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The electrical resistivity of antiferromagnetic metals due to electron-magnon scattering 
is calculated on the sf model in the low temperature region . by the use of the variational 
approach to the Boltzmann equation. The re~istivity p varies with temperature T as P"' T' 
for TN~T~D (TN: Neel temperature, D: anisotropy energy of the spin system) and as p 

"'Texp(- VTND/T) for TN, D~T: The effects of the Umklapp scattering and the inter
band scattering to the total conductivity are shown to be small compared with that due to 
the intraband scattering. The nature of the approximation in the calculation of the resistivity 
which .was used in a previous paper is discussed and corrected. 

§ I. Introduction 

It is well known that electrical resistivity of magnetic metals is considerably 
higher than that of non-magnetic metals on account of electron scattering by 
spins which cause magnetism. Many theoretical and experimental efforts have 
been made. to clarify various behaviour of resistivity of magnetic metals. 

In the magnetic metals at low temperatures electron-magnon scattering gives 
an important contribution to the resistivity. Several authors1>-'> derived the T 2 

dependence of ·the resistivity for the ferromagnetic metals in this low-temperature 
region. For antiferromagnetic metals, on the other hand, they only conjectured 
the T 4 dependence without making any detailed calculations: They merely re
placed; in the resistivity formula for the ferromagnetic case, the magnon spectrum 
(f)qocq2 fo~ the ferromagnet by (f)qocq for the antiferromagnet. .However such a 
conjecture seems to be very doubtful for the following reasons. First, such a 
treatment neglects the momentum dependence of the electron-magnon coupling 
resulting from the Bogoliubov transformation of spins (see § 2), which will have 
an important effect on the · temperature dependence of the resistivity. Second, 
in that treatment an effect of the spin order on the energy sp-ectrum of conduc
tion electrons is omitted. When the Fermi surface touches the magnetic zone 
boundaries, as realized in many cases, such an effect is thought to be serious. In 

·this situation Elliott and Wedgwood,"> and Miwa6> calcu.Iated the effective number 
of electrical carriers and successfully explained the behaviour of the resistivity 
of rare earth metals near the transition point. Moreover for conduction electrons 
near the zone boundaries, i.e., on the neck part of the Fermi surface, Umklapp 
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1078 H. Yamada and S. Takada 

processes are possible, and hence different relaxation times are expected for those 
electrons compared with that for the electrons on the almost spherical part of 
the Fermi surface. 

This problem also arises in the case of electron-phonon scattering if the 
Umklapp process is taken into account. Lawrence and Wilkins7l has studied 
the effect of the Umklapp process due to electron-phonon scattering and ob
tained the drastic result using the variational method for the Boltzmann equation 
that the effect of the Umklapp process dominates the resistivity. Unfortunately, 
however, their formulation derived by the variational method is inadequate in 
this case, and hence their results are erroneous, as will be discussed in § 3. i. 

Thus more careful treatment seems to be necessary to derive the resistivity 
due to the electron-magnon scattering in antiferromagnetic metals. 

The main purpose of "the present paper is to clarify the temperature depend
ence of the resistivity for the antiferromagnetic metals at low temperatures. 

In calculating the resistivity we adopt the s-f model and use a formula ap
propriate for our case derived from the Boltzmann equation by a variational 
method, and take the first Born approximation for the electron magnon scattering. 
The vertex correction is shown to be higher order of J jt;, where J and t; are 
s-f coupling constant and the Fermi energy, respectively, and then Migdal theorem 
is satisfied as in the electron-phonon case.8l Both the intra and interband scat
tering will be investigated. Furthermore, the difference between the relaxation 
times of the electrons on the neck part of the Fermi surface and that of the 
electrons on the belly part (almost spherical part) of the Fermi surface is taken 
into account. 

In § 2 the model Hamiltonian is introduced, and by the use of the Holstein
Primakoff transformation the Hamiltonian is rewritten in the magnon :represen
tation. In § 3 the resistivity is calculated by the method mentioned above. 
Section 4 is devoted to the summary and discussion.· In the Appendix it is 
shown briefly how to treat the problem as in the way of the variational method 
within the framework of the hydrodynamical approximation of the Kubo formula 
which was employed in a previous paper. 9l 

§ 2. The Hamiltonian 

The model Hamiltonian of the system is 

.j{ = .j{. + .j{. + ,g[,, ' (1) 

(2) 

(3) 

(4) 
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On the Electrical Resistivity of Antiferromagnetic Metals 1079 

1 "·· -ikr Crff= 1- £...J e Cktf, 
vN k 

(5) 

where D is the anisotropy constant and the other notations are the same as in 
Ref. 9). *l In the above Hamiltonian we assume 3(,1 is the small perturbation 

and the antiferromagnetic structure results from 3-C •. 
The magnetic structure is assumed to be an antiferromagnet of two inter

. penetrating sublattice type in a s.c. or b.c.c. crystal lattice. In this case the 
antiferromagnetic structure can be characterized by a wave vector Q. One of 
some equivalent vectors of Q is n/ a (111) in a s.c. lattice and 2n/ a (100) in the 
b.c.c. lattice, where a is the lattice parameter. 

In the s-f model describing rare earth metals, the term 3(, is negligible 
contrary to the present model, and the exchange interaction between the spins 

is R-K-K-Y interaction in the antiferromagnetic state. Thus when one applies 
the present results to the rare earth metals, he should replace the exchange 
interaction V(q) by J2r.(q) which is of order J2/(. 9l In the model it is 
assumed that the system has the uniaxial anisotropy in the z direction and the 

Fermi surface crosses the magnetic zone at k" = ± Q /2. In the antiferromagnetic 
state thi! original single electron band splits into two bands. In this paper we 

study the following case; both of the Fermi surfaces have sufficiently large 
belly parts (almost spherical parts) compared ~ith the small neck parts near the 

zone boundaries; This case was studied by Elliot and W edgwood5l (the case (i) 
in Ref. 5)), and by Miwa6l in the calculation of the resistivity of rare earth metals. 

First we diagonalize the magnon part of .j{,. The Holstein-Primakoff trans
formation10l retained up to first order of 1/ S expansion is 

S{=S-Al*Al, 

Sl+= ../2S Al, 

sl-= ../2S Al*, 

(6) 

where l and m are the position vectors on the A and B sublattice respectively. 
These vectors satisfy e•Q·l=1 and e•Q·m= -1, where 2Q is one of the vectors 

of the crystal reciprocal lattice. By the use of the momentum representation 

A _ /2 " -tklA 
l-~Nt;'e k, 

B = I 2." eik(m+a)B 
m ~Nt: k, 

the quadratic part of .g{, has the form 

.j{,= _NS 2 [V(Q) + W(Q)] -NS 2D 
2 

+SV(Q) L;{[1+d-v(k)]Ak * Ak+ [1+d-v(k)]Bk *Bk 
k 

-v(k)e-ikaAk *Bk * -v(k)etkaAkBk} 

*> The unit kB=h=L will be used. 

(7) 

(8) 
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1080 H. Yamada and S. Takada 

with 

d SW(Q) +D(2S-1) 

SV(Q) ' 

v(k) = V(k) + V(k+Q) 
2V(Q) ' 

V(k) ~ V(k)- V(k+Q) f 
2V(Q) ' 

(9) 

where V(k) and W(k) are the Fourier transform of Vrr' and Wrr'' and v(k) 

and v (k) are real values due to the inversion symmetry assumed for our systems. 

Here L;k denotes the summation over the first magnetic Brillouin zone. The . 

vector a is a vector which superposes the B lattice onto the A lattice and 

sa tisfi~s ei!J« = -1. We have used the relation 

(10) 

The summation L;P is over all the vectors in the magnetic reciprocal lattice. 

The expression (8) is diagonalized by the canonical transformation: 

with 

and 

with 

tanh 2¢k=- v(k) 
1+d-v(k) 

!JC.= _NS 2 [V(Q) + W(Q)] -NDS2 

2 

+SV(Q):L;{[ v'[1+d-v(k)]2 -v(k)2 - (1+d-v(k)) 
k 

fk =SV(Q) v'[1+d-v(k)] [1+d-v(k+Q)]. 

From Eq. (12) we have 

• 2 /1+d-v(k+Q) f 
(cosh ¢k-smh c/Jk) =~ 1+d-v(k) , 

( h . h )2 / 1+d-v(k) 
cos ¢k+sm c/Jk =~ 1+d-v(k+Q) 

(11) 

(12) 

(13} 

(14) 

(15) 

with v (k) = V (k) /V (Q). By the use of the transformation (6), the term !JC. 

+ !}{,1 in Eq. (1) is written as 

(16) 
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On the Electrical Resistivity of Antiferromagnetic Metals 1081 

with 

and 

ar(+-) _ en,, -

(17) 

(18) 

!/{,~) =- J [-I; (Jc{aCz"(Az* Az-(Az* Az)) +L:; (Jc;:',aCmaCBm* Bm-(Bm * Bm)) ], 
2 U mlf 

(19) 

where (Az* A 1) or (Bm * Bm) is a certain average of the Bose particle. 

To diagcmalize !/{.' we first make the transformation 

j 2.'\l -ikl 
cu = - "'-.J e ak11 , 

Nk 
(20) 

and we have 

(21) 

This expression is diagonalized by the following canonical transformation: 

a =U n-a ( 
ak ) (D/+l) 
bk11. D~~) ' 

(22) 

with 

u~{) = ul;l =sin fhein", i 
v~{)= -:-v~;)= -ein"eik'~cos fh, 

u~t) = U~t) =COS elf , 
v~t) = -v~j:) = -eikn sin ek' 

(23) 

where 

. . j 1 ( IJIM) i ''"o.~e•·· 2 1-~ , 

j l ( iJIM) cosek= z 1+ 2Ek--

(24) 

and 

(25) 
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1082 H. Yamada and S. Takada 

In these equations the vector k is not limited in the first zone and the integer 

n==n (k) is defined by k" = k,. + nQ where k'" belongs to the first magnetic Bril

louin zone, from which we have sin ()k+Q = -sin ()k· The final form of .!JC.' is 

.!JCe' = L, L, E/i~D/i~* D/i~ (26) 
krJV=± 

with 

E/i~=t(~k+~k+g) +vEk. (27) 

Among the interaction part of Eq. (16), the effect of the longitudinal part .!JC,~l 

is small in the magnon region and only the transverse part .!JC,j+-l is considered. 

By the use of the canonical transformations for magnons and electrons 

obtained above, .!JC//-l has the following form in the new representation: 

with 

.!}(.<j-l=- J ../2S {2 L, L, tJ(k'-k+q+P) 
2 ~ N kk'q p 

x [f(k'kq: P) ein',. (DJot,l* D/i{laq * + DJotl* DJot,la;q) 

+ f(k'kq: P) e-in'.r+iP"(etq"DJo;l* DJo";l[Jq + e-iq'"DJo";l* DJo;l[Jq*) 

-g (k'kq: P)ein'.r (eiqaDJoJ.,l*DJo{l[Jq + e-iqaDJo{l*DJoJ.,l[Jq *) 

- g (k'kq: P)e-tn,.+iPa(DJo~l* DJo";laq *+ DJo";l* DJo;laq) 

+ h (k'kq: P)ei<n'-n)" (D/oJ.,l* DJo;laq * + DJo;l* DJoJ.,laq) 

-h (k'kq: P)eiPa(eiqaDJo;l* DJo{l[Jq + e-iqaDJo;l* DJoJ.,l[Jq *) 

-l (k'kq: P) ei<n'-n).r (eiq"DJoJ.,l* DJo;l {Jq + e-iqaDJo;l* DJoJ.,l {Jq *) 

+ l (k'kq: P)eiPa(DJo;l* DJo{laq * + DJotl* DJo;laq)] (28) 

f(k'kq: P) =sin ()k, cos ()k cosh q}q -eiPa cos ()k, sin ()k sinh ¢v ~ 

g (k'kq: P) =sin ()k, cos ()k sinh qJq- eiP« cos ()k, sin ()k cosh qJq, 
(29) 

h(k'kq: P) =sin ()k, sin ()k cosh qJq+eiP<> cos f)k, cos e~. sinh qJq' 

l (k'kq: P) =sin ()k, sin ()k sinh qJq + eiPa cos ()k, cos ()k cosh qJq , 

where n'=n(k') and n=n(k). Except for {}J.,qJk or n(k), all quantities in th~ 

new representation are periodic functions of wave vector with period Q. The 

factor ein.r or ein'" is retained in the above expression because the extended zone 

scheme is employed in the next section but, as is seen from the hermitness of 

the above expression, they have no effect on the physical quantities. 

§ 3. Calculation of resistivity 

3. 1. Variational method 

Let us briefly discuss a formula derived by the variational method for elec-
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On the Electrical Resistivity of Antiferromagnetic Metals 1083 

trical resistivity appropriate for the present case.7),11l' 12l The Boltzmann equation 
for the electron distribution f(k) in the presence of a unit electric field E is 

- Y kfo' (k) · Ee = :E P'1 (k, k') [¢' (k)- ¢1 (k')] =H¢' (k) ,' (30) 
k'ij 

where fo' (k) is the, equilibrium distribution 

function for a conduction electron with a wave 

vector k, and the deviation function ¢' (k) can 

be thought of as the shift of single particle 

energies E<'l (k) due to the applied field: 

In the above the conduction electrons of 

both the bands in the first magnetic zone 1s 

divided into several parts specified by i cor

responding to each case considered below. 

(See Fig. 1.) This classification is important, 

as will be shown below, for the variational 

method with the use of a usual trial function 

when different relaxation times are expected 

for these parts. 

The conductivity (J is written as 

k' k k k' 

k' k k' k 

(a) 

(b) 
---band 

----- +band 

Fig. 1. 

(J = :E ¢' (k)H¢' (k) = :E <¢'H¢') . 
ki i 

(32) 

We consider a case of two parts i = ± and take trial functions ¢/ for ¢'. Then 
inserting ¢' = ¢i + )..,¢/ into the right-hand side of the above equation we obtain 

(33) 

The positive definite character of :E <¢iH¢i) leads to an inequality similar to the 

Schwartz inequality in the form12l 

where 

(J> A+1J-2 +A-n/-2B1J+1J-
A+A_-B2 ' 

Ai=<¢/H¢/)+B, l 
B=<¢t'P¢t-i)=L; ¢/Pi-i(k, k')¢t-i(k'), J 

kk' 

(34) 

(35) 

(36) 

Now taking the usual trial function ¢/ (k) =Vi (k) · E, where Vi (k) is the ve-
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1084 H. Yamada and S. Takada 

locity of the conduction electron, and 'ihe direction of the electric :field as z di
rection, we obtain 

1J =e "'[V";:(k)J2[- dfo'(k) J=-.e n. 
;: ~ · dEo1 (k) m 1 ' 

(37) 

where m is the effective mass of the conduction electrons in the absence of the 
magnetic order and n;:" defined by Eq. (37) can be regarded as the effective 
carrier number for the i-th part of electrons; On the other hand, roughly speak
ing, A;: and B is proportional to inverse of the relaxation time due to the electron
magnon scattering. 

When the inter part scattering is neglected, i.e., B = 0, then Eq. (34) reduces 
to 

2 2 

(J > !!..:±_ + !1..=:_ = (J • 
-A+ A_ 1 

(38) 

This equation tells us that this circuit is parallel; as it should be so. On the 
other hand, if we do not divide the conduction electrons into the two parts, 
i.e., set At= l, we have another (Schwartz) inequality from Eq. (33) as 

(39) 

It follows from this equation that the scattering effects average over both the 
parts and the circuit becomes series like. As can be easily shown, 0" 1 >6~, and 
the value of 6 1 is more accurate than 6 2• It should be noted, however, that 6 2 

leads to the unphysical results in some circumstances: If A+~ A_ and '1/+ is of 
the same order 1J-, then (51-::::.1]// A+ while (J2-::::.7J_2j A_. 

The simplest form of the hydrodynamical approximation of the Kubo formula 
which was employed in the previous paper corresponds to Eq. (39) and gives 
incorrect results concerning the power of temperature in the case of ~nisotropic 
scattering such as interband or Umklapp scattering, although the qualitative 
features of the magnetoresistance remains unchanged as they reflect the magnetic 
:field dependence of the magnon spectrum. 

Recently Lawrence and Wilkins have studied the effect of the Umklapp 
process due to electron-phonon scattering on the low temperature resistivity of 
polyvalent metals using the variational method. Unfortunately, however, they 
used Eq. (39) and hence their drastic result that the contribution due to the 
Umklapp process is larger than that due to the normal. process is erroneous. 

3. 2. Effects of the intraband scattering 

The approximate Hamiltonian of our system. is 

${ = $Ce' + ${,+ $C,<J-) (40) 

and $Ce', ${, and ${,~+-> is given by Eqs. (26), (13) and (28) respectively. 
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On the Electrical Resistivity of Antiferromagnetic Metals 1085 

Taking .!JCe' + .!}{, as the unperturbed ·state, we obtain the electrical resistivity 

in the first Born approximation with respect to .!JC,j+-l. As was mentioned in 

the introduction, since the vertex correction is higher order Jjr;,, the first 

Born approximation gives the leading term with respect to Jjr;,. 

In this section we obtain the resistivity at sufficiently low temperatures, so 

that the effects of the ,interband scattering are negligibly small and only intra

band scattering dol)linates, and also such that the transfered momentum in scat

tering is so sma:ll that the electrons near the neck part (region N) of the Fermi 

surface does not strongly mix with the electrons on the belly part, (region B). 

These conditions are satisfied if ' 

T 
qr=-,. 

c 
c: magnon velocity, (41) 

where qz. 1s the wave vector of the thermally excited magnon. By the use of 

c=ziVIS.J2a(s~ebelowEg. (60)),the temperature region is (JSjr;,)TN=T1 ';?>T. 

In the calculation of resistivity, when this condition is satisfied, the conduc

tion electrons in each band are roughly grouped into two portions according to 

their relaxation rates, i.e., the electrons in the region N and those in the region 

B. In this case the variational method discussed in § 3. 1 or the hydrodynamical 

method lead to 

6'=~ ~ 6'/"l, 
V=± i=N,B 

((ejm)niY 
(42) 

with 

(43) 

where the summation ~cv,iJ 'denotes the summation over the region i in the v 

band, and fo fo(E~~) is the Fermi distribution function. The directional average 

is performed toughly, i.e., separately for the denominator and the numerator in 

Eq. (42). This procedure gives the lower limit of the directional average of 

the conductivity, since 1:i (A;/Bi) > ~i A;j~i Bi is satisfied for the positive 

values of Ai and Bi. For the belly parts, the anisotropic effect of scattering is 

easily shown to be negligibly small, and hence the present averaging procedure 

gives the correct results. On the other hand, for the· neck part· where the aniso

tropic effect is very important, this procedure should lead to the poor results. 

Fortunately, the contribution of the neck part to <J is negligibly small, and the 

present treatment gives the correct leading term of the conductivity. The de

nominator (the scattering term) of Eq. (42) is explicitly given as 

• (v,i) 1 
~ P(kk')-IVk- Vk,l 2 

kk' 6. 
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1086 H. Yamada and S. Takada 

(44) 

here F(x)=x/[(e"'-1) (1-e-"')], and the surface integration is performed over 
the Fermi surface in the region i of v band. We evaluate Eq. ( 42) to first 
order in J /(. The range of integration over k• in each region IS 

~>[k·-~J>qc for (v,i)=(-,B), (45) 

v'2m( -~ >Jk.-~ J>qc for (v, i) =(+,B) (46) 

and 

for (v,i)=(±,N). (47) 

The effective carrier number n;'"l can be integrated directly over k• and we 
have the following results: 

(48) 

with 

where n0 is the total number of conduction electrons. Summing up all the above 
terms, one has 

(49) 

This result is consistent with that of Elliot and Wedgwood,6l and Miwa. 6l 

To calculate the temperature dependence and the order of magnitude of the 
sea ttering term of Eq. ( 42), the shape of the Fermi surface of the B and N parts 
are simpl!fied into completely spherical and cylindrical form respectively. By 
the use ohhe relation dSkdSk' = dSkqdq + O(q2),7l the following results are obtained 
for the belly part: 

<~) P(k, k') _!_I Vk- Vk'l 2 = l£(_1_) 2 V 2 SP(QI2 -qc )x(T) (50) 
kk' 6 3 4n8 N P F 
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On the Electrical Resistivity of Antiferromagnetic Metals 1087 

and 

with 

X(T)=2 fq,d aj1+d-v(q+Q)F(r.;) 
Jo qq 1+d-v(q) tJfq ' (52) 

where we have used the fact that, in this almost spherical region, only the scat

tering process with P=O, i.e., the normal process is possible in Eq. ( 44). 

When the conduction electrons are on the neck region of the Fermi surface, 

scattering with both P=O (Fig. 1(a): A and B) and P=±Q (Fig. 1(a): 

C and D) are possible. The scattering term of the process A in Fig. 1 (a) has 

the form (band index is dropped for simplicity): 

=!I_ (l) 2 v2 SJ2 J dSk dSk, I v k- v k-12 

3 4n8 N JVkl IVk-1 

X [lf(k'kq: 0) 12 + lg(k'kq: 0) I 2]F({3f9 ). 

(q >Q -k•>o 
C-2 - > 

(53) 

The scattering term of the process C has the form 

:E P(kk') _!_I Vk- Vk-1 2 
(process C) 6 

=!I_(__l_)2~SJ2 s dSk dSk' IVk-Vk-12 
3 4n8 N I Vkl I Vk-1 

X [lf(k'kq: Q) 12 + lg(k'kq: Q) I 2]F({3fq). 

(54) 

If the variable k~ in Eq. (54) is changed by the variable k' defined by k' + Q = K' 

and if we use Eq. (29) for f and g and the periodicity of other quantities, then 

this process C corresponding to the process C' in Fig. 1 (b) has the form 

=!I_(_!_)2~sJ2J dSk dSx- IVk-vK-12 
3 4n8 N IVkl IVK-1 

X [lf(K'kq: 0) 12 + lg(K'kq: 0) I 2]F({3fq) 

(55) 
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1088 H. Yamada and S. Takada 

and the integrand becomes identical with Eq. (53) except for the region of the 
integration. 

In the same way, the expressions of the integ;rand of scattering terms of the 
process B and D in Fig. 1 (a) become identical with the process A by the similar 
transformation of the variables and· correspond to the -pr~cess ~' and D' in Fig. 
1 (b). The scattering term for the neck region including all the possible scatter
ing processes (P= 0, ± Q) thus reduces to the single' expression in the form of 
the normal process :*l 

(N) 1 
2:: P(kk')-IVk- Vk,i 2 

6 

=!!_(_!_)2~SPJ- dSk dSk' 1Vk-Vk'i2 
3 4n8 N I Vki IVk'l 

x [if(k'kq: O)l 2+ig(k'kq: O)I 2]F(t]fq). 

(qc>~~-k•l>o, qc>~~-k"l>o) (56) 

As in the case of nt", the above expression IS estimated with the use of the 
simplified Fermi surface of the cylindrical form with the width 2qc. Putting 
the various quantities by the values at k' = Q/2, we have 

(~) P(kk') l_i Vk- Vk,l 2 =n2·(_!_) 2 V 2 SJ2 4 (1 + v(Qf2qc)) Q2qcY(T) (57) 
kk' 6 3 4n8 N kr<•l(mJSY 

with 

(58) 

where kr <•l is the radius of the Fermi surface at the neck k' = Q/2 in the v band. 
The form of the temperature dependence is determined by X (T) (Eq. 52)) 

or Y(T) (Eq. (58)). For simplicity we assume the coupling constant of the 
exchange interaction satisfies V(q+Q) =- V(q) =zl Vlrq, as in the case of the 
nearest neighbour interaction, then X(T) and Y(T) have the following forms 
in two limiting cases: 

yo_{!q_5T(5)((5) for TN'J;>T:?>D, 
c5 

X(T) = 4j- 1 
T c4 2~d [zi ViS-Jd(2+d) ] 8 exp[ -T ziViS-Jd(2+d) J 

fqr TN, D'J;>T, 

(59) 

*> The origin of this simplification is related to the ·assumption that the sj' coupling J is 
independent of momentum. If it is dependent on momentum, one must use J(q±Q) for the pro
cess C' and D', and J(q) for the process A' and B' instead of J, and the expression including the· 
Umklapp-process becomes complex as in the electron-phonon case. 
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On the Electrical Resistivity of Antiferromagnetic Metals 1089 

r 3n../2+d r 8-./ac" 5T(5)((5) for TN'2>T'2>D, 

Y(T) ~ 1 r•:: (J 2!a + j 2 ~d +1 )[zl VIS~d(2+d) ]' 

l xexp[- ~ zl VIS~d(2+d)] for TN,D;,T, 

(60) 

where c and a are given by c=zl VJSv'2a and rq=l-al+O(l). We have also 

Y(T) =l_(I_)• 
X(T) a TN ' 

e= {~ for TF '2> T'2>D, 

for TN,D'2>T. 
(61) 

By the use of above results, the ratio of the conductivity due to electrons on 

the spherical and neck parts is estimated as 

L;.(JB<•l (pF)s( 1 )2(T )' ( ( )"(T )' 
L;. (JN<•l = ---;;: q.v' a \TN = SJ TN ' 

(62) 

where we have used (PF/q.) ~ ((jJS) and a~PF- 2 • Combining with the con

dition ( 41), the contribution of the (J N<•l to the total conductivity is negligibly 

small in the temperature region 

T1=( J~)TN'2>T)? ( J~) 5
TN (63) 

and using Eqs. ( 42), ( 48), (50) and (51) for (J B<•l we have 

2 

(J =I:: (J B<•l = ~n~rB (64) 
v=± m 

with 

(65) 

and 

(66) 

If we take the value SJ/~=1/10=1/100, TN~100°K, the upper limit of Eq. (63) 

is the order of a few degrees and the lower limit is I0-3=10-8 °K which is 

exceedingly small in the available temperature region. The temperatrue depend

ence of the resistivity 4ue to the intraband scattering is determined by X(T) as 

(67) 
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1090 H. Yamada and S. Takada 

3. 3. Effects of the interband scattering 

When the temperature exceeds Th the interband scattering begins to take 
place near the neck region. The expression for the conductivity is 

(J=(JB+(JN, 

- . <¢t" H¢")2 (J B - I: --'-'-''----'--"'-
v~± <¢/H¢/)' (68) 

6 _ A+Nr/-N+A-N1}~N-2B1J+N1J-N 
N- A A B 2 ' +N -N-

, . ' 
where A+N etc. are obtained from Eq. (36) by replacing i by ( + N) etc. The 
symbol + (-) denotes the region of the Fermi surface of + (-) band where 
only intra band scattering is possible, and + N(-N) denotes the region of the 
+ (-) band where both the intra and inter band scattering are possible. Above 
equation is derived by neglecting the scattering term p<±, ±NJ which represents the 
scattering between ( ±) and ( ± N) region, inclusion of which will change only 
numerical value of the coefficient of T 5 as it is intraband ·scattering in nature. 

The term (J N is evaluated first. Putting cf;ta = vk· (k belongs to region a)' *l 

the effective carrier number of the ( ± N) region is estimated roughly from the 
area of the cylinder of the radius Pp../1- (Qj2PFY and width 2qT(cqT=T) as 

e 
1J+N =1J-N = m nN, (69) 

The largest contribution in the scattering term A+N, A_N and B comes from the 
interband scattering p<+N)(-N) and, in the free electron approximation, we have 

with 

A+N=A-N=rT2 +C, 

B=rT 2 -C (70) 

The small additive term C comes from the k dependence of cf;t a ( = V k •) • Then 
we have 

(72) 

It is expected that in ( ±) region the conduction electrons will have the relaxa
tion time rB [Eq. (66)] because only the intra band scattering dom1nates even 
when T> T 1 in this region, but the carrier number will be reduced by an amount 

*l Among the three equivalent trial functions V~, V~, V~, V~ gives the largest scattering 
in aN through the q independence of the velocity transfer term. 
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On the Electrical Resistivity of Antiferromagnetic Metals 1091 

(73) 

and CJB is proportional to 1/T5• The ratio is CJN/CJB={(T/TNY/(1-T/TN)} which 
is small in the magnon region. The less accurate expression for (J N is 

r/ 
(JN=-

A' 
(74) 

where 'fJ and A is given by Eq. (36) in which the index· i denotes the region 
both ( + N) and ( -N). It .is easily verified that Eq. (74) gives also the ex
pression Eq. (72) in the lowest ap.proximation. 

§ 4. Summary 

Contrary to the T 4 dependence conjectured by some authors, the T 6 depend
ence was derived for the resistivity of an antiferromagnetic metal at low tern

. peratures. The origin of this extra power is the q dependence of the new 
coupling constant f or g in Eg. (29). In the case of normal scattering on the 
spherical Fermi surface and vanishing anisotropy energy, they are proportional 
to q: 

and thus it is insufficient only to replace the ferromagnetic magnon spectrum 
by the antiferromagnetic one. 

When the temperature is smaller than the anisotropy energy D, the resistivity 
varies as p~Texp(-.JTND/T). 

When the temperature is low enongh such as T ~ T1, neither the inter band 
nor the Umklapp scattering of the electrons on the neck part is possible and 
only the intraband scattering 'dominates. However, the contribution to the con
ductivity of these electrons is small compared to that of the electrons on the 
belly part as long as the inequality t;, > J holds as is seen from Eq. (62), and 
also under the inequality Pi- (Q/2i>mJ which indicates that the area of the 
belly part is sufficiently larger than that of the neck part (the case (i) in Ref. 
5) and the present case). 

When the temperature raised and inter band scattering begins (T> T 1), the 
contribution to the conductivity of the electrons on the neck part remains still 
small, since these electrons suffer additional scattering such as interband or 
Umklapp scattering and have smaller relaxation times than that, of the belly 
electrons. 

It follows from these that the contribution of the neck part of the Fermi 
surface to the conductivity is always small throughout the magnon region, and 
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1092 H. Yamada and S. Takada 

the main part of the conductivity is determined by the intraband scattering of 
the electrons on the belly part of the Fermi surface. These situations do not 
change when the' Fermi surface has several magnetic zone boundaries rather than 
two (present case) as long as the inequalities t;,')>J and PF2 - (Q/2Y')>mJ are 
satisfied. 

However, the contribution to the conductivity of such electrons near the 
neck part is underestimated in our variationaJ treatment, and must increase if 
the better trial function is employed in this region. 
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Appendix 

We derive the expression of the conductivity which is of the form of Eq. 
(42) by the hydrodynamical approximation of the Kubo formula. That the sim
plest form of this expression (Nakano's expression) may lead to incorrect result 
in the case of anisotropic. scattering has been correctly pointed out by Vonsowsky.4l 

By the use of the notations in the Appendix of Ref. 9), the low frequency 
conductivity is given by 

ar 

and ({)ar obeys the hydrodynamical equations 

with 

~ (w?Jap + iTap) ({)Pr (w) =i?Jar 
{! 

(Al) 

(A2) 

(A3) 

When dividing the current operator !l=~k!lk=~a!fa, one must group the region 
a in k space such that the electrons ,in this region suffers the same degree of 
scattering and so have the life time. of the same order. In the case of T>T1 

as in § 3. 3, the symbol represents the regio~ (±) and (±N), and along the 
treatment of that section, we set T(±N, ±) =T(±, ±N) =0~ By solving Eq. 
(A2) we obtain from Eq. (Al) the static conductivity corresponding to Eq. (~8) 

(J = ~ <!a"! a)2 + A:N'f}'_2N + A'_N'f}:2N- 2B' 'f}~Nr;'~N 
a=± !R.<!Ja, !fa)ru~O+i8 A:NA'_N-B12 ' ' 

(A4) 

A:~=!R.~g+N•. g+N>~~O+~. 8' . _A'-N=:=!R.<'i-N, g_N)., ... OH8' 'l 
B -!R.<!J+N, !f-N)., ... o+i8-g(e<!f-N, !f+N)., ... o+£8, 

'f}:N=<!l+N,!/+~>, 'f}'_N=<!f-N,!f-N> • . 

(A5) 
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On the Electrical Resistivity of Antiferromagnetic Metals 1093 

If we divide the Fermi surface into three parts; ( +), (-) and (N), 

grouping the (± N) region into one . region (N), and discard interscattering 

terms, then we have the less accurate expression: 

~ =;= 2:; <4 a"! a)2 + <4 N"! N)2 
.,a=± [R.(!Ja, /Ja)ro->0+'8 [R.(/JN, /JN)ro->0+i8 

(A6) 

which corresponds to Eq. (74). 
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