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Theorem 1 is measured by the identification space M* whose ele-

ments are the leaves of N and the components of M—N. If M* is

metrizable, it can be shown to have inductive dimension 1. In this

case the argument above can be replaced by an application of the

Vietoris mapping theorem.
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In a paper of the same title, Massey [4] proved that if 2*-1 + 2*-'

— l=n<2* then Pn cannot be differentiably embedded in 7?2 . By

using the technique of Massey in a different way we can prove the

following theorem which clearly includes Massey's.

Theorem. If 2*_1<»<2* then Pn cannot be embedded differentiably
in Euclidean space of dimension 2k.

Besides the result of Massey, the main result in this direction is if

2*~1<n<2* then Pn cannot be embedded differentiably in 7?2*-1.

Our result yields, in particular, that for Ptf+i, the embedding in

-R    +1 given by Hopf and James [l] is the best possible.

The following information from [3; 4] will be needed. Let M he a

«-manifold differentiably embedded in i?n+i+1; and let p: E—*M de-

note the bundle of unit normal vectors. Then there exist subalgebras

A*iE, Z)EH*iE, Z) and A*iE, Z2)EH*iE, Z2) which satisfy the
following conditions:

1. A\E, G) = 77°(£, G),
2. H*(E, G)=A*iE, G)+p*iH«iB, G)) (0<q<n+k),
3. A<iE, G) = 0,q^n+k,
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where G = Z or Z2. Moreover the algebra A* is closed under all natu-

ral cohomology operations.

By the well-known theorem of Seifert and Whitney, the character-

istic class of a normal bundle vanishes hence the Gysin sequence

breaks up into parts of length three, 0—>Hi+k(M)—>v'Hi+k(E)

—>*Ü'(M)—>0. Because of (2) \f/ must be an isomorphism on A*. Each

element in H*(E) can be written in the form p*(bi)+a-p*(b2) where

a is the unique element in Ak such that ip(a) = 1. For simplicity we

will suppress the map p* and write a general element in H*(E) as

bi+a-bi.
The proof of the theorem will consist in showing that

Pm (m = 2*_1-r-l) cannot be differentiably embedded in i?2*. The result

will then follow from the fact that Pm can be differentiably embedded

inPnfor«>2*-1.

A simple computation shows that the Stiefel-Whitney classes for

the tangent bundle for P^+i are as follows: W0 = l, W2=a1, Wm-i

= am~1 where a is the nonzero element of Hl(Pm, Z2) and all other

Wi = 0. Using the_fact that W-W=l we see that Wu = a2i, O^i

g(w-3)/2 and W¡ = 0 for all other j.

Suppose Pm is differentiably embedded in i?2\ Let E be the bundle

of unit normal vectors over Pm for this embedding. Then £ is a

(m — 3)-sphere bundle and since Wm-2 = 0, the characteristic class

vanishes. Let aEAm~3 be the element such that ^(a) = l. Suppose

that the nonzero element of Am~2 is of the form am~2+a-a; then,

since Sq1(am~2+a-a) =am~1+a-a2 because a is an integer class, we

have that the nonzero element of Am~l must be am~1+a-a2. But

(a'»-t+a-a)(am~1+a-a2) = a • am+a2 ■ a3 +a ■ am. This element must be

in A2m+3 which is zero by (3).

But it equals a2-a3 = (Sqm~3a)-a3 = a- Wm-z-a3 by a result due to

Liao [2], and this equals a-am9*0. Hence the nonzero element of

Am~2 is of the form a a. But then Sqla-a = a-a2 is the nonzero ele-

ment of Am~l and (a-a2)(a-a})EA2m~3 = 0 but it, as before, equals

a-am which is not zero.
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