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ABSTRACT 

We present a new method for resolving the scheme-scale ambiguity that 

has’ plagued perturbative analyses in quantum chromodynamics (QCDI and 

other gauge theories. For Abelian theories the method reduces to the 

standard criterion that only vacuum polarization insertions contribute 

to the effective coupling constant. Given a scheme, our procedure 

automatically determines the coupling-constant scale appropriate to a 

particular process. This leads to a new criterion for the convergence 

of perturbative expansions in QCD. We examine a number of well known 

reactions in QCD, and find that perturbation theory converges well for 

all processes other than the gluonic width of the T. Our analysis calls 

into question recent determinations of the QCD coupling constant based 
- 

upon T decay. 

-2- 



1. INTRODUCTION 

A major ambiguity in the interpretation of perturbative expansions in 

quantum chromodynamics (QCD) is in the choice of an expansion parameter. 

In general QCO predictions for some measurable quantity p have the form 

I 

a,(Q) as2 (9) 

P = Coa,(Ql 1 + Cl(Q) - + C,(Q) + . . . 

B ll2 1 (11 

The coefficients Ci(Q) depend upon both the exact definition of the 

running coupling constant a,(Q) (i.e., the ‘scheme’), and upon the 

choice of scale Q. When working to all orders in a,(Q) the choice of 

scheme and scale is irrelevant; the coefficients Ci(Q) are defined so 

that p is the same for all choices. However, this freedom can be a 

serious source of confusion in finite order analyses. Indeed when 

working to first order, one can set C,(Q) to any value simply by 

-redefining as or by changing 9. This coefficient seems meaningless 

here. In particular it seems to give no indication of the convergence 

of the expansion. This question is of critical importance in testing 

QCD since as is rather large (u. l-.31 at current energies. It is quite 

likely that perturbation theory will fail completely for some processes. 

Such processes must be identified. 

The potential difficulties are well illustrated in low energy quantum 

electrodynamics (QED), where for example the electron anomaly has a very 

convergent expansion, 

9e a a2 
a, = - 0.657 - -t 2.352 - --- 

v ll2 1 (2) 

while the expansion for orthopositronium decay is much less convergent: 

I-o-Ps = l-0 

a 
l- 10.3 - + -- 

lT 

. 1 . (3) 
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The difference in convergence rate here is not an artifact due to a bad 

choice of scheme or scale; the first order coefficients in these 

expansions should not be absorbed into a redefinition of a since the 

running coupling constant for QED doesn’t run at these energies.’ 

While numerous schemes have been studied (llSp2 i?sp3 MOMP~ ***)s 

little has been done to resolve the scale ambiguity in QCD. In this 

paper we introduce an automatic procedure for determining the coupling- 

constant scale appropriate to a particular process.5 Given a scheme, 

this results in a new criterion for the convergence of perturbative 

expansions in QCD by unambiguously fixing the expansion coefficient 

C,(Q) in Eq. (11 for a given process; perturbation theory cannot be 

trusted when Cl (9) a,(Ql/u I 1. Furthermore, the coupling-constant 

scale can be determined without computing all higher order corrections. 

-Thus leadins order analyses in QCD can be meaninqfully compared with 

experiments. 

In Section 2, we outline our basic approach as applied to QED (i.e., 

Abelian theories). We define the running coupling constant a(Q) for QED 

to include all contributions due to vacuum polarization insertions in 

the photon propagator. This is the only natural choice since the 

variation of the effective coupling in QED is due to vacuum polarization 

alone. The coupling-constant scale Q * best suited to a particular 

process in a given order can be determined simply by computing the 

vacuum-polarization insertions in the diagrams of that order. 

Expansion (1) is then replaced by 

I 

a(Ql*) a2 (Q2*) 

P = Coa(Qo*l 1 + cl* - + c2* + . . . 

v 82 I (41 
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where all photon self-energy corrections are absorbed into the effective 

coupling constants by an appropriate [and unique) choice of scales Qo*, 

Ql*, ---. Since all dependence upon the number of light-fermion flavors 

(nf) usually enters through the photon self-energy in low orders, both 

the coupling-constant scales Qi* and the low order coefficients Ci” are 

independent of nf. (Light-by-light scattering graphs lead to nf 

dependence in higher orders.) The light-fermion loop corrections serve 

mainly to renormalize a(Q), as expected. Note also, that in a general 

process, the scales Qo*, Ql* can depend on the ratio of invariants, 

e.g., center-of-mass angles. 

In QCD (i.e., non-Abelian theories), it again is natural to absorb 

all vacuum polarization corrections into a,(Q). In particular, all 
- 

vacuum polarization due to light fermions should be absorbed, leaving an 

expansion 

a,(Q*l 

P = Coa,(Q*l 
[ 

1 + c,* - + . . . 

II 1 (5) 

where C,* and Q* are defined to be nf independent. (The calculation of 

Cl* and Q* is unambiguous since the dependence of as on nf is determined 

to this order by Do = 11 - 213 nf.) Although the scale Q* is now 

automatically fixed, the expansion (5) still depends upon the definition 

of a,(Q) - i.e., upon the renormalization ‘scheme’.6 One can easily 

create schemes in which Cl* is arbitrarily large, and, unlike QED, QCD 

has no scheme which is obviously superior. This scheme ambiguity can in 

fact be eliminated to a large extent by adopting some physical process 

as a theoretical standard for defining a,(Q).’ For example, the ratio 

of e+e- + p+lr- might be defined to be exactly (s = Q2) 
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Re*e-(Q2) E 3 c 

flavors 

eq2 [l + y] . 
(61 

Expansions for other procedures would then be expressed in terms of 

aR(Q*), with scale 9% chosen such that Cl* and Q* are independent of nf 

as in Eq. (5). As it happens, expressions derived in this R-scheme are 

almost identical to those obtained for the MS or i?s schemes (MS and AS 

give the same expansions when used with our procedure). We will adopt 

the fi?4 scheme as our standard in this paper, since it is the more 

familiar. 

There are a large number of physical processes which could be used as 

the standard for defining as with similar qualitative results. A bad 

choice for the standard process can be detected immediately upon 
- 

application. This is because the differences between first order 

-coefficients Cl* for various processes are independent of the scheme; 

therefore, for a bad choice of standard process most coefficients Cl* 

will be large and have the same sign. This, in fact, does not seem to 

be the case for the R - MS - i;iS scheme, since for a large number of 

processes the coefficients Cl * obtained by using the automatic scale 

fixing procedure are indeed small. 

The plan of this paper is as follows. In the next section we review 

the procedure in which the scale of the running coupling coupling 

constant is set in Abelian gauge theory. These ideas are then developed 

for QCD in Section 3. We limit our discussion to lowest and first-order 

corrections, and focus upon processes that do not involve a gluon-gluon 

coupling in leading order. This is sufficient for most 

phenomenologically relevant processes in QCD, and we illustrate our 
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procedure for a number of well known reactions. Most significantly, we 

find that the gluonic width of the T has a very unreliable perturbative 

expansion. We also find that first order corrections are numerically 

small (510-20 percent) for all of the other processes considered, when 

the correct coupling-constant scale Q* is employed; the lowest order 

calculations, together with the quark vacuum polarization corrections 

which set Qs, are quite adequate in these cases for a quantitative 

comparison of theory and experiment. 

Finally, we summarize our results in Section 4, contrasting our 

approach with other attempts at resolving the “scheme-scale ambiguity.” 

We also briefly explore the possibility of generalizing our method so 

that it may be applied to all processes in QCD. 
- 

2. QED (ABELIAN GAUGE THEORIES) 

The only true ultraviolet divergences in QED are associated with 

vacuum polarization, because divergences in the vertex and fermion self- 

energy corrections cancel by the Ward identity (or are absent in Landau 

gauge). Thus it is only vacuum polarization corrections that 

renormalize the coupling. Since these corrections vanish like Q2/me2 as 

es8: Q2 -) 0, QED becomes a fixed point theory at very low energi 

a(Q) + a = 11137.036 **a asQ+O . 

Equation (71 serves as an initial condition for the renorma 

group equations, which then uniquely determine a(Q) for all 

(7) 

1 ization 

9. In 

effect, we are absorbing the entire vacuum polarization correction into 

a(Q) - i.e., (Q2 = -q21 
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-gw= + ql*q”/q2 

a(Q) = no(A) duV(qrA) 
q2 + ic (81 

where a,(b) is the bare coupling and d uv the unrenormalized photon 

propagator. 

Given this definition, we need only determine the appropriate scale 

(or scales) Q for a given process. The most naive procedure is simply 

to use the full propagator (Eq. (8)) for each photon in any given 

diagram.g For example, we can replace a by a(Q) for (with Q2 = -q2) 

before integrating over q in the leading diagram for the muon anomaly’ 

(Fig. la).‘O All vacuum polarization insertions are automatically 

included. Unfortunately, the loop integration is then quite cumbersome. 

However, by the mean value theorem there must be some scale Q* - mu for 
- 

which the exact result is 

a(Q*l 

a(LVP = 2n (9a) 

where from the definition, Eq. (8) 

a(Q) = 

1 -t [:J2nz-t] - [~]2a[~Jn--!J+~[31 -3 - ... (gb) 

(For simplicity we are neglecting muon loops and terms of order m&Q or 

less in a(Q).) The scale Q* can then be determined order by order in 

perturbation theory by expanding (9) in powers of a and adjusting the 

coefficients to agree with results obtained order by order from vacuum 

polarization insertions in the basic diagram. For example, the lowest 

order electron loop (Fig. lb) contributes 

Avpfa,,O = [:JJnE-:] iaN0 
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which from Eq. (9a) must equal 

Thus we have Q* = mue5/12 in leading order. With this procedure, the 

muon anomaly has the same expansion to first order as the electron 

anomaly (Eq. (2)) but with a different expansion parameter - i.e., to 

this order we are replacing 

(Avp + C,) + . . . 

I 

as - 
where 

c, + . . . 1 
a 

a(Q*) u 
a 

1 -- AVP 
Tl 

(lOa 

(lObI 

and 

197 lT2 3 

Cl q -+-- n2Rn2 + - 3(3) G -0.657 . 

72 6 2 

Intuitively this is reasonable since if a single insertion gives 

am AVP, a double insertion will give roughly (a/n Avp12, and so on. 

Thus the electrons modify only the charge and not the physical expansion 

of au in this order. Of course this is no longer the case in higher 

orders, when ‘light-by-light’ diagrams (Fig. lc) and others like them 

appear. 
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The physical scale 9% is refined by higher order corrections - 

Q” = rnue5/12 (1 + 1.14 a/B + ...I - but its expansion is obviously far 

more convergent than the original expansion for au. Also this expansion 

is unique. For example, including the Cl a/m in atQ%) (Eq. (lObI would 

wreak havoc with the next-to-leading logarithms of m&*/m, in higher 

orders; there is no reason to expect that the Cl Q/V is part of an 

approximately geometric series of contributions, while the vacuum 

polarization corrections must be geometric (for renormalizability). 

Finally, each order in perturbation theory will usually have its own 

scale (determined as above); there is no reason for all running 

couplings to have the same scale. 

3. QCD (NON-ABELIAN GAUGE THEORIES) 

A natural definition for the running coupling has proven far more 

elusive in QCD than in QED. There is no boundary condition for a,(Q) 

analogous to Eq. (71. A perverse definition - e.g., ap(QI = aES(Q) + 

lo6 afjS(Q) - would lead to absurd results. To avoid or at least 

minimize this possibility we can define a,(Q) directly in terms of a 

specific physical process8 as in Eq. (6). This is equivalent to 

prescribing a renormalization scheme. Here, however, we will simply 

adopt the i?s scheme, since it happens to be practically equivalent to 

choosing R,+,- to define aS. 

Our procedure for fixing the scale is then straightforward, at least 

for processes which do not have gluon-gluon interactions in lowest 

order. To first order, such a process has an expansion 
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afi3(Q) 

P = CO aiS (Avpnf + B) 
ll I 

where the nf term is all due to quark vacuum polarization. As in QED, 

the sole function of these light-quark insertions is to renormalize the 

coup1 ing. Given a reasonable scheme, all such terms should be 

completely absorbed into the leading order coupling by redefining the 

scale: 

t30 Q* -1 
afiS(Q) + aif = afis(Ql 1 + - atis Jn - + . . . 

I 
- 

2s Q 

Furthermore, the new scale Q* must be nf-independent if it is to retain 

any physical significance in relation to the momenta circulating in the 

leading order diagrams. Thus we replace 
- 

33 
P q CO afj3(Q) - - BoAvp + - Avp + B + - . . 

2 1 1 
aiE(Q*l 

P = CO aRS(Q*) 1 + C,” + .-. 

Tr 1 (lla) 

where 

Q” = Q exp(3 Avp) 

Cl* = 3312 Avp + B . (llbl 

The term 33 Avp/Z in Cl* serves to remove that part of the constant B 

which renormalizes the leading order coupling. The ratio of these 

gluonic corrections to the light-quark corrections is fixed by 130 = 

11 - 2~3 nf. 

Several features of this procedure are worth noting: 
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- Two schemes that differ only by an nf-independent resealing give 

identical expansions in a,(Q*). Thus the differences between MS 

and i;iS, for example, are irrelevant in this approach. Furthermore, 

aR(Q) could be replaced by aR(Q/P) or aR(lDZoQ) in definition (6) 

with no effect on the final results for any process p expressed in 

terms of aR(Q*l. 

- If the RS scheme is replaced by another for which 

afis 
a,(Q) = aiG(Ql 1 + - (D Do f E) + . . . 

n 1 
aif 

= aijs(Q e-20) 1 + - E + - - - 

a I (12) 

where D and E are nf-independent, then the first order coefficients 

for all processes are shifted by -E: Cl* + Cl* - E. Differences 

between first order coefficients are scheme independent. Thus, for 

a poorly chosen scheme, the coefficients for most processes will be 

large and have the same sign. On the other hand, if several 

processes have convergent expansions (i.e., Cl* small) in some 

scheme, then this will still be true in the physical scheme defined 

in terms of any one of these processes (see Eq. (6)). 

- The leading order scale is determined solely by Avp, which comes 

from quark vacuum-polarization insertions. This is usually all 

that need be computed to make a meaningful leading order 

prediction, as we show below. 
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- Equation (lla) is a particularly convenient way to present 

perturbative results since all flavor dependence is implicit in the 

definition of ai5. 

The automatic scale-fixing procedure determines a natural expansion 

parameter afiS(Qsl for the majority of interesting processes in QCD. 

However, reactions with gluon-gluon couplings in leading order are more 

difficult to analyze because quark loops appear in the first-order 

radiative corrections to the gluon-gluon vertex as well as in propagator 

insertions. It seems difficult if not impossible to separate the 

divergent part of the vertex, which renormalizes as, from the finite 

process-dependent part in any unique and general fashion. Consequently, 

our procedure for determining Q* is inapplicable; not all of the 
- 

nf-dependence should be absorbed into a,(Q*). Since any process 

involves gluon-gluon vertices in first order and beyond,‘we presently 

can determine Q* only to lowest order in a&g. 

To illustrate our scale-fixing procedure and to explore its 

implications, we examine briefly a number of well known predictions of 

QCD: 

e+e’ -+ hadrons - The ratio of the total cross section into hadrons to 

the cross section for e’e- -) p,*lr- is (s = Q2)11 

afiS(Ql afiS2 
R e*e-(Q21 = 3 1 eq2 1 + - + - (1 98 - 0.115 nf) + *-- 

q I ll v2 - I 
(13a) 

I 
afiS(Q*l ofiS (Q*l 

+3Ceq2 l+ + 0.08 + *a* 

q ll 92 I (13b) 
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where from Eq. (111, Q* = 0.718. Notice that aR(Ql (Eq. (6)) differs 

from ai5(Q”l by only 0.08 asSIn, so that effectively aR(Q) and 

ahsC.71 Q> are interchangeable (for any value of nf). 

Deep Inelastic Scattering - The moments of the non-singlet structure 

function F2(x,Q2) obey the evolution equation12 

d 

Q2 - An Mn(Q2) = 
dQ2 

where, for example, 

Q2* = 0.48 Q 

Qlo” = 0.21 Q 

7,(O) 
- afiS(Ql 

8ll 

afi5 2RoB, + 7°C l) 
1+- + . . . 

4s Y”(O) I 
(14a) 

7n’O’ afiS(Q,,*l 
- aiJtQ,,*) 1 - C” + *a- 

8ll v 1 (14b) 

c2 = 0.27 

Cl0 =l.l . 

-For n very large, the effective scale here becomes Qn* w‘Q/Jn which is 

exactly what was found in Ref. 13 by a detailed study of the kinematics 

of deep inelastic scattering. 

l)r Qecav - The ratio of the nc width into hadrons to that into yy is 

(nf = 3)” 

l-(7lC -) hadrons) 2 afjS2(~c) 
=- 

I-(?)C + YYI 9ec5 QQED’ I 
afi5 

1+- 

B 

[17.13 - f nf] + a*.) 

(15aI 

2 aijS2(Q*l 
+- 

9ecb QQED’ I 

a~~(Pl*) 
1 + 2.46 + --- 

a 1 (15b) 

where Q* = 0.26 M7)c. 

y Qecav - The ratio of the hadronic to the leptonic widths of the T is 

(nf q 4)‘s 
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T(Y * hadrons) lO(a2 - 91 afjS3(MT) 

I 

aiG 
= 1+- (2.770(7)80 - 14.0(S)) + *-* 

I-CT + w+p-1 8ln eh2 aQED2 B 1 
(16a) 

lOIll - 91 agS3 (Q”) 

I 

afiS(Ms) 
-P l- 14.0(5) + *** 

8lseb2 aQED2 IT I 

(16b) 

where Q* = 0.157 b. Thus the decay rate into gluons has a large 

negative correction with this physical definition of the coupling, just 

as do the rates for T -* 7~7 and for orthopositronium decay into three 

photons, both of which are scheme and scale independent to this order.’ 

Such a correction implies large, positive terms in higher orders, and 

fact these are necessary if we are to fit the data. Further study is 

clearly necessary before T decay can be used as a reliable measure of 
- 

as- We do note, however, that the large corrections cancell almost 

-completely in the branching ratio for producing a direct photon plus 

hadrons”: 

m -, 7o + hadrons) 36 eb2 QQED 

I 

aiS 
= 1+ 2.2(6) + *a- 

T(T -) hadrons) 5 aiS ll I 

where aga 

order amp1 

(1 

n N* = 0.157 MT. This cancellation occurs because the leadi 

itudes for 1 * ggg and T 3 Ygg are identical in structure. 

in 

7) 

w 

Thus the branching ratio for direct photons could be used to determine 

ai!j. 

Exclusive Processes - Exclusive processes involving large transverse 

momentum are given by the convolution of distribution amplitudes #(x,9), 

representing the wavefunctions of each initial and final state hadron, 

with (collinear irreducible) hard scattering amplitudes Tw(XirQ) in 

which each hadron is replaced by collinear on-shell quarks (or 
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gluons).‘* The procedure given above allows us trivially to include the 

vacuum polarization corrections to the (skeleton) tree graphs 

contributing to TH, and thus set the coupling-constant scale for the 

leading order results. For example, the hard scattering amplitude 

required for the form factor of helicity zero mesons is (Fig. 2) 

64~ a:5 (emsf6 1/(1-x)(1-y) Q) 
TH(x,Y,Q) = - 

3Q2 (l-x)(1-y) 

since the gluon’s momentum transfer is -cl-x)(1-y)Q2 (Fig. 3). 

estimate <x> w <y> y l/2, then the correct expansion parameter 

- aFj!j(Q/4.6) in agreement with the detailed analysis in Ref. 19 

QQ Potential - The interaction potential between two infinitely 

f 

. 

quarks isto 

CF 4n aiS 
V(Q21 = - 

Q2 
[l +y [~ Do - 2]+ . ..I. 

CF 4n ais 
+- 

Q2 

(18) 

If we 

or TH is 

massive 

(19al 

(19b) 

where Q* = e-5/6 Q C 0.43 9. This result shows that the effective scale 

of the i?s scheme is about half of the true momentum transfer occuring in 

the interaction potential. In parallel to QED, the effective potential 

V(Qz) gives a particularly intuitive scheme for defining the QCD 

coupling constant 

4n CF av(Ql 

V(Q2) Z - 

Q2 (20) 

with av(Q1 = aiS(e-5/6Q) ( 1 - 2aGs/s . . .). The perturbative QCD 

prediction can be tested empirically - without scheme or scale 
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ambiguities - if the predictions for two processes such as (6) and (19) 

are consistent with experiment. 

annt.t(Ql - The standard MOM definition of as is (Landau gaugeI 

I 

ai 
.) 1 + - (1.28 R. - 7.47) + ... 

Tl 

, 

(21a) 

(2lb) 

where Q* = 0.077 Q. Although this is not a physical process, we include 

this result because MOM is a widely used scheme. Clear-1 y the MOM scheme 

is incompatable with our method of fixing Q*; all first order 

coefficients would be increased by 7.47 if MOM replaced AS. This is not 

unexpected since anon is defined in terms of the tri-gluon interaction 

and such processes are specifically excluded from our analysis. Indeed 

--- 
the MOM scheme based upon the quark-gluon vertex is a perfectly 

acceptable alternative to i;is21: 

afiEF 
aRS(Q*l 

0.4 + --- 

lI I (22) 

where Q* = 0.43 Q and Landau gauge is assumed. It is only accidental 

that atqon(Q) and aEljK(Q) are nearly identical for nf = 4. This is not 

the case for nf f 4 (nf = 0 * anon(Q) = ailjfi(Q)(l + 2.4 afilj$n)) and 

from our perspective the kGi? definition is preferable. 
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4. CONCLUSIONS 

In this paper we have emphasized the importance of distinguishing 

scheme and scale ambiguities when interpreting a perturbative expansion 

ing the 

le, the 

lattitude in chaos in QCD. On the one hand, one has considerable 

renormalization scheme or process which defines 

replacement (see Eq. (20)) 

av(2.3 Ql = afij$(Ql (1 - 2 aijS/n + .a-} 

a,(Q). For examp 

makes little practical difference for any of the processes we have 

discussed. On the other hand, once the scheme has been selected, the 

scale for as must be chosen carefully if the perturbative expansion is 

to evolve sensibly as the momenta are resealed. In particular, the 

procedure discussed in Sections 2 and 3 unambiguously determines the 
- 

coupling constant scale for the leading term for most of the interesting 

-processes which test perturbative QCD. 

The automatic scale-fixing procedure can be summarized as follows: 

given a renormalization scheme for asr the QCD perturbative expansion 

for the processes of interest takes the form 

P = CO a,(Q*l ( l+C*q as/v + ***) . 

The scale Q* should then be chosen such that Q* and CX, are independent 

of nf, the number of ‘light’ fermions (i.e., with m, << Q*). Most 

importantly, this implies that the expansion is unchanged in low orders 

as the important momenta vary across a quark threshold - ali vacuum 

polarization effects due to a new quark are automatically absorbed into 

the effective coupling constant. Clearly this is uhere such effects 

belong. For the processes of interest, the low order expansions well 

below and well above such a threshold differ only by gluon self-energy 
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corrections due to the new quark, provided, of courser the argument of 

a, is resealed with the momenta. Such self-energy contributions are 

then correctly absorbed into the coupling constant, leaving the 

expansion unchanged across the threshold. blhatever scheme is employed, 

this criterion of nf-independence uniquely determines the scale 

appropriate to that scheme for both Abelian and non-Abelian theories. 

A striking feature of each of the perturbative QCD predictions 

discussed in this paper, is that - except for T decay - the first order 

correction in afis is only 10 to 20 percent of the leading term at 

typical Q2 after the scale has been fixed. (This is despite the fact 

that the coefficient Avpnf + B is replaced by 3312 Avp + B, as in Eq. 

(111.1 Perturbation theory seems to work rather well - the leading term 

in aBS(Q*) for these processes is by itself quite accurate. The main 

-effect of the higher order corrections is in setting the correct scale 

Q"? and for this only the fermionic vacuum polarization corrections are 

needed. In effect the automatic scale fixing procedure uses the 

fermionic loops to probe the momentum flowing in the leading order 

diagrams. The remainder of the higher order corrections, i.e., the 

(3312 Avp + B)a&r, must of course be computed to obtain predictions 

with precision better than 10 to 20 percent. 

For T decay into three gluons (Eq. (1611, the higher order 

corrections are quite large, calling into question the possibility of a 

perturbative analysis of this reaction. The fact that the higher order 

corrections for the corresponding decay of orthopositronium in QED are 

large (see Eq. (3)) indicates that this effect is not due to ambiguities 

in the renormalization scale. 
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The automatic scale-fixing procedure given in this paper is 

applicable for any choice of renormalization scheme. However, once the 

scale-fixing procedure is used, we can readily normalize and thus define 

a,(Q) by using a convenient physical process such as R,+,-(Q2) (Eq. (6)) 

or the effective potential V(Q2) between heavy quarks (Eq. 20)). Since 

the first order corrections are small in i;S scheme, any one of the 

physical processes considered could have been used to define asp with 

essentially the same resul is. The exception is again T decay. 

Rewriting the other expansions in terms of aT, defined such that 

T(T * hadrons) lO(n2 - 91 aT3(R-f) 
= 

T(T + p+w-1 81 II eb2 QQED’ (23) 

is exact, results in first order corrections ranging from +3 aT/a to +7 

aT/lr, depending upon the process. This seems not to be a very good 

scheme. The standard MOM scheme appears to be even worse and so is 

incompatible with our technique. However, leaving aside atypical cases 

such as T-decay and artificial schemes like NOM, there appears to be no 

serious problems associated with the scheme ambiguity now that the scale 

ambiguity is resolved. 

In the past, two viewpoints have prevailed concerning the resolution 

of the scheme-scale ambiguity. One was simply to adopt some definition 

of the coupling (MS, HS, MOM, . . . 1 and then attempt to guess the 

appropriate scale for the process under study (e.g., Q* = T&/3 for T 

decay since there are three gluon jets in leading order). Our procedure 

removes any guesswork by automatically determining the scale. It is an 

essential complement to any analysis of scheme dependence. Furthermore, 

we now can easily introduce physical schemes for defining as (e.g., Eq. 
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(6)) which are both gauge independent (unlike MOM) and regulator 

independent (unlike MS, MS). 

The second viewpoint holds that for want of better guidance we should 

adopt some ad hoc principle such as maximal convergence,22 where Q* is 

chosen so that Ci(Q*) = 0 for i L 1 in Eq. (11, or minimal 

sensiiivity,23 where Q* is chosen to minimize the variation of p with Q* 

(due to omission of higher order terms in Eq. (1)). Unlike our 

procedure, these methods give no indication of the convergence of 

perturbation theory; C,(Q*) is by definition small and process 

independent for both of the methods mentioned above. Such methods will 

usually be completely wrong when applied to processes, like T decay, for 

which the higher order corrections are very large; worser they give no 
- 

warning of such situations. 

Our scale-fixing procedure is obviously far from complete. The most 

pressing problem is to find a suitable method for analyzing processes 

with gluon-gluon couplings in lowest order. An interim procedure might 

be to absorb all fermion loop corrections - i.e., vacuum-polarization, 

quark loops coupled to three gluons, etc. - into the coupling constant, 

while using some definition of a s related to the tri-gluon interaction 

(e.g., aHOH). However, something better should be found. When it has 

been, the extension of our analysis to higher orders will be 

straightforward (as is already true in QED). 
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Figure Captions 

Fig. 1 Diagrams conributing to the muon’s anomalous magnetic 

moment. 

Fig. 2 The hard scattering amplitude in leading order for meson 

form factors. 
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