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1. Introduction and assumptions.

This paper is a continuation of [7]. That is, in the framework of the H−2-construction
we consider a finite rank perturbation of a self-adjoint operator H0 without assuming semi-
boundedness for H0. The H−2-construction has been developed by A. Kiselev and B. Simon
[1], S. T. Kuroda and H. Nagatani [2], [3] and have been applied to Schrödinger operators
with a singular perturbation by H. Nagatani [4] and S. Shimada [6].

In this paper we consider the embedded eigenvalues of HT and the existence of the wave
operator W±(H0,HT ). We prepare some notations. Let H be a Hilbert space with the inner
product 〈·, ·〉, H0 a self-adjoint operator in H and R0(z) = (H0 − z)−1 (Im z �= 0). We put
Hs := {u ∈ H; ‖(|H0| + 1)s/2u‖ < ∞} for s ≥ 0, and Hs := (H−s )

∗ for s < 0. Remark that
Hs ⊂ H ⊂ H−s for s ≥ 0. For simplicity we use the same symbol 〈·, ·〉 for the dual coupling
〈·, ·〉s,−s of Hs and H−s (s ∈ R), and regard the operator R0(z) with Im z �= 0 as the element
of L(H,H) ∩ L(Hs ,Hs+2) for Im z �= 0.

DEFINITION. Define

W(z) = W(z, i) = (z − i)R0(z)R0(i)

and the operator RT (z) in H
RT (z) = R0(z) − R0(z)(1 + T W(z))−1T R0(z), Im z �= 0 . (1)

To define the self-adjoint operator HT for T ∈ L(H2,H−2) we use the following theorem (cf.

[3]).

THEOREM 1.1 ([3]). If T ∈ L(H2,H−2) satisfies

T − T ∗ = T W(−i, i)T ∗ = T ∗W(−i, i)T , (2)

u − T R0(i)u = 0, u ∈ H0 ⇒ u = 0 , (3)
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then the operator RT (z) above is well-defined and satisfies the resolvent equation, i. e., for
Imz, Imw �= 0

RT (z) − RT (w) = (z − w)RT (z)RT (w) = (z − w)RT (w)RT (z) .

Furthermore there exists a unique self-adjoint operator HT such that RT (z) = (HT − z)−1.

ASSUMPTION (H0). H0 has only absolutely continuous spectrum and satisfies

σ(H0)(= σac(H0)) = R . (4)

ASSUMPTION (T). For T ∈ L(H2,H−2) with R = RangeT assume the conditions
(2) and (3) and

(T1) For any λ ∈ R and for any f, g ∈ R ,

lim
ε↓0

〈R0(λ ± iε)R0(−i)f, g 〉 ,

exist, locally uniformly in R.
(T2) There exists a dense subset D of H such that for any λ ∈ R and for any f ∈ R,

lim
ε↓0

〈R0(λ ± iε)u, f 〉, u ∈ D ,

exist, locally uniformly in R.

In this paper we always suppose Assumptions (H0) and (T). We are mainly interested
in the existence of the embedded eigenvalues of HT , the explicit form of the eigenvectors
corresponding to the eigenvalues and the asymptotic completeness of the wave operators
W±(H0,HT ). The organization of this paper is as follows. In section 2 we investigate the
necessary and sufficient condition for the existence of the eigenvalue of HT . In section 3 we
prove the asymptotic completeness of the wave operators W±(H0,HT ). In section 4 we in-
vestigate the case where a perturbation has rank one and compare with their results ([4], [6])
and ours.

2. Embedded eigenvalues (Finite rank case).

In this section we consider the case dimR = N . By the condition (2) we can easily
obtain the following lemma.

LEMMA 2.1. There exist a basis [f1, · · · , fN ] of R and µj ( �= 0) ∈ C (j = 1, · · · , N)

such that
〈R0(i)fj , R0(i)fk〉 = δjk ,

T u =
N∑

j=1

µj 〈u, fj 〉fj , u ∈ H2 .

PROOF. Putting T1 := R0(i)T R0(−i) we multiply the equation (2) by R0(i) (from
left) and R0(−i) (from right). Then we have

T1 − T1
∗ = −2iT1T1

∗ = −2iT1
∗T1
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Hence T1 is a normal operator. Therefore T can be decomposed as above.

We fix a basis [f1, · · · , fN ] of R as in Lemma 2.1. We use the following notations:

NOTATIONS.

g j = µ̄j fj , vjk(z) = 〈W(z)fk, g j 〉 (1 ≤ j, k ≤ N) ,

V (z) = (vjk(z))1≤j,k≤N(N × Nmatrix), �(z) = det(I + V (z)) ,

�jk(z) is a cofactor of I + V (z) .

Then we have

(I + V (z))−1 = 1

�(z)

⎛
⎜⎜⎜⎝

�11(z) �21(z) · · · �N1(z)

�12(z) �22(z) · · · �N2(z)
...

...
. . .

...

�1N(z) �2N(z) · · · �NN(z)

⎞
⎟⎟⎟⎠ . (5)

LEMMA 2.2. For z ∈ ρ(HT ) ∩ ρ(H0) and for u ∈ H we have

RT (z)u = R0(z)u − �(z)−1
N∑

j,k=1

�jk(z)〈R0(z)u, g k〉R0(z)fj · (6)

Furthermore we have

RT (z)R0(i)fm
(7)

= R0(z)R0(i)fm − 1

(z − i)
R0(z)fm + 1

(z − i)�(z)

N∑
j=1

�jm(z)R0(z)f i ,

〈RT (z)R0(i)fm,R0(−i)g n〉
(8)

= 〈R0(z)R0(i)fm,R0(−i)g n〉 − (z − i)−2vnm(z) + �mn(z)

(z − i)2�(z)
.

PROOF. For simplicity we write W(z) = W and vjk(z) = vjk . We calculate (I +
T W)−1Tu (u ∈ H2). Since (I +T W)−1T = T (I +T W)−1 (cf. [3]), we put (I +T W)−1Tu =∑N

j=1 cjfj and determine cj . Since T u = ∑N
j=1 cj (I + T W)fj , we have

N∑
l=1

〈u, g l〉fl = T u =
N∑

j=1

cj (I + T W)fj =
N∑

j=1

cj

(
fj +

N∑
k=1

〈Wfj , g k〉fk

)

=
N∑

j=1

cj

(
fj +

N∑
k=1

vkj fk

)
.
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Comparing the coefficients of fj of each hand side, we have⎛
⎜⎜⎜⎝

〈u, g 1〉
〈u, g 2〉

...

〈u, g N 〉

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝I +

⎛
⎜⎜⎜⎝

v11 v12 · · · v1N

v21 v22 · · · v2N

...
...

...
...

vN1 vN2 · · · vNN

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1
c2
...

cN

⎞
⎟⎟⎟⎠ .

By Crammer’s formula we have

cj =

∣∣∣∣∣∣∣∣∣

1 + v11 v12 · · · 〈u, g 1〉 · · · v1N

v21 1 + v22 · · · 〈u, g 2〉 · · · v2N

...
...

...
...

...
...

vN1 vN2 · · · 〈u, g N 〉 · · · 1 + vNN

∣∣∣∣∣∣∣∣∣
/�(z)

=
N∑

k=1

�jk〈u, g k〉/�(z)

where we used (5). Hence we have (6).
By 〈R0(z)R0(i)fm, g j 〉 = (z − i)−1〈W(z)fm, g j 〉 and the cofactor expansion of the

matrix I + V (z) we obtain

�(z)−1
N∑

j,k=1

�jk(z)〈R0(z)R0(i)fm, g k〉R0(z)fj

= 1

(z − i)�(z)

N∑
j,k=1

�jk(z)vmkR0(z)fj .

We first calculate the sum with respect to k.

N∑
k=1

�jkvkm =
N∑

k=1

∣∣∣∣∣∣∣∣∣∣∣∣

1 + v11 · · · 0 · · · v1N

...
...

...
...

...

vk1 · · · 1 · · · vkN

...
...

...
...

...

vN1 · · · 0 · · · vNN

∣∣∣∣∣∣∣∣∣∣∣∣
vkm

=

∣∣∣∣∣∣∣
1 + v11 · · · v1m · · · v1N

... · · · vkm · · · vkN

vN1 · · · vNm · · · vNN

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 + v11 · · · v1m · · · v1N

...
...

...
...

...

vm1 · · · 1 + vmm · · · vmN

...
...

...
...

...

vN1 · · · vNm · · · vNN

∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣

1 + v11 · · · 0 · · · v1N

...
...

...
...

...

vm1 · · · 1 · · · vmN

...
...

...
...

...

vN1 · · · 0 · · · vNN

∣∣∣∣∣∣∣∣∣∣∣∣
= δjm�(z) − �jm(z) .
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Hence we obtain (7). Similarly we have (8).

To the end of this section we fix λ ∈ R.

LEMMA 2.3. Let

cmn(z) = (λ − z)�mn(z)

(z − i)�(z)
.

Then the following limit exists:

cmn(λ + i0) := lim
ε↓0

cmn(λ + iε) .

PROOF. Remark that by Assumption (T1) limε↓0 vnm(λ+iε) exists and that E0({λ}) =
0. Using (8), we have

〈ET ({λ})R0(i)fm,R0(−i)g n〉 = lim
ε↓0

(−iε〈RT (λ + iε)R0(i)fm,R0(−i)g n〉)

= lim
ε↓0

(
− iε〈R0(λ + iε)R0(i)fm,R0(−i)g n〉 + iε(λ + iε − i)−2vnm(λ + iε)

+ −iε�mn(λ + iε)

(λ + iε − i)2�(λ + iε)

)

= 〈E0({λ})R0(i)fm,R0(−i)g n〉 + lim
ε↓0

−iε�mn(λ + iε)

(λ + iε − i)2�(λ + iε)

= lim
ε↓0

−iε�mn(λ + iε)

(λ + iε − i)2�(λ + iε)
= 1

λ − i
lim
ε↓0

cmn(λ + iε) .

Hence limε↓0 cmn(λ + iε) exists.

We put

C(λ + i0) = (cmn(λ + i0))1≤m,n≤N ,
(9)

hm(z) =
N∑

j=1

cmj (z)R0(z)fj (Im z �= 0, 1 ≤ m ≤ N) .

THEOREM 2.4. λ ∈ σpp(HT ) if and only if the following condition is satisfied:

RankC(λ + i0) �= 0 .

If λ ∈ σpp(HT ), then w- limε↓0 hm(λ + iε) (1 ≤ m ≤ N) exists and satisfies

RT (i)hm(λ + i0) = 1

λ − i
hm(λ + i0) , (10)

and dim ET ({λ})H = RankC(λ + i0).

REMARK. (i) �(λ+i0) = 0 follows from RankC(λ+i0) �= 0. In fact, if �(λ+i0) �=
0, then limε↓0 ε�mn(λ + iε)/�(λ + iε) = 0 (1 ≤ m,n ≤ N).

(ii) The equality (10) is desirable, because by comparing with Theorem 4.1 we expect
that there exists f ( �= 0) ∈ R such that HT R0(λ + i0)f = λR0(λ + i0)f, i.e., R0(λ + i0)f

is an eigenvector of HT corresponding to λ.
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To prove Theorem 2.4 we prove some lemmas.

LEMMA 2.5. For f ∈ R we have

(i) sup
0<ε<1

‖R0(λ + iε)f ‖ < ∞

if and only if

sup
0<ε<1

‖R0(i)R0(λ + iε)f ‖ < ∞ ,

(ii) limε↓0 ‖R0(λ + iε)f ‖ exists. (The value may be infinity.)

PROOF. (i) By the resolvent equation we have

|z − i|2‖R0(z)R0(i)f ‖2

= 〈(R0(z) − R0(i))(R0(z̄) − R0(−i))f, f 〉
= ‖R0(z)f ‖2 − 2 Re〈R0(z)R0(i)f, f 〉 + ‖R0(i)f ‖2 .

Since the second term 〈R0(z)R0(i)f, f 〉 converges as ε ↓ 0 (z = λ + iε) by Assumption
(T 1), we obtain (i).

(ii) By the spectral representation of H0 we see that ‖R0(λ+ iε)R0(i)f ‖2 is monoton-
uously increasing as ε ↓ 0. Hence we have (ii).

LEMMA 2.6. For any u ∈ D(HT ) and for any f ∈ R we have

lim
ε↓0

ε〈u,R0(λ + iε)f 〉 = 0 .

PROOF. It is sufficient to prove that limε↓0 ε〈RT (i)u,R0(λ+ iε)f 〉 = 0 for any u ∈ H
and for any f ∈ R. By (7) we can easily obtain

〈RT (i)u,R0(λ + iε)f 〉

= 〈R0(i)u,R0(λ + iε)f 〉 −
N∑

j=1

〈R0(i)u, g j 〉〈R0(i)fj , R0(λ + iε)f 〉

= 〈u,R0(λ + iε)R0(−i)f 〉 −
N∑

j=1

〈u,R0(−i)g j 〉〈R0(i)fj , R0(λ + iε)f 〉 .

Multiplying each side by ε, we have, by Assumption (T1) and E0({λ}) = 0,

lim
ε↓0

ε〈RT (i)u, R0(λ + iε)f 〉 = 0 . �

LEMMA 2.7. Assume that u ∈ D(HT ) satisfies HT u = λu. If 〈u,R0(−i)f 〉 = 0 for
any f ∈ R, then u = 0.

PROOF. Since u is an eigenvector of HT and by (7), we can easily see that

1

λ − i
u = RT (i)u = R0(i)u .
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Hence we have u ∈ D(H0) and H0u = λu. By σpp(H0) = ∅ we conclude u = 0.

LEMMA 2.8. For hm(z) in (9), we have
(i) w- limε↓0 hm(λ + iε) (1 ≤ m ≤ N) exists,

(ii) 〈RT (i)hm(λ + i0), u〉 = 1
λ−i

〈hm(λ + i0), u〉 for any u ∈ H ,

(iii) dim L.h.[h1(λ + i0), · · · , hN (λ + i0)] = RankC(λ + i0) .

PROOF. (i) By (7) and E0({λ}) = 0 for u ∈ H we have

〈R0(−i)ET ({λ})R0(i)fm, u〉 = lim
ε↓0

(−iε〈R0(−i)RT (λ + iε)R0(i)fm, u〉)
= lim

ε↓0
{−iε〈R0(−i)R0(λ + iε)R0(i)fm, u}

+ iε(λ + iε − i)−1〈R0(−i)R0(λ + iε)fm, u〉 + 〈R0(−i)hm(λ + iε), u〉)}
= lim

ε↓0
〈R0(−i)hm(λ + iε), u〉 .

This means that w- limε↓0 R0(−i)hm(λ + iε) exists and is equal to

R0(−i)ET ({λ})R0(i)fm .

By Lemma 2.5 (i) hm(λ + iε) is bounded. Since H2 is dense in H, by the standard argument
we conclude that w- limε↓0 hm(λ + iε) = ET ({λ})R0(i)fm.

(ii) By (i) it is suffcient to prove that

RT (i)hm(z) = 1

z − i
hm(z) − λ − z

(z − i)2
R0(i)fm, (1 ≤ m ≤ N) .

Using (7) and �(i) = 1 we have

RT (i)hm(z)

= R0(i)

N∑
j=1

cmj (z)R0(z)fj −
N∑

k=1

〈
R0(i)

N∑
j=1

cmj (z)R0(z)fj , g k

〉
R0(i)fk

= 1

z − i

N∑
j=1

cmj (z)R0(z)fj − 1

z − i

N∑
j=1

cmj (z)R0(i)fj

−
N∑

j=1

N∑
k=1

cmj (z)〈R0(i)R0(z)fj , g k〉R0(i)fk

= 1

z − i
hm(z)

− 1

z − i

( N∑
j=1

cmj (z)R0(i)fj +
N∑

k=1

N∑
j=1

cmj (z)〈(z − i)R0(i)R0(z)fj , g k〉R0(i)fk

)
.
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Calculating the sum of j of the third term in the right hand side, we see that
N∑

j=1

cmj (z)〈W(z)fj , g k〉 =
N∑

j=1

cmj (z)vkj (z) = λ − z

z − i
�mk − cmk(z) .

Hence we obtain (ii).
(iii) For simplicity we write

hm = hm(λ + i0), cmj = cmj (λ + i0), C = C(λ + i0), vmj = vmj (λ + i0) .

Putting A = {(α1, · · · , αN ) ∈ CN ; ∑N
m=1 αmhm = 0}, we calculate dim A. By (ii) and

Lemma 2.7 we see that

dim A = dim

{
(α1, · · · , αN ) ∈ CN ;

N∑
m=1

αm〈hm,R0(−i)g k〉 = 0, 1 ≤ k ≤ N

}
.

By (ii) we can justify the following calculation: for 1 ≤ k ≤ N

0 =
〈
RT (i)

N∑
m=1

αmhm,R0(−i)g k

〉
= 1

λ − i

N∑
m=1

αm〈hm,R0(−i)g k〉

= 1

λ − i

N∑
m=1

αm

N∑
j=1

cmj 〈R0(λ + i0)fj , R0(−i)g k〉

= 1

(λ − i)2

N∑
m=1

αm

N∑
j=1

cmjvkj = 1

(λ − i)2

N∑
m=1

αmcmk .

Hence we have dim A = dim ker tC. Therefore we conclude that

dim L.h.[h1, · · · , hN ] = RankC . �

LEMMA 2.9. If u ∈ D(HT ) satisfies HT u = λu, then 〈R0(i)fm, u〉 = 〈hm, u〉 for
1 ≤ m ≤ N .

PROOF. Combining (7) and Lemma 2.6 we see that

〈R0(i)fm, u〉 = lim
ε↓0

(−iε〈RT (λ + iε)R0(i)fm, u〉) = 〈hm, u〉 . �

LEMMA 2.10. Let uj satisfy HT uj = λuj (1 ≤ j ≤ N). Then

dim L.h.[u1, · · · , uN ] ≤ RankC .

PROOF. By Lemma 2.7 we see that
{
(α1, · · · , αN) ∈ CN ;

N∑
j=1

αjuj = 0

}

=
{
(α1, · · · , αN ) ∈ CN ;

N∑
j=1

αj 〈uj ,R0(−i)fm〉 = 0, (1 ≤ m ≤ N)

}
.
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Hence we have

dim L.h.[u1, · · · , uN ] = dim L.h.[a1, · · · , aN ] = Rank[a1, · · · , aN ]
where aj = t (〈uj ,R0(−i)f1〉, · · · , 〈uj ,R0(−i)fN 〉). By Lemma 2.9 (ii) we have

Rank[a1, · · · , aN ] = Rank[b1, · · · , bN ]
where bj = t (〈uj , h1〉, · · · , 〈uj , hN 〉). Since dim L.h.[h1, · · · , hN ] = RankC by Lemma
2.8, we have proved this lemma.

PROOF OF THEOREM 2.4. We have already obtained (10) by Lemma 2.8 (ii). So we
prove the rest of the statements. Let λ ∈ σpp(HT ) and u an eigenvector of HT corresponding
to λ. We prove RankC �= 0. We assume that RankC = 0. Combining Lemma 2.8 (ii), (iii)
and Lemma 2.9, we have 0 = 〈u, 0〉 = 〈u, hm〉 = 〈u,R0(i)fm〉, (1 ≤ m ≤ N). By Lemma
2.7 we have u = 0, which is a contradiction.

Conversely we assume RankC �= 0. Then there exists, at least, an (m, n) such that
cmn �= 0. By (8) we see that

〈ET ({λ})R0(i)fm,R0(−i)g n〉 = lim
ε↓0

(−iε〈RT (λ + iε)R0(i)fm,R0(−i)g n〉
= cmn(λ + i0) .

Hence we obtain ET ({λ}) �= 0.

We prove that dim ET ({λ}) = RankC. In general, we remark that N ≥ dim ET ({λ}).
By Lemma 2.8 (ii) and (iii) dim ET ({λ}) ≥ dim L.h.[h1, · · · , hN ] (= RankC). On the other
hand, by Lemma 2.10 we have dim ET ({λ})H ≤ RankC. We have thus completed the proof
of Theorem 2.4.

3. Asymptotic completeness of wave operators.

In this section we consider the asymptotic completeness of the wave operators
W±(H0,HT ). (We use the same notations as in section 2.) In general, the wave operators
W±(H1,H2) for self-adjoint operators H1 and H2 are defined by

W±(H1,H2) := s − lim
t→±∞ eitH2eitH1Pac(H1) ,

where Pac(H1) is the projection for the absolutely continuous subspace of H1. If W±(H1,H2)

exists, then we say that W±(H1,H2) are complete if and only if Range W± = Pac(H2). And
we say that W±(H1,H2) is asymptotically complete if and only if W±(H1,H2) is complete
and σsing (H2) = ∅.

THEOREM 3.1. The wave operators W±(H0,HT ) are asymptotically complete.

REMARK. As for the scattering matrix, it inverstigated in [8] for more general T . And
see [4] in the case of the usual Laplacian H0 = −∆ and RankT = 1.

Using the following theorem we can easily see that W±(H0,HT ) are complete.
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THEOREM 3.2 (Kuroda-Birman theorem, [5, Theorem XI.9]). Let H1 and H2 be self-
adjoint operators such that (H1 − z)−1 − (H2 − z)−1 is of trace class for some z ∈ ρ(H1) ∩
ρ(H2). Then W±(H1,H2) exist and are complete.

Since

RT (i)u − R0(i)u =
N∑

j=1

〈R0(i)u, g j 〉R0(i)fj , u ∈ H ,

we see that W±(H0,HT ) exist and are complete. Hence, in order to show the asymptotic
completeness of W±(H0,HT ) it remains only to verify σsing (HT ) = ∅.

LEMMA 3.3. Put N± := {λ ∈ R; �(λ ± i0) = 0}. Then N+ = N− and N± is
discrete.

PROOF. We prove N+ = N−. Putting

A = (µj δjk)1≤j,k≤N , B(z) = (wjk(z))1≤j,k≤N ,

where wjk(z) = 〈W(z)fk, fj 〉, we see that V (z) = AB(z). Since wjk(z̄) = wkj (z), we have

det(I + V (z̄)) = det(I + AB∗(z)) = det((I + B(z)A)∗)

= det(I + B(z)A) = det(A−1(I + AB(z))A) = det(I + AB(z)) = �(z) .

Hence N+ = N−.

We put N := N+ = N− and prove that N± is discrete. Assume, for contradition, that N
is dense in some open interval (a, b). Since �(λ + i0) is continuous in (a, b) by Assumption
(T) and (8), we see that �(λ + i0) = 0 in (a, b). Since �(z) is analytic in {z ∈ C; Im z > 0},
by the reflection principle of the analytic function there exists some ε > 0 such that �(z) has
an analytic continuation �̃(z) in (a, b) × [−iε, iε]. So by the identity theorem of the analytic
function, we see that �̃(z) = 0 in (a, b) × [−iε, iε]. This is a contradiction.

Follwing [5, section XIII], we prove that σsing (HT ) = ∅. By Weyl’s theorem we see
that σess(HT ) = σess(H0) = R. So it is sufficient to prove σsing (HT ) ∩ [0,∞) = ∅. We
put N := N±. If we prove σsing (HT ) ⊂ N ∪ {0}, then σsing (HT ) is a countable set and
hence σsing (HT ) = ∅. Since N is discrete, we can take an open interval (a, b) such that
[a, b] ∩ (N ∪ {0}) = ∅. We remark that for u ∈ D〈RT (λ + i0)u, u〉 − 〈R0(λ + i0)u, u〉 are
continuous in (a, b) by Assumption (T2). By the continuity of 〈RT (λ + i0)u, u〉 (u ∈ D) and
Stone’s formula, i.e.,

〈ET ((a, b))u, u〉 = 1

2πi

∫ b

a

(〈RT (λ + i0)u, u〉 − 〈RT (λ + i0)u, u〉)dλ ,

we have
〈ET ((a, b))u, u〉 ∈ C1(u)(b − a) + 〈E0((a, b))u, u〉 ,

where C1(u) is a constant dependent on u. Hence we have ET ((a, b))D ⊂ Pac(HT )H. Since
Pac(HT )H is closed in H and D is dense in H, ET ((a, b))H ⊂ Pac(HT )H .
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4. Rank one perturbation.

We consider a rank one perturbation. We assume Assumption (H0), (T) and dimR = 1,

and put f := f1, µ := 1 and �(z) = 1 + (z − i)〈R0(z)R0(i)f, f 〉.
THEOREM 4.1. Let λ ∈ R. λ ∈ σpp(HT ) if and only if the following condition is

satisfied:

C(λ + i0) := lim
ε↓0

iε

�(λ + iε)
�= 0 .

Under the condition above, we have

lim
ε↓0

‖R0(λ + iε)f ‖2 = Re

(
1

C(λ + i0)

)
< ∞ ,

and R0(λ + i0)f is an eigenvector of HT corresponding to λ.

PROOF. By Theorem 2.4 we have already obtained the first and the last statements. So
we prove the second statement. We can take un ∈ H such that un → f (n → ∞) in H−2.
We have, by the resolvent equation,

1 + (λ + iε − i)〈R0(λ + iε)R0(i)un, un〉 − (1 + (λ − iε − i)〈R0(λ − iε)R0(i)un, un〉)
= 〈(R0(λ + iε) − R0(i))un, un〉 − 〈(R0(λ − iε) − R0(i))un, un〉
= 2iε〈R0(λ + iε)R0(λ − iε)un, un〉 = 2iε‖R0(λ + iε)un‖2 .

Letting n → ∞, we have

�(λ + iε) − �(λ − iε) = 2iε‖R0(λ + iε)f ‖2 .

Taking account of �(z̄) = �(z), we have

Re

(
�(λ + iε)

iε

)
= ‖R0(λ + iε)f ‖2 .

Hence we have

lim
ε↓0

‖R0(λ + iε)f ‖2 = Re

(
1

C(λ + i0)

)
.

The rest of the proof is to show Re C(λ + i0) �= 0. Assume that Re C(λ + i0) = 0 and put
a(ε) := Re(iε/�(λ + iε)) (limε↓0 a(ε) = 0). Then

a(ε) = iε

�(λ + iε)
+ −iε

�(λ − iε)
= iε(�(λ − iε) − �(λ + iε))

|�(λ + iε)|2

= 2ε2‖R0(λ + iε)f ‖2

|�(λ + iε)|2 .

Remark that limε↓0 ‖R0(λ+iε)f ‖ exists by Lemma 2.5 (ii). If we assume that limε↓0 ‖R0(λ+
iε)f ‖ > 0, then we have limε↓0 2ε2/|�(λ+ iε)|2 = 0. This is a contradiction to C(λ+ i0) �=
0. Therefore limε↓0 ‖R0(λ + iε)f ‖ = 0. Now we consider ‖R0(λ + iε)R0(i)f ‖. We see that
limε↓0 ‖R0(λ+iε)R0(i)f ‖ = limε↓0 ‖R0(i)R0(λ+iε)f ‖ = 0. Hence R0(λ+i0)(R0(i)f ) =
0, and so R0(i)f = 0. We reach a contradiction to ‖R0(i)f ‖ = 1.

We quote two examples without the proofs (see [4, 6]).
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EXAMPLE 4.1 (cf. [6]). Let H = L2(R3) and H0 = −∆ (the usual Laplacian) with the
domain D(H0) = H 2(R3) (Sobolev space of order 2). And let t (x1) ∈ L1(R), f (x1, x2, x3) =
t (x1)δ(x2, x3) and Tu = α〈u, f 〉f. Then we can take D in Assumption (T) as L2,s (R3) =
{u ∈ L2(R3); (1 + |x|)su(x) ∈ L2} (s > 3/2).

EXAMLE 4.2 (cf. [4]). Let H and H0 be the same as above. And let t (x1, x2) ∈
L1(R2), f (x1, x2, x3) = t (x1, x2)δ(x3) and Tu = α〈u, f 〉f. Then we can take D in As-
sumption (T) as L2,s(R3) (s > 3/2).

We give a brief comment of the relation between their results ([4], [6]) and ours. In [4,
6], under a (stronger) assumption that t is almost in some weighted L1-space, they showed
the asymptotic completeness of the wave operators for H0 and HT . By using Theorem 3.1 we
can show the asymptotic completeness under a (weaker) assumption that t is in L1.

ACKNOWLEDGEMENTS. The author thanks Professor S. T. Kuroda for the valuable
suggestion to consider the range of T . It simplified Assumtion (T).
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