On the Embedded Eigenvalues for the Self-Adjoint Operators with Singular Perturbations

Kazuo WATANABE

Gakushuin University

(Communicated by T. Kawasaki)

1. Introduction and assumptions.

This paper is a continuation of [7]. That is, in the framework of the \mathcal{H}_{-2}-construction we consider a finite rank perturbation of a self-adjoint operator H_{0} without assuming semiboundedness for H_{0}. The \mathcal{H}_{-2}-construction has been developed by A. Kiselev and B. Simon [1], S. T. Kuroda and H. Nagatani [2], [3] and have been applied to Schrödinger operators with a singular perturbation by H. Nagatani [4] and S. Shimada [6].

In this paper we consider the embedded eigenvalues of H_{T} and the existence of the wave operator $W_{ \pm}\left(H_{0}, H_{T}\right)$. We prepare some notations. Let \mathcal{H} be a Hilbert space with the inner product $\langle\cdot, \cdot\rangle, H_{0}$ a self-adjoint operator in \mathcal{H} and $R_{0}(z)=\left(H_{0}-z\right)^{-1}(\operatorname{Im} z \neq 0)$. We put $\mathcal{H}_{s}:=\left\{u \in \mathcal{H} ;\left\|\left(\left|H_{0}\right|+1\right)^{s / 2} u\right\|<\infty\right\}$ for $s \geq 0$, and $\mathcal{H}_{s}:=\left(\mathcal{H}_{-s}\right)^{*}$ for $s<0$. Remark that $\mathcal{H}_{s} \subset \mathcal{H} \subset \mathcal{H}_{-s}$ for $s \geq 0$. For simplicity we use the same symbol $\langle\cdot, \cdot\rangle$ for the dual coupling $\langle\cdot, \cdot\rangle_{s,-s}$ of \mathcal{H}_{s} and $\mathcal{H}_{-s}(s \in \mathbf{R})$, and regard the operator $R_{0}(z)$ with $\operatorname{Im} z \neq 0$ as the element of $\mathcal{L}(\mathcal{H}, \mathcal{H}) \cap \mathcal{L}\left(\mathcal{H}_{s}, \mathcal{H}_{s+2}\right)$ for $\operatorname{Im} z \neq 0$.

DEFinition. Define

$$
W(z)=W(z, i)=(z-i) R_{0}(z) R_{0}(i)
$$

and the operator $R_{T}(z)$ in \mathcal{H}

$$
\begin{equation*}
R_{T}(z)=R_{0}(z)-R_{0}(z)(1+T W(z))^{-1} T R_{0}(z), \quad \operatorname{Im} z \neq 0 . \tag{1}
\end{equation*}
$$

To define the self-adjoint operator H_{T} for $T \in \mathcal{L}\left(\mathcal{H}_{2}, \mathcal{H}_{-2}\right)$ we use the following theorem (cf. [3]).

THEOREM 1.1 ([3]). If $T \in \mathcal{L}\left(\mathcal{H}_{2}, \mathcal{H}_{-2}\right)$ satisfies

$$
\begin{gather*}
T-T^{*}=T W(-i, i) T^{*}=T^{*} W(-i, i) T, \tag{2}\\
u-T R_{0}(i) u=0, \quad u \in \mathcal{H}_{0} \Rightarrow u=0, \tag{3}
\end{gather*}
$$

[^0]then the operator $R_{T}(z)$ above is well-defined and satisfies the resolvent equation, i. e., for $\operatorname{Im} z, \operatorname{Im} w \neq 0$
$$
R_{T}(z)-R_{T}(w)=(z-w) R_{T}(z) R_{T}(w)=(z-w) R_{T}(w) R_{T}(z)
$$

Furthermore there exists a unique self-adjoint operator H_{T} such that $R_{T}(z)=\left(H_{T}-z\right)^{-1}$.
ASSUMPTION $\left(H_{0}\right) . \quad H_{0}$ has only absolutely continuous spectrum and satisfies

$$
\begin{equation*}
\sigma\left(H_{0}\right)\left(=\sigma_{a c}\left(H_{0}\right)\right)=\mathbf{R} \tag{4}
\end{equation*}
$$

Assumption (T). For $T \in \mathcal{L}\left(\mathcal{H}_{2}, \mathcal{H}_{-2}\right)$ with $\mathcal{R}=$ Range T assume the conditions (2) and (3) and
(T1) For any $\lambda \in \mathbf{R}$ and for any $f, g \in \mathcal{R}$,

$$
\lim _{\varepsilon \downarrow 0}\left\langle R_{0}(\lambda \pm i \varepsilon) R_{0}(-i) f, g\right\rangle,
$$

exist, locally uniformly in \mathbf{R}.
(T2) There exists a dense subset \mathcal{D} of \mathcal{H} such that for any $\lambda \in \mathbf{R}$ and for any $f \in \mathcal{R}$,

$$
\lim _{\varepsilon \downarrow 0}\left\langle R_{0}(\lambda \pm i \varepsilon) u, f\right\rangle, \quad u \in \mathcal{D},
$$

exist, locally uniformly in \mathbf{R}.
In this paper we always suppose Assumptions $\left(H_{0}\right)$ and (T). We are mainly interested in the existence of the embedded eigenvalues of H_{T}, the explicit form of the eigenvectors corresponding to the eigenvalues and the asymptotic completeness of the wave operators $W_{ \pm}\left(H_{0}, H_{T}\right)$. The organization of this paper is as follows. In section 2 we investigate the necessary and sufficient condition for the existence of the eigenvalue of H_{T}. In section 3 we prove the asymptotic completeness of the wave operators $W_{ \pm}\left(H_{0}, H_{T}\right)$. In section 4 we investigate the case where a perturbation has rank one and compare with their results ([4], [6]) and ours.

2. Embedded eigenvalues (Finite rank case).

In this section we consider the case $\operatorname{dim} \mathcal{R}=N$. By the condition (2) we can easily obtain the following lemma.

Lemma 2.1. There exist a basis $\left[f_{1}, \cdots, f_{N}\right]$ of \mathcal{R} and $\mu_{j}(\neq 0) \in \mathbf{C}(j=1, \cdots, N)$ such that

$$
\begin{gathered}
\left\langle R_{0}(i) f_{j}, R_{0}(i) f_{k}\right\rangle=\delta_{j k}, \\
T u=\sum_{j=1}^{N} \mu_{j}\left\langle u, f_{j}\right\rangle f_{j}, \quad u \in \mathcal{H}_{2} .
\end{gathered}
$$

Proof. Putting $T_{1}:=R_{0}(i) T R_{0}(-i)$ we multiply the equation (2) by $R_{0}(i)$ (from left) and $R_{0}(-i)$ (from right). Then we have

$$
T_{1}-T_{1}^{*}=-2 i T_{1} T_{1}^{*}=-2 i T_{1}^{*} T_{1}
$$

Hence T_{1} is a normal operator. Therefore T can be decomposed as above.
We fix a basis $\left[f_{1}, \cdots, f_{N}\right.$] of \mathcal{R} as in Lemma 2.1. We use the following notations:
Notations.

$$
\begin{aligned}
& g_{j}=\bar{\mu}_{j} f_{j}, \quad v_{j k}(z)=\left\langle W(z) f_{k}, g_{j}\right\rangle \quad(1 \leq j, k \leq N), \\
& V(z)=\left(v_{j k}(z)\right)_{1 \leq j, k \leq N}(N \times N \text { matrix }), \quad \Delta(z)=\operatorname{det}(I+V(z)), \\
& \Delta_{j k}(z) \text { is a cofactor of } I+V(z) .
\end{aligned}
$$

Then we have

$$
(I+V(z))^{-1}=\frac{1}{\Delta(z)}\left(\begin{array}{cccc}
\Delta_{11}(z) & \Delta_{21}(z) & \cdots & \Delta_{N 1}(z) \tag{5}\\
\Delta_{12}(z) & \Delta_{22}(z) & \cdots & \Delta_{N 2}(z) \\
\vdots & \vdots & \ddots & \vdots \\
\Delta_{1 N}(z) & \Delta_{2 N}(z) & \cdots & \Delta_{N N}(z)
\end{array}\right)
$$

LEmma 2.2. For $z \in \rho\left(H_{T}\right) \cap \rho\left(H_{0}\right)$ and for $u \in \mathcal{H}$ we have

$$
\begin{equation*}
R_{T}(z) u=R_{0}(z) u-\Delta(z)^{-1} \sum_{j, k=1}^{N} \Delta_{j k}(z)\left\langle R_{0}(z) u, g_{k}\right\rangle R_{0}(z) f_{j} \tag{6}
\end{equation*}
$$

Furthermore we have

$$
\begin{align*}
& R_{T}(z) R_{0}(i) f_{m} \\
& \quad=R_{0}(z) R_{0}(i) f_{m}-\frac{1}{(z-i)} R_{0}(z) f_{m}+\frac{1}{(z-i) \Delta(z)} \sum_{j=1}^{N} \Delta_{j m}(z) R_{0}(z) f i \tag{7}\\
& \quad\left\langle R_{T}(z) R_{0}(i) f_{m}, R_{0}(-i) g_{n}\right\rangle \tag{8}\\
& \quad=\left\langle R_{0}(z) R_{0}(i) f_{m}, R_{0}(-i) g_{n}\right\rangle-(z-i)^{-2} v_{n m}(z)+\frac{\Delta_{m n}(z)}{(z-i)^{2} \Delta(z)}
\end{align*}
$$

Proof. For simplicity we write $W(z)=W$ and $v_{j k}(z)=v_{j k}$. We calculate $(I+$ $T W)^{-1} T_{u}\left(u \in \mathcal{H}_{2}\right)$. Since $(I+T W)^{-1} T=T(I+T W)^{-1}$ (cf. [3]), we put $(I+T W)^{-1} T_{u}=$ $\sum_{j=1}^{N} c_{j} f_{j}$ and determine c_{j}. Since $T u=\sum_{j=1}^{N} c_{j}(I+T W) f_{j}$, we have

$$
\begin{aligned}
\sum_{l=1}^{N}\left\langle u, g_{l}\right\rangle f_{l} & =T u=\sum_{j=1}^{N} c_{j}(I+T W) f_{j}=\sum_{j=1}^{N} c_{j}\left(f_{j}+\sum_{k=1}^{N}\left\langle W f_{j}, g_{k}\right\rangle f_{k}\right) \\
& =\sum_{j=1}^{N} c_{j}\left(f_{j}+\sum_{k=1}^{N} v_{k j} f_{k}\right) .
\end{aligned}
$$

Comparing the coefficients of f_{j} of each hand side, we have

$$
\left(\begin{array}{c}
\left\langle u, g_{1}\right\rangle \\
\left\langle u, g_{2}\right\rangle \\
\vdots \\
\left\langle u, g_{N}\right\rangle
\end{array}\right)=\left(I+\left(\begin{array}{cccc}
v_{11} & v_{12} & \cdots & v_{1 N} \\
v_{21} & v_{22} & \cdots & v_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
v_{N 1} & v_{N 2} & \cdots & v_{N N}
\end{array}\right)\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right)
$$

By Crammer's formula we have

$$
\begin{aligned}
c_{j} & =\left|\begin{array}{cccccc}
1+v_{11} & v_{12} & \cdots & \left\langle u, g_{1}\right\rangle & \cdots & v_{1 N} \\
v_{21} & 1+v_{22} & \cdots & \left\langle u, g_{2}\right\rangle & \cdots & v_{2 N} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
v_{N 1} & v_{N 2} & \cdots & \left\langle u, g_{N}\right\rangle & \cdots & 1+v_{N N}
\end{array}\right| / \Delta(z) \\
& =\sum_{k=1}^{N} \Delta_{j k}\left\langle u, g_{k}\right\rangle / \Delta(z)
\end{aligned}
$$

where we used (5). Hence we have (6).
By $\left\langle R_{0}(z) R_{0}(i) f_{m}, g_{j}\right\rangle=(z-i)^{-1}\left\langle W(z) f_{m}, g_{j}\right\rangle$ and the cofactor expansion of the matrix $I+V(z)$ we obtain

$$
\begin{gathered}
\Delta(z)^{-1} \sum_{j, k=1}^{N} \Delta_{j k}(z)\left\langle R_{0}(z) R_{0}(i) f_{m}, g_{k}\right\rangle R_{0}(z) f_{j} \\
=\frac{1}{(z-i) \Delta(z)} \sum_{j, k=1}^{N} \Delta_{j k}(z) v_{m k} R_{0}(z) f_{j}
\end{gathered}
$$

We first calculate the sum with respect to k.

\[

\]

Hence we obtain (7). Similarly we have (8).
To the end of this section we fix $\lambda \in \mathbf{R}$.
Lemma 2.3. Let

$$
c_{m n}(z)=\frac{(\lambda-z) \Delta_{m n}(z)}{(z-i) \Delta(z)}
$$

Then the following limit exists:

$$
c_{m n}(\lambda+i 0):=\lim _{\varepsilon \downarrow 0} c_{m n}(\lambda+i \varepsilon)
$$

Proof. Remark that by Assumption (T1) $\lim _{\varepsilon \downarrow 0} v_{n m}(\lambda+i \varepsilon)$ exists and that $E_{0}(\{\lambda\})=$ 0 . Using (8), we have

$$
\begin{aligned}
& \left\langle E_{T}(\{\lambda\}) R_{0}(i) f_{m}, R_{0}(-i) g_{n}\right\rangle=\lim _{\varepsilon \downarrow 0}\left(-i \varepsilon\left\langle R_{T}(\lambda+i \varepsilon) R_{0}(i) f_{m}, R_{0}(-i) g_{n}\right\rangle\right) \\
& \quad=\lim _{\varepsilon \downarrow 0}\left(-i \varepsilon\left\langle R_{0}(\lambda+i \varepsilon) R_{0}(i) f_{m}, R_{0}(-i) g_{n}\right\rangle+i \varepsilon(\lambda+i \varepsilon-i)^{-2} v_{n m}(\lambda+i \varepsilon)\right. \\
& \left.\quad+\frac{-i \varepsilon \Delta_{m n}(\lambda+i \varepsilon)}{(\lambda+i \varepsilon-i)^{2} \Delta(\lambda+i \varepsilon)}\right) \\
& \quad=\left\langle E_{0}(\{\lambda\}) R_{0}(i) f_{m}, R_{0}(-i) g_{n}\right\rangle+\lim _{\varepsilon \downarrow 0} \frac{-i \varepsilon \Delta_{m n}(\lambda+i \varepsilon)}{(\lambda+i \varepsilon-i)^{2} \Delta(\lambda+i \varepsilon)} \\
& \quad=\lim _{\varepsilon \downarrow 0} \frac{-i \varepsilon \Delta_{m n}(\lambda+i \varepsilon)}{(\lambda+i \varepsilon-i)^{2} \Delta(\lambda+i \varepsilon)}=\frac{1}{\lambda-i} \lim _{\varepsilon \downarrow 0} c_{m n}(\lambda+i \varepsilon) .
\end{aligned}
$$

Hence $\lim _{\varepsilon \downarrow 0} c_{m n}(\lambda+i \varepsilon)$ exists.
We put

$$
\begin{align*}
& C(\lambda+i 0)=\left(c_{m n}(\lambda+i 0)\right)_{1 \leq m, n \leq N}, \\
& h_{m}(z)=\sum_{j=1}^{N} c_{m j}(z) R_{0}(z) f_{j} \quad(\operatorname{Im} z \neq 0,1 \leq m \leq N) . \tag{9}
\end{align*}
$$

THEOREM 2.4. $\lambda \in \sigma_{p p}\left(H_{T}\right)$ if and only if the following condition is satisfied:

$$
\operatorname{Rank} C(\lambda+i 0) \neq 0
$$

If $\lambda \in \sigma_{p p}\left(H_{T}\right)$, then $\mathrm{w}-\lim _{\varepsilon \downarrow 0} h_{m}(\lambda+i \varepsilon)(1 \leq m \leq N)$ exists and satisfies

$$
\begin{equation*}
R_{T}(i) h_{m}(\lambda+i 0)=\frac{1}{\lambda-i} h_{m}(\lambda+i 0) \tag{10}
\end{equation*}
$$

and $\operatorname{dim} E_{T}(\{\lambda\}) \mathcal{H}=\operatorname{Rank} C(\lambda+i 0)$.
REMARK. (i) $\Delta(\lambda+i 0)=0$ follows from $\operatorname{Rank} C(\lambda+i 0) \neq 0$. In fact, if $\Delta(\lambda+i 0) \neq$ 0 , then $\lim _{\varepsilon \downarrow 0} \varepsilon \Delta_{m n}(\lambda+i \varepsilon) / \Delta(\lambda+i \varepsilon)=0(1 \leq m, n \leq N)$.
(ii) The equality (10) is desirable, because by comparing with Theorem 4.1 we expect that there exists $f(\neq 0) \in \mathcal{R}$ such that $H_{T} R_{0}(\lambda+i 0) f=\lambda R_{0}(\lambda+i 0) f$, i.e., $R_{0}(\lambda+i 0) f$ is an eigenvector of H_{T} corresponding to λ.

To prove Theorem 2.4 we prove some lemmas.
Lemma 2.5. For $f \in \mathcal{R}$ we have
(i)

$$
\sup _{0<\varepsilon<1}\left\|R_{0}(\lambda+i \varepsilon) f\right\|<\infty
$$

if and only if

$$
\sup _{0<\varepsilon<1}\left\|R_{0}(i) R_{0}(\lambda+i \varepsilon) f\right\|<\infty
$$

(ii) $\lim _{\varepsilon \downarrow 0}\left\|R_{0}(\lambda+i \varepsilon) f\right\|$ exists. (The value may be infinity.)

Proof. (i) By the resolvent equation we have

$$
\begin{aligned}
\mid z & -\left.i\right|^{2}\left\|R_{0}(z) R_{0}(i) f\right\|^{2} \\
& =\left\langle\left(R_{0}(z)-R_{0}(i)\right)\left(R_{0}(\bar{z})-R_{0}(-i)\right) f, f\right\rangle \\
& =\left\|R_{0}(z) f\right\|^{2}-2 \operatorname{Re}\left\langle R_{0}(z) R_{0}(i) f, f\right\rangle+\left\|R_{0}(i) f\right\|^{2} .
\end{aligned}
$$

Since the second term $\left\langle R_{0}(z) R_{0}(i) f, f\right\rangle$ converges as $\varepsilon \downarrow 0(z=\lambda+i \varepsilon)$ by Assumption ($T 1$), we obtain (i).
(ii) By the spectral representation of H_{0} we see that $\left\|R_{0}(\lambda+i \varepsilon) R_{0}(i) f\right\|^{2}$ is monotonuously increasing as $\varepsilon \downarrow 0$. Hence we have (ii).

Lemma 2.6. For any $u \in D\left(H_{T}\right)$ and for any $f \in \mathcal{R}$ we have

$$
\lim _{\varepsilon \downarrow 0} \varepsilon\left\langle u, R_{0}(\lambda+i \varepsilon) f\right\rangle=0 .
$$

Proof. It is sufficient to prove that $\lim _{\varepsilon \downarrow 0} \varepsilon\left\langle R_{T}(i) u, R_{0}(\lambda+i \varepsilon) f\right\rangle=0$ for any $u \in \mathcal{H}$ and for any $f \in \mathcal{R}$. By (7) we can easily obtain

$$
\begin{aligned}
& \left\langle R_{T}(i) u, R_{0}(\lambda+i \varepsilon) f\right\rangle \\
& \quad=\left\langle R_{0}(i) u, R_{0}(\lambda+i \varepsilon) f\right\rangle-\sum_{j=1}^{N}\left\langle R_{0}(i) u, g_{j}\right\rangle\left\langle R_{0}(i) f_{j}, R_{0}(\lambda+i \varepsilon) f\right\rangle \\
& \quad=\left\langle u, R_{0}(\lambda+i \varepsilon) R_{0}(-i) f\right\rangle-\sum_{j=1}^{N}\left\langle u, R_{0}(-i) g_{j}\right\rangle\left\langle R_{0}(i) f_{j}, R_{0}(\lambda+i \varepsilon) f\right\rangle .
\end{aligned}
$$

Multiplying each side by ε, we have, by Assumption (T1) and $E_{0}(\{\lambda\})=0$,

$$
\lim _{\varepsilon \downarrow 0} \varepsilon\left\langle R_{T}(i) u, R_{0}(\lambda+i \varepsilon) f\right\rangle=0 .
$$

Lemma 2.7. Assume that $u \in D\left(H_{T}\right)$ satisfies $H_{T} u=\lambda u$. If $\left\langle u, R_{0}(-i) f\right\rangle=0$ for any $f \in \mathcal{R}$, then $u=0$.

Proof. Since u is an eigenvector of H_{T} and by (7), we can easily see that

$$
\frac{1}{\lambda-i} u=R_{T}(i) u=R_{0}(i) u .
$$

Hence we have $u \in D\left(H_{0}\right)$ and $H_{0} u=\lambda u$. By $\sigma_{p p}\left(H_{0}\right)=\emptyset$ we conclude $u=0$.
Lemma 2.8. For $h_{m}(z)$ in (9), we have
(i) $\quad \mathrm{w}-\lim _{\varepsilon \downarrow 0} h_{m}(\lambda+i \varepsilon)(1 \leq m \leq N)$ exists,
(ii) $\left\langle R_{T}(i) h_{m}(\lambda+i 0), u\right\rangle=\frac{1}{\lambda-i}\left\langle h_{m}(\lambda+i 0), u\right\rangle$ for any $u \in \mathcal{H}$,
(iii) $\operatorname{dim} L . h .\left[h_{1}(\lambda+i 0), \cdots, h_{N}(\lambda+i 0)\right]=\operatorname{Rank} C(\lambda+i 0)$.

Proof. (i) $\mathrm{By}(7)$ and $E_{0}(\{\lambda\})=0$ for $u \in \mathcal{H}$ we have

$$
\begin{aligned}
& \left\langle R_{0}(-i) E_{T}(\{\lambda\}) R_{0}(i) f_{m}, u\right\rangle=\lim _{\varepsilon \downarrow 0}\left(-i \varepsilon\left\langle R_{0}(-i) R_{T}(\lambda+i \varepsilon) R_{0}(i) f_{m}, u\right\rangle\right) \\
& \quad=\lim _{\varepsilon \downarrow 0}\left\{-i \varepsilon\left\langle R_{0}(-i) R_{0}(\lambda+i \varepsilon) R_{0}(i) f_{m}, u\right\}\right. \\
& \left.\left.\quad+i \varepsilon(\lambda+i \varepsilon-i)^{-1}\left\langle R_{0}(-i) R_{0}(\lambda+i \varepsilon) f_{m}, u\right\rangle+\left\langle R_{0}(-i) h_{m}(\lambda+i \varepsilon), u\right\rangle\right)\right\} \\
& \quad=\lim _{\varepsilon \downarrow 0}\left\langle R_{0}(-i) h_{m}(\lambda+i \varepsilon), u\right\rangle .
\end{aligned}
$$

This means that $\mathrm{w}-\lim _{\varepsilon \downarrow 0} R_{0}(-i) h_{m}(\lambda+i \varepsilon)$ exists and is equal to

$$
R_{0}(-i) E_{T}(\{\lambda\}) R_{0}(i) f_{m}
$$

By Lemma 2.5 (i) $h_{m}(\lambda+i \varepsilon)$ is bounded. Since \mathcal{H}_{2} is dense in \mathcal{H}, by the standard argument we conclude that w- $\lim _{\varepsilon \downarrow 0} h_{m}(\lambda+i \varepsilon)=E_{T}(\{\lambda\}) R_{0}(i) f_{m}$.
(ii) By (i) it is suffcient to prove that

$$
R_{T}(i) h_{m}(z)=\frac{1}{z-i} h_{m}(z)-\frac{\lambda-z}{(z-i)^{2}} R_{0}(i) f_{m}, \quad(1 \leq m \leq N) .
$$

Using (7) and $\Delta(i)=1$ we have

$$
\begin{aligned}
& R_{T}(i) h_{m}(z) \\
&= R_{0}(i) \sum_{j=1}^{N} c_{m j}(z) R_{0}(z) f_{j}-\sum_{k=1}^{N}\left\langle R_{0}(i) \sum_{j=1}^{N} c_{m j}(z) R_{0}(z) f_{j}, g_{k}\right\rangle R_{0}(i) f_{k} \\
&= \frac{1}{z-i} \sum_{j=1}^{N} c_{m j}(z) R_{0}(z) f_{j}-\frac{1}{z-i} \sum_{j=1}^{N} c_{m j}(z) R_{0}(i) f_{j} \\
&-\sum_{j=1}^{N} \sum_{k=1}^{N} c_{m j}(z)\left\langle R_{0}(i) R_{0}(z) f_{j}, g_{k}\right\rangle R_{0}(i) f_{k} \\
&= \frac{1}{z-i} h_{m}(z) \\
&-\frac{1}{z-i}\left(\sum_{j=1}^{N} c_{m j}(z) R_{0}(i) f_{j}+\sum_{k=1}^{N} \sum_{j=1}^{N} c_{m j}(z)\left\langle(z-i) R_{0}(i) R_{0}(z) f_{j}, g_{k}\right\rangle R_{0}(i) f_{k}\right) .
\end{aligned}
$$

Calculating the sum of j of the third term in the right hand side, we see that

$$
\sum_{j=1}^{N} c_{m j}(z)\left\langle W(z) f_{j}, g_{k}\right\rangle=\sum_{j=1}^{N} c_{m j}(z) v_{k j}(z)=\frac{\lambda-z}{z-i} \Delta_{m k}-c_{m k}(z)
$$

Hence we obtain (ii).
(iii) For simplicity we write

$$
h_{m}=h_{m}(\lambda+i 0), \quad c_{m j}=c_{m j}(\lambda+i 0), \quad C=C(\lambda+i 0), \quad v_{m j}=v_{m j}(\lambda+i 0) .
$$

Putting $A=\left\{\left(\alpha_{1}, \cdots, \alpha_{N}\right) \in \mathbf{C}^{N} ; \sum_{m=1}^{N} \alpha_{m} h_{m}=0\right\}$, we calculate $\operatorname{dim} A$. By (ii) and Lemma 2.7 we see that

$$
\operatorname{dim} A=\operatorname{dim}\left\{\left(\alpha_{1}, \cdots, \alpha_{N}\right) \in \mathbf{C}^{N} ; \sum_{m=1}^{N} \alpha_{m}\left\langle h_{m}, R_{0}(-i) g_{k}\right\rangle=0,1 \leq k \leq N\right\}
$$

By (ii) we can justify the following calculation: for $1 \leq k \leq N$

$$
\begin{aligned}
0 & =\left\langle R_{T}(i) \sum_{m=1}^{N} \alpha_{m} h_{m}, R_{0}(-i) g_{k}\right\rangle=\frac{1}{\lambda-i} \sum_{m=1}^{N} \alpha_{m}\left\langle h_{m}, R_{0}(-i) g_{k}\right\rangle \\
& =\frac{1}{\lambda-i} \sum_{m=1}^{N} \alpha_{m} \sum_{j=1}^{N} c_{m j}\left\langle R_{0}(\lambda+i 0) f_{j}, R_{0}(-i) g_{k}\right\rangle \\
& =\frac{1}{(\lambda-i)^{2}} \sum_{m=1}^{N} \alpha_{m} \sum_{j=1}^{N} c_{m j} v_{k j}=\frac{1}{(\lambda-i)^{2}} \sum_{m=1}^{N} \alpha_{m} c_{m k} .
\end{aligned}
$$

Hence we have $\operatorname{dim} A=\operatorname{dim} \operatorname{ker}{ }^{t} C$. Therefore we conclude that

$$
\operatorname{dim} L . h .\left[h_{1}, \cdots, h_{N}\right]=\operatorname{Rank} C
$$

Lemma 2.9. If $u \in D\left(H_{T}\right)$ satisfies $H_{T} u=\lambda u$, then $\left\langle R_{0}(i) f_{m}, u\right\rangle=\left\langle h_{m}, u\right\rangle$ for $1 \leq m \leq N$.

Proof. Combining (7) and Lemma 2.6 we see that

$$
\left\langle R_{0}(i) f_{m}, u\right\rangle=\lim _{\varepsilon \downarrow 0}\left(-i \varepsilon\left\langle R_{T}(\lambda+i \varepsilon) R_{0}(i) f_{m}, u\right\rangle\right)=\left\langle h_{m}, u\right\rangle .
$$

Lemma 2.10. Let u_{j} satisfy $H_{T} u_{j}=\lambda u_{j}(1 \leq j \leq N)$. Then

$$
\operatorname{dim} L . h .\left[u_{1}, \cdots, u_{N}\right] \leq \operatorname{Rank} C .
$$

Proof. By Lemma 2.7 we see that

$$
\begin{aligned}
& \left\{\left(\alpha_{1}, \cdots, \alpha_{N}\right) \in \mathbf{C}^{N} ; \sum_{j=1}^{N} \alpha_{j} u_{j}=0\right\} \\
& \quad=\left\{\left(\alpha_{1}, \cdots, \alpha_{N}\right) \in \mathbf{C}^{N} ; \sum_{j=1}^{N} \alpha_{j}\left\langle u_{j}, R_{0}(-i) f_{m}\right\rangle=0,(1 \leq m \leq N)\right\}
\end{aligned}
$$

Hence we have

$$
\operatorname{dim} L . h .\left[u_{1}, \cdots, u_{N}\right]=\operatorname{dim} L . h .\left[\mathbf{a}_{1}, \cdots, \mathbf{a}_{N}\right]=\operatorname{Rank}\left[\mathbf{a}_{1}, \cdots, \mathbf{a}_{N}\right]
$$

where $\mathbf{a}_{j}={ }^{t}\left(\left\langle u_{j}, R_{0}(-i) f_{1}\right\rangle, \cdots,\left\langle u_{j}, R_{0}(-i) f_{N}\right\rangle\right)$. By Lemma 2.9 (ii) we have

$$
\operatorname{Rank}\left[\mathbf{a}_{1}, \cdots, \mathbf{a}_{N}\right]=\operatorname{Rank}\left[\mathbf{b}_{1}, \cdots, \mathbf{b}_{N}\right]
$$

where $\mathbf{b}_{j}={ }^{t}\left(\left\langle u_{j}, h_{1}\right\rangle, \cdots,\left\langle u_{j}, h_{N}\right\rangle\right)$. Since dim L.h. $\left[h_{1}, \cdots, h_{N}\right]=\operatorname{Rank} C$ by Lemma 2.8, we have proved this lemma.

Proof of Theorem 2.4. We have already obtained (10) by Lemma 2.8 (ii). So we prove the rest of the statements. Let $\lambda \in \sigma_{p p}\left(H_{T}\right)$ and u an eigenvector of H_{T} corresponding to λ. We prove $\operatorname{Rank} C \neq 0$. We assume that $\operatorname{Rank} C=0$. Combining Lemma 2.8 (ii), (iii) and Lemma 2.9, we have $0=\langle u, 0\rangle=\left\langle u, h_{m}\right\rangle=\left\langle u, R_{0}(i) f_{m}\right\rangle,(1 \leq m \leq N)$. By Lemma 2.7 we have $u=0$, which is a contradiction.

Conversely we assume $\operatorname{Rank} C \neq 0$. Then there exists, at least, an (m, n) such that $c_{m n} \neq 0$. By (8) we see that

$$
\begin{aligned}
\left\langle E_{T}(\{\lambda\}) R_{0}(i) f_{m}, R_{0}(-i) g_{n}\right\rangle & =\lim _{\varepsilon \downarrow 0}\left(-i \varepsilon\left\langle R_{T}(\lambda+i \varepsilon) R_{0}(i) f_{m}, R_{0}(-i) g_{n}\right\rangle\right. \\
& =c_{m n}(\lambda+i 0) .
\end{aligned}
$$

Hence we obtain $E_{T}(\{\lambda\}) \neq 0$.
We prove that $\operatorname{dim} E_{T}(\{\lambda\})=\operatorname{Rank} C$. In general, we remark that $N \geq \operatorname{dim} E_{T}(\{\lambda\})$. By Lemma 2.8 (ii) and (iii) $\operatorname{dim} E_{T}(\{\lambda\}) \geq \operatorname{dim} L . h .\left[h_{1}, \cdots, h_{N}\right]$ (= RankC). On the other hand, by Lemma 2.10 we have $\operatorname{dim} E_{T}(\{\lambda\}) \mathcal{H} \leq \operatorname{Rank} C$. We have thus completed the proof of Theorem 2.4.

3. Asymptotic completeness of wave operators.

In this section we consider the asymptotic completeness of the wave operators $W_{ \pm}\left(H_{0}, H_{T}\right)$. (We use the same notations as in section 2.) In general, the wave operators $W_{ \pm}\left(H_{1}, H_{2}\right)$ for self-adjoint operators H_{1} and H_{2} are defined by

$$
W_{ \pm}\left(H_{1}, H_{2}\right):=s-\lim _{t \rightarrow \pm \infty} e^{i t H_{2}} e^{i t H_{1}} P_{a c}\left(H_{1}\right)
$$

where $P_{a c}\left(H_{1}\right)$ is the projection for the absolutely continuous subspace of H_{1}. If $W_{ \pm}\left(H_{1}, H_{2}\right)$ exists, then we say that $W_{ \pm}\left(H_{1}, H_{2}\right)$ are complete if and only if Range $W_{ \pm}=P_{a c}\left(H_{2}\right)$. And we say that $W_{ \pm}\left(H_{1}, H_{2}\right)$ is asymptotically complete if and only if $W_{ \pm}\left(H_{1}, H_{2}\right)$ is complete and $\sigma_{\text {sing }}\left(H_{2}\right)=\emptyset$.

THEOREM 3.1. The wave operators $W_{ \pm}\left(H_{0}, H_{T}\right)$ are asymptotically complete.
REMARK. As for the scattering matrix, it inverstigated in [8] for more general T. And see [4] in the case of the usual Laplacian $H_{0}=-\Delta$ and RankT $=1$.

Using the following theorem we can easily see that $W_{ \pm}\left(H_{0}, H_{T}\right)$ are complete.

Theorem 3.2 (Kuroda-Birman theorem, [5, Theorem XI.9]). Let H_{1} and H_{2} be selfadjoint operators such that $\left(H_{1}-z\right)^{-1}-\left(H_{2}-z\right)^{-1}$ is of trace class for some $z \in \rho\left(H_{1}\right) \cap$ $\rho\left(H_{2}\right)$. Then $W_{ \pm}\left(H_{1}, H_{2}\right)$ exist and are complete.

Since

$$
R_{T}(i) u-R_{0}(i) u=\sum_{j=1}^{N}\left\langle R_{0}(i) u, g_{j}\right\rangle R_{0}(i) f_{j}, \quad u \in \mathcal{H}
$$

we see that $W_{ \pm}\left(H_{0}, H_{T}\right)$ exist and are complete. Hence, in order to show the asymptotic completeness of $W_{ \pm}\left(H_{0}, H_{T}\right)$ it remains only to verify $\sigma_{\text {sing }}\left(H_{T}\right)=\emptyset$.

Lemma 3.3. Put $\mathcal{N}_{ \pm}:=\{\lambda \in \mathbf{R} ; \Delta(\lambda \pm i 0)=0\}$. Then $\mathcal{N}_{+}=\mathcal{N}_{-}$and $\mathcal{N}_{ \pm}$is discrete.

Proof. We prove $\mathcal{N}_{+}=N_{-}$. Putting

$$
A=\left(\mu_{j} \delta_{j k}\right)_{1 \leq j, k \leq N}, \quad B(z)=\left(w_{j k}(z)\right)_{1 \leq j, k \leq N},
$$

where $w_{j k}(z)=\left\langle W(z) f_{k}, f_{j}\right\rangle$, we see that $V(z)=A B(z)$. Since $w_{j k}(\bar{z})=\overline{w_{k j}(z)}$, we have

$$
\begin{aligned}
& \operatorname{det}(I+V(\bar{z}))=\operatorname{det}\left(I+A B^{*}(z)\right)=\operatorname{det}\left((I+B(z) A)^{*}\right) \\
& \quad=\overline{\operatorname{det}(I+B(z) A)}=\overline{\operatorname{det}\left(A^{-1}(I+A B(z)) A\right)}=\overline{\operatorname{det}(I+A B(z))}=\overline{\Delta(z)}
\end{aligned}
$$

Hence $\mathcal{N}_{+}=\mathcal{N}_{-}$.
We put $\mathcal{N}:=\mathcal{N}_{+}=\mathcal{N}_{-}$and prove that $\mathcal{N}_{ \pm}$is discrete. Assume, for contradition, that \mathcal{N} is dense in some open interval (a, b). Since $\Delta(\lambda+i 0)$ is continuous in (a, b) by Assumption (T) and (8), we see that $\Delta(\lambda+i 0)=0$ in (a, b). Since $\Delta(z)$ is analytic in $\{z \in \mathbf{C} ; \operatorname{Im} z>0\}$, by the reflection principle of the analytic function there exists some $\varepsilon>0$ such that $\Delta(z)$ has an analytic continuation $\tilde{\Delta}(z)$ in $(a, b) \times[-i \varepsilon, i \varepsilon]$. So by the identity theorem of the analytic function, we see that $\tilde{\Delta}(z)=0$ in $(a, b) \times[-i \varepsilon, i \varepsilon]$. This is a contradiction.

Follwing [5, section XIII], we prove that $\sigma_{\text {sing }}\left(H_{T}\right)=\emptyset$. By Weyl's theorem we see that $\sigma_{\text {ess }}\left(H_{T}\right)=\sigma_{\text {ess }}\left(H_{0}\right)=\mathbf{R}$. So it is sufficient to prove $\sigma_{\text {sing }}\left(H_{T}\right) \cap[0, \infty)=\emptyset$. We put $\mathcal{N}:=\mathcal{N}_{ \pm}$. If we prove $\sigma_{\text {sing }}\left(H_{T}\right) \subset \mathcal{N} \cup\{0\}$, then $\sigma_{\text {sing }}\left(H_{T}\right)$ is a countable set and hence $\sigma_{\text {sing }}\left(H_{T}\right)=\emptyset$. Since \mathcal{N} is discrete, we can take an open interval (a, b) such that $[a, b] \cap(\mathcal{N} \cup\{0\})=\emptyset$. We remark that for $u \in \mathcal{D}\left\langle R_{T}(\lambda+i 0) u, u\right\rangle-\left\langle R_{0}(\lambda+i 0) u, u\right\rangle$ are continuous in (a, b) by Assumption (T2). By the continuity of $\left\langle R_{T}(\lambda+i 0) u, u\right\rangle(u \in \mathcal{D})$ and Stone's formula, i.e.,

$$
\left\langle E_{T}((a, b)) u, u\right\rangle=\frac{1}{2 \pi i} \int_{a}^{b}\left(\left\langle R_{T}(\lambda+i 0) u, u\right\rangle-\left\langle R_{T}(\lambda+i 0) u, u\right\rangle\right) d \lambda
$$

we have

$$
\left\langle E_{T}((a, b)) u, u\right\rangle \in C_{1}(u)(b-a)+\left\langle E_{0}((a, b)) u, u\right\rangle,
$$

where $C_{1}(u)$ is a constant dependent on u. Hence we have $E_{T}((a, b)) \mathcal{D} \subset P_{a c}\left(H_{T}\right) \mathcal{H}$. Since $P_{a c}\left(H_{T}\right) \mathcal{H}$ is closed in \mathcal{H} and \mathcal{D} is dense in $\mathcal{H}, E_{T}((a, b)) \mathcal{H} \subset P_{a c}\left(H_{T}\right) \mathcal{H}$.

4. Rank one perturbation.

We consider a rank one perturbation. We assume $\operatorname{Assumption}\left(H_{0}\right),(T)$ and $\operatorname{dim} \mathcal{R}=1$, and put $f:=f_{1}, \mu:=1$ and $\Delta(z)=1+(z-i)\left\langle R_{0}(z) R_{0}(i) f, f\right\rangle$.

THEOREM 4.1. Let $\lambda \in \mathbf{R} . \lambda \in \sigma_{p p}\left(H_{T}\right)$ if and only if the following condition is satisfied:

$$
C(\lambda+i 0):=\lim _{\varepsilon \downarrow 0} \frac{i \varepsilon}{\Delta(\lambda+i \varepsilon)} \neq 0
$$

Under the condition above, we have

$$
\lim _{\varepsilon \downarrow 0}\left\|R_{0}(\lambda+i \varepsilon) f\right\|^{2}=\operatorname{Re}\left(\frac{1}{C(\lambda+i 0)}\right)<\infty,
$$

and $R_{0}(\lambda+i 0) f$ is an eigenvector of H_{T} corresponding to λ.
Proof. By Theorem 2.4 we have already obtained the first and the last statements. So we prove the second statement. We can take $u_{n} \in \mathcal{H}$ such that $u_{n} \rightarrow f(n \rightarrow \infty)$ in \mathcal{H}_{-2}. We have, by the resolvent equation,

$$
\begin{aligned}
1 & +(\lambda+i \varepsilon-i)\left\langle R_{0}(\lambda+i \varepsilon) R_{0}(i) u_{n}, u_{n}\right\rangle-\left(1+(\lambda-i \varepsilon-i)\left\langle R_{0}(\lambda-i \varepsilon) R_{0}(i) u_{n}, u_{n}\right\rangle\right) \\
& =\left\langle\left(R_{0}(\lambda+i \varepsilon)-R_{0}(i)\right) u_{n}, u_{n}\right\rangle-\left\langle\left(R_{0}(\lambda-i \varepsilon)-R_{0}(i)\right) u_{n}, u_{n}\right\rangle \\
& =2 i \varepsilon\left\langle R_{0}(\lambda+i \varepsilon) R_{0}(\lambda-i \varepsilon) u_{n}, u_{n}\right\rangle=2 i \varepsilon\left\|R_{0}(\lambda+i \varepsilon) u_{n}\right\|^{2} .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
\Delta(\lambda+i \varepsilon)-\Delta(\lambda-i \varepsilon)=2 i \varepsilon\left\|R_{0}(\lambda+i \varepsilon) f\right\|^{2}
$$

Taking account of $\Delta(\bar{z})=\overline{\Delta(z)}$, we have

$$
\operatorname{Re}\left(\frac{\Delta(\lambda+i \varepsilon)}{i \varepsilon}\right)=\left\|R_{0}(\lambda+i \varepsilon) f\right\|^{2} .
$$

Hence we have

$$
\lim _{\varepsilon \downarrow 0}\left\|R_{0}(\lambda+i \varepsilon) f\right\|^{2}=\operatorname{Re}\left(\frac{1}{C(\lambda+i 0)}\right) .
$$

The rest of the proof is to show $\operatorname{Re} C(\lambda+i 0) \neq 0$. Assume that $\operatorname{Re} C(\lambda+i 0)=0$ and put $a(\varepsilon):=\operatorname{Re}(i \varepsilon / \Delta(\lambda+i \varepsilon))\left(\lim _{\varepsilon \downarrow 0} a(\varepsilon)=0\right)$. Then

$$
\begin{aligned}
a(\varepsilon) & =\frac{i \varepsilon}{\Delta(\lambda+i \varepsilon)}+\frac{-i \varepsilon}{\Delta(\lambda-i \varepsilon)}=\frac{i \varepsilon(\Delta(\lambda-i \varepsilon)-\Delta(\lambda+i \varepsilon))}{|\Delta(\lambda+i \varepsilon)|^{2}} \\
& =\frac{2 \varepsilon^{2}\left\|R_{0}(\lambda+i \varepsilon) f\right\|^{2}}{|\Delta(\lambda+i \varepsilon)|^{2}} .
\end{aligned}
$$

Remark that $\lim _{\varepsilon \downarrow 0}\left\|R_{0}(\lambda+i \varepsilon) f\right\|$ exists by Lemma 2.5 (ii). If we assume that $\lim _{\varepsilon \downarrow 0} \| R_{0}(\lambda+$ $i \varepsilon) f \|>0$, then we have $\lim _{\varepsilon \downarrow 0} 2 \varepsilon^{2} /|\Delta(\lambda+i \varepsilon)|^{2}=0$. This is a contradiction to $C(\lambda+i 0) \neq$ 0 . Therefore $\lim _{\varepsilon \downarrow 0}\left\|R_{0}(\lambda+i \varepsilon) f\right\|=0$. Now we consider $\left\|R_{0}(\lambda+i \varepsilon) R_{0}(i) f\right\|$. We see that $\lim _{\varepsilon \downarrow 0}\left\|R_{0}(\lambda+i \varepsilon) R_{0}(i) f\right\|=\lim _{\varepsilon \downarrow 0}\left\|R_{0}(i) R_{0}(\lambda+i \varepsilon) f\right\|=0$. Hence $R_{0}(\lambda+i 0)\left(R_{0}(i) f\right)=$ 0 , and so $R_{0}(i) f=0$. We reach a contradiction to $\left\|R_{0}(i) f\right\|=1$.

We quote two examples without the proofs (see $[4,6]$).

Example 4.1 (cf. [6]). Let $\mathcal{H}=L^{2}\left(\mathbf{R}^{3}\right)$ and $H_{0}=-\Delta$ (the usual Laplacian) with the domain $D\left(H_{0}\right)=H^{2}\left(\mathbf{R}^{3}\right)$ (Sobolev space of order 2). And let $t\left(x_{1}\right) \in L^{1}(\mathbf{R}), f\left(x_{1}, x_{2}, x_{3}\right)=$ $t\left(x_{1}\right) \delta\left(x_{2}, x_{3}\right)$ and $T_{u}=\alpha\langle u, f\rangle f$. Then we can take \mathcal{D} in Assumption (T) as $L^{2, s}\left(\mathbf{R}^{3}\right)=$ $\left\{u \in L^{2}\left(\mathbf{R}^{3}\right) ;(1+|x|)^{s} u(x) \in L^{2}\right\}(s>3 / 2)$.

Examle 4.2 (cf. [4]). Let \mathcal{H} and H_{0} be the same as above. And let $t\left(x_{1}, x_{2}\right) \in$ $L^{1}\left(\mathbf{R}^{2}\right), f\left(x_{1}, x_{2}, x_{3}\right)=t\left(x_{1}, x_{2}\right) \delta\left(x_{3}\right)$ and $T_{u}=\alpha\langle u, f\rangle f$. Then we can take \mathcal{D} in Assumption (T) as $L^{2, s}\left(\mathbf{R}^{3}\right)(s>3 / 2)$.

We give a brief comment of the relation between their results ([4], [6]) and ours. In [4, 6], under a (stronger) assumption that t is almost in some weighted L^{1}-space, they showed the asymptotic completeness of the wave operators for H_{0} and H_{T}. By using Theorem 3.1 we can show the asymptotic completeness under a (weaker) assumption that t is in L^{1}.

Acknowledgements. The author thanks Professor S. T. Kuroda for the valuable suggestion to consider the range of T. It simplified Assumtion (T).

References

[1] A. Kiselev and B. Simon, Rank one perturbations with infinitesimal coupling, J. Funct. Anal. 130 (1995), 345-356.
[2] S. T. Kuroda and H. Nagatani, Resolvent formulas of general type and its application to point interactions, Preprint Ser. 03-01, Dept. of Math., Gakushuin Univ. (2001).
[3] S. T. Kuroda and H. Nagatani, \mathcal{H}_{-2}-construction and some examples, Oper. Theory Adv. Appl. 108 (1999), 99-105.
[4] H. NAGATANI, Scattering theory for solvable models-surface interaction and line interaction (in preparation).
[5] M. Reed and B. Simon, Methods of Medern Mathematical Physics IV, Analysis of Operators, Academic Press (1978).
[6] S. Shimada, A solvable model for line interaction, RIMS kokyuroku 994 (1997), 168-183 (in Japanese).
[7] K. Watanabe, On the self-adjoint operator defined by \mathcal{H}_{-2}-construction: finite rank and trace class perturbations, preprint ser. 12, Dept. of Math., Gakushuin Univ. (1998).
[8] K. WATANABE, Smooth perturbations of the self-adjoint operators defined by the \mathcal{H}_{-2}-construction, Preprint ser. 02-01, Dept. of Math., Gakushuin Univ. (2001).

Present Address:

 Department of Mathematics, Gakushuin University, Mejiro, Toshima-ku, Tokyo, 171-8588 Japan.e-mail: kazuo.watanabe@gakushuin.ac.jp

[^0]: Received December 20, 2001

