  is invoked. A distinct ad- 

vantage accrues since breakdown voltage measurements 

are much easier to perform than measurements of pre- 

breakdown ionization growth parameters. 

It is essential, however, to emphasize that the required 

Paschen curve data must refer to proper uniform field 

conditions. The restriction, which is imposed on the ac- 

ceptable degree of field nonuniformity, has unfortunately 

not always been observed for the Paschen curve data 

available in the literature. An example is the Paschen 

curve for SFs adopted by CIGRE which does not rep- 

resent proper uniform field data. The limit for this re- 
quirement depends on the gas in question. The more 

electronegative the gas or gas mixture is, the stricter is 

the limit to the acceptable degree of field nonuniformity. 

If this restriction is ignored the compounded error can 

be far from negligible. 

In the present study the emphasis has been placed on 

the onset of breakdown, i.e. on the lowest possible break- 

down voltage. This will normally be synonymous with 

the dc breakdown voltage. Other factors will in prac- 

tice affect the actual breakdown voltage. These factors 

are associated with the time lag which is involved in 

the formation of the breakdown. For atmospheric air 

this can in special cases be utilized favorably in the de- 

sign of an apparatus. This aspect is of little relevance 

in compressed gas systems in which the gaseous dielec- 
tric is strongly electronegative e.g. SFG. The adoption of 

methods which depend on time lag effects cannot in gen- 

eral be recommended since this may lead to a dramatic 
reduction in the reliability of such a system. Finally, 
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no matter how sophisticated or simple a theory may be, 

the reliability of the system must remain the dominant 

feature in all considerations. 
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