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The purpose of this paper is to prove the following:

THEOREM. Let M be a semi-finite AW*-algebra with center Z. If M
possesses a complete set & of Z-valued bounded positive module homomorphisms
which are completely additive on projections, then M can be embedded as a
double commutator in an AW?*-algebra of type 1 with center which is
isomorphic to Z.

One of the problems concerning AW*.-algebras is: Whether or not there is a
non-trivial AW#*-subalgebra of a W*-algebra ([3], [16]) ? As an application of the
above result, we shall show the following result which is a partial answer to this
problem and is a generalization of [13, Theorem 5.2] on a problem of Feldman.

COROLLARY. Let B be an AW*-algebra of type 1 with center % and
let A be a semi-finite AW *-subalgebra of B which contains Z, then A=A’
(the double commutator of A in B) in B.

Under the finiteness assumption on M and 4, H. Widom ([14]) showed the
same result (see also [3], [4], [9] and [15]).

The main tool in this paper is a “non-commutative integration theory” with
respect to a Z-valued trace ® (a non-commutative vector measure) on the algebra of
“locally measurable operators” affiliated with the given AW *-algebra M.

This paper is devided into five sections. Section 1 is the preliminaries for the
later sections and we will introduce the notion of “&-0-convergence” in M (Definition
1.1.2) such that for any orthogonal set {e.} of projections in M with e=3,e,
and any element a < M, a*ea = 3,a*e.a (unconditional sum of a*e.a with respect to
&-0-convergence). In section 2, we shall prove the existence of a “@&-0-continuous”
natural application (Z-valued trace) ® on M, using the Goldman’s result ([4]). In
section 3, along the same lines with [10], the extension theory of ® to “locally
measurable operators” affiliated with M ([11], [12]) are discussed. In particular, we
shall show that the set LY®) of all ®-integrable locally measurable operators is a
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complete normed module over Z. Section 4 concerns with the construction of
AW*.module LX®) (the collection of all ®-square integrable locally measurable
operators) over Z. The last section is devoted to prove our main theorem, more
precisely to say, we shall show that the left regular representation =, of M on
L*®) is a *-isomorphism of M into F(LD)) (the set of all bounded module
endomorphisms of LX®)) such that = (M) =z (M) in HLAD) ( n(M)" is the
double commutator of #,(M) in B(L}D)).

1. Definitions and preliminary results. An AW*.algebra M means that
it is both a C*-algebra and a Baer*-ring ([7]).

The set of all self-adjoint elements, non-negative elements, projections, partial
isometries and unitary elements in M is written with M,,, M*, M,, M,, and M,,
respectively.

We will say AW*.algebra M to be semi-finite if every non-zero projection in
M contains a non-zero finite projection in M.

For other informations about AW *.algebras, in particular, the lattice structure
theory of projections, and the algebra of “locally measurable operators”, we refer
to the papers [7], [8], [11], [12], [13], [14] and [16].

Denote the collection of all finite subset of a set A by FA).

1.1. Order limits and center-valued c.a. states. Let Z be an abelian
AW*.algebra, then in virtue of the Gelfand representation, Z (resp. Z,,) can be
identified with the algebra C(Q) (resp. C{Q)) of all complex (resp. real)-valued
continuous functions on a stonian space . Topologized the extended real line
[— oo, +00] by the interval topology, let C}Q) be the set of all [—co, + co]-valued
continuous functions on 2, then it is a complete lattice which is lattice isomorphic
with the unit interval of the bounded complete lattice C,(Q) relative to the natural
ordering for real functions and contains C,(Q) and Z (the set of all [0, + co]-valued
continuous functions on  ([1])) as sublattices.

Let {a:} be a net in CXQ) and a<C}HQ). By ai—a(0), we mean that
a=limsup &;=lim inf @.. In these circumstances, we say that the net {a:} order
converges to a. For any net {&:} in C{Q), {6:} order-converges to & in C(Q) if
(1/2)(ba+0%)—(1/2)6+56%)(0) and (1/26)(ba—bF)—(1/2:)b—b%)0) where i=A/—T.
If Z is a von Neumann algebra, then b,—5(0) if and only if {6} oconverges
strongly to b. In the case of an AW™*-algebra, the following criterion is useful
for the later discussions.

LEMMA 1.1.1([14]). Let {a:} be a net in an abelian AW* algebra Z and
a be in Z, then ai—a(0) if and only if for any positive real number & and a
non-zero projection e in Z, there are a A, and a non-zero projection f with
f=e such that |(ax—a)f] < & for all A=\,.
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Next let N be an AW*-algebra and N?¥ be the center of N. A center-valued
state ¢ on N is a non-negative module homomorphism ¢ from N to N?. ¢ satisfies
the following additional properties: (1) |¢{a)] =k|al for all ae N (& depends only
an @), (2) |¢la*d)|? = dla*a)p(b*b) for a, be N, (3) ¢b*¥a*ad)= lla*al ¢(b*b) for
a,be N. By a center-valued ca. state ¢ on NN, we mean a center-valued state on
N with the property that for any orthogonal family of projections {e.} in N, with
e=3.. (e€N,), dle)=3.¢(e.) in N¥, where Z.fe.) is the unconditional sum of
the @le,) in N%.

LEMMA 1.1.2. Let ¢ be a center-valued c.a. state on N, then for any
aeN and any orthogonal family {e.} of projections in N with e=3.e., ¢pla*ea)
=3,.Pla*e.a) in N?.

Since N** is a bounded complete lattice, by Lemma 1.1.1, the proof is an
obvious modification of that for a similar result in [3, Lemma 3].

In the followings, let M be a semi-finite AW*-algebra with the center Z and
suppose that there is a set © of Z-valued ca. states on M such that ¢a*a)=0
for all ¢ € & implies a=0. Let _(€) be the set of finite linear combinations of
elements in {a*pa, ¢ € &, ac M}, where (a*da)x)=dlaxa*) for x < M.

DEFINITION 1.1.2. A net {a.} in M &-0-converges to a in Mia,—a(S-0))
if ¢la.—a)—0(0) in Z for all ¢ < _(S).

REMARK. (1) Let {e,} be an orthogonal family of projections in M with
See.=e(€ M,), then S, e.—e(S-0)(J €« F {a})) by Lemma 1.1.2. (2) Since & is
a separating set, an &-0-limit is unique.

1.2. Existence of a trace. Let N be a finite AW*-algebra with the center
N* which has a separating set & of center-valued c.a. states. Then, we have

PROPOSITION 1.2.1. There is a wunique central trace D having the
additional property that for any increasing net {a,} in N*, with a,? a(&-0)
for some ac N*, then ®a,) | ®la) in N**.

PROOF. Existence of a trace @ on N is due to M. Goldman [4]. Therefore
we have only to show that @ satisfies the continuity described above, Since & is
a separating set, by [4, Lemma 2.6], for any pe N, there are a non-zero projection
e in N (¢e=p) and a non-negative mapping ¢ in _£(&") with ¢(e})=x0 such that
Dla) < P(a) for all ac(eNe)*. Take a positive integer m and a non-zero central
projection (g == p) with ®le)=(1/m)g such that there exists a projection 2N with

®h)=(1/m)q. Hence we can choose a family {A;}7.; of mutually orthogonal
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projections in NN such that 2, =e, h,~ h; and Zh, qg. Let v; be in N,, such
j=1

that vfv; = hy, v} =h; and put Yb)= 3" ¢(vfbv,) for be N, then < L&) and

=
Y(1—g)=0. Now, noting that vfbv; e eNe for each pair of 7 and j, it follows that
for each beNg,

m

Y(b*b) = 3 ¢l(v} b* v} b* v,)¥)

ij=1

D(vf b* v;)(vf b*v,)*)

1%
.Mg

ij=1

= Db*b).

Hence by Zorm’s lemma there are families {¢.} CIN} and {¢.} C_£(&’) such that
0.9:=0 (@x8), 2ug.=1, ¢uqs) %0, ¢(l—¢.)=0 and ¢,(b*b)=D(b*b) for all
beNgq, for each . If {a,} is an increasing net of N* such that a,t a(&-0)
for some a< N, then ¢.®la,) T ¢.Pla) in N**+ for each a. Therefore by Lemma
1.1.1, ®(a,) T ®{a)0). This completes the proof.

2. Existence of a natural application on M*. Let Q be the spectrum of
the center Z of the given semi-finite AW*.algebra M and Z be the collection of
all [0, + oo]-valued continuous functions on Q.

To prove the existence of a natural application, we need the following, whose
proof can be easily supplied by the reader.

LEMMA 2.1. Let {a.} be an increasing net in Z such that a,1al0) in Z
for some ac Z, then for any beZ, ba. 't bal0) in Z.

Since M is semi-finite, there is a finite projection p in M such that 2{p)=
Let {p}sc. be @ maximal family of orthogonal equivalent projections in M such
that p~p, for each @ and p€ {p.}ac,. By the maximality of {p.}.. there is a central
projection z such that p, = (1—3...p.)2 < pz % 0. Therefore we can take families {2}
CZP’ {Pﬁ} CMZJ and {P(aﬁ’ B)}“lgsﬂpU{ol in Mp such that zpz,,=0 (Bﬂ;'}’), P(aﬁ’ B)P(ryﬁ’ B)
=0 (@), 28 = 0, B)+ g ecnsui01 A B) 25, Plals, B) s~ pazs for each ay € mp, 2(py)
=25, pp is finite for each B, pye {plas, B)}apes, for each B, (1—Zu;c. Pl B)2s
= P(O, B) = PpZﬁ x0 and 2,5 Zg = 1. Noting that ZpPpMZpPp is a finite
AW*.algebra whose center is Zzpp if &5 = {{zspsPzsps)pss ¢S} (where
(255 Pzs Po) Pl X) = PoPlzspszsps), x€ M), then &, is a separating set of center-
valued c.a. states on zzpsMzsps. By Proposition 1.2.1, for each 8, we can choose
a Zzzps-valued &;-0-continuous trace P; on zzp,Mzzp5. Now let ¥, be the
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*_jsomorphism of Zz;p, onto Zz; which is defined by ¥;x)= xp; for each 8 and
let v{a, B) be the partial isometry such that v(as, B)*viats, B)==zsps vias, B)vids, B)F
= plag, B) for each azen; and each B, v(0, 8)* (0, B) = =z, and (0, B)v(0, B)*
= (0, B)for each B. Define a new linear operation ® on M* to Z as follows:

Dh) = 3, {zaﬁexﬂU{O} Vo Dav{ts, B)* hzﬁ'v(aﬁ’ BN}, heM*

where 3.,.4a. is the unconditional sum of the a, in Z, then ® is a natural application
on M*, that is,

THEOREM 2.1. The operation ® on M* to Z satisfies the following
properties :

(1) If hy, hye M* and \ is a non-negative number, ®(h,+ h,)=®(h,)+D(h,)
and D) =AD(Ay).
If se M* and te Z*, then ®(st)=1s).
If ae M+ and ue M,, ®uau*)=(a).

( Dla)=0 (ac M*) implies a=0.

(5) For every increasing net {a.} in M* such that a,?a(®-0) for some
ae M+, ®a,)t Da)0) in Z.

(6) For any non-zero a in M*, there is a non-zero b in M* majorized by
a such that ®b)c Z+,

2
(3
4

~— — — —

Using Lemma 2.1 and &-0-convergence instead of Lemma 2.12 and &(&)-
topology in [13], the proof of this theorem proceeds in a manner entirely analogous
to that of [13, Theorem 3.1], so we omit it.

Next let P={se M*, ®{s)c Z*}, then since P satisfies the conditions of Lemma
1 in [2, Chapter 1 81, 6], it follows that % is the positive portion of a two-sided
ideal M and that there is a unique linear operation ® on R to Z which coincides
with @ on B with the properties; (a) ®(st)= Dits) if se M, teR; (b) D(st)=sD()
if seZ and te M.

Define Rank (x)=®(L P{x)) for every x < M, where LP(x) is the left projection
of x in M, and Rank(x) has the following properties : (1) Rank(x)= 0, it is=0 only if
x=0. (2) Rank(x)=Rank(x*), Rank(axr)=Rank(x) for every complex number a=0.
(3) Rank(x+y)= Rank(x) + Rank(y). (4) Rank(xy)=Rank{x), Rank(y). In fact, (1)
and the last half part of (2) are clear from definitions. By [7, Theorem 5.2],
LP(x)~LPx¥), which implies by [13, Lemma 2. 4] ®{L P(x))=®(LP(x*)). An easy
calculation shows LP(x+y)=LP(x)\VLP(y) and by the fact that LP(x)\ LP{y)—
LP(x)~LP(y)— LP(x)ALP(y), it follows that Rank{x+y)= Rank(x)+ Rank(y).
LP(xy)=LP(x) shows that Rank(zy)=Rank(x) and Rank(xy)=Rank((xy)¥)
=Rank(y*z*) = Rank(y*) = Rank(y). Thus (3) follows.

Therefore let F={a; ac M, Rank{a)e Z+*}, then F is a two-sided ideal
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contained in N such that F,=N,. Moreover, by Theorem 2.1 (6) for any non-zero
projecection e in M, we can choose a non-zero projection in & majorized by e.

3. An extension of ® to “locally measurable operators”. We shall now
consider “locally measurable operators” affiliated with M ([12]). An essentially locally
measurable operator (ELMO) is a family of ordered pairs {x.,e.}, where {x.} CC
(the algebra of measurable operators affiliated with M) and {e.} is an orthogonal
family of central projections such that S.e,=1. Two ELMO’s {x.,e.} and {vs f5}
are said to be equivalent if e.fsx. = e.fs¥s for all @ and 8. The equivalence class
of {x.,e.,} is denoted by (x.,e.) and it is called a locally measurable operator
affiliated with M(LMO), and the collection of all LMO’s affiliated with M is
denoted by .. Algebraic operations in { are componentwise, then it is a
*.algebra in which € is naturally imbedded as a *.subalgebra. We use letters
Z,¥, 2, for the elements in ..

In [12], we showed the followings: (1) < is a Baer*-ring, and (2) every element
x in M has a polar decomposition x = w|z|(|z|=(x*x)"?) where w*w = RPx)
and ww*=LP(z). The self-adjoint part of % is partially ordered by defining
x=y if x—y=zg%z for some 2. The subalgebra M is characterized as {x; xz € M,
x*x=al for some positive real number o}.

We want to extend @ to M * (the non-negative part of ). The following
definition is due to [10].

DEFINITION 3.1. For every xe ", we define
D(x)=Sup{Pla), ac M*, a=x},
where the supremum is taken in Z.

It is clear that the new definition agrees with the old one in case xeM™.
The following Lemma is helpful for the later discussions.

LEMMA 3.1. For every xe H*, ®(x)=Sup{®(a); ac N*, a=x} =Sup{P(a);
acF, a=x}.

PROOF. Since ®(z)=Sup{®(a), ac N*, a=z} =Sup{Pla), ac F*, a=x]},
we have only to prove the converse. Let &=Sup{®(a); acF*a=zx} in Z
By Theorem 2.1, there is an orthogonal family of projections {e.,} in &F, such that
S.=1. For any JeG({a}) and ac M*, a'*(Z.cse)a’?=a,a’*(Z..se)a?
€ F* and a'*(S,cse.)a? 1 a(©-0). Therefore again by Theorem 2.1, ®(a) =
Sup{®(aV?(3..se.)a?); Je F({a})}, that is, ®(a)<b. Thus b= P(x) and the
lemma follows.
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REMARK. For any xe M, ®(a*x) = ®(xx*). In fact, let x=w|x| be the
polar decomposition of =z, then xx* =wzx*zrw* and w*xrx*w=zx*zx. If z*x
=a,ac F*, then aw*w =w*wa=a and zx* = war¥rw* = waw* ¢ F*. Thus,
D(zz*) = D(waw*) = O(w*wa) = P(a), which implies D(xx*)=®(x*x). By
symmetry ®(x¥x) = ®(xx¥).

Relations between the algebraic operations in . H* and our extended operation &
are given in the following:

LEMMA 3.2. Let s and t be in M*, then

) O(s+2) = D(s)+D(t);

) ®(\L) = AD(¢) for any non-negative number \;
) Dlusu*) = D(s) for any ue M,
) @

1
2
3
4 as) = a®(s) for any ac Z*,

.

PROOF. The statements (2) and (3} are clear from the definitions. For the
assertion (1), since ®(s)+P(¢) =D(s+¢), we have only to show the converse. Let
a be in F* such that a=s+¢ and ¢, = @ *((1/n)1+s+£) (s +£)"*(note that since
s+t=0, s+t+(1/n)l is invertible in ¥ and (s+£+(1/a)1) e {s+2}" for each
positive integer n), then ¢, and aY?—c,(s+£)/? are bounded elements such that
la¥?—ec,(s+2)"*| =1/n and |c,|=1 for each n. Observe that ae &F*, let
x=0c,s"? and y=c,t"? then xx* =c,s¢} <c,(s+t)ck Za*(1/n)l+s+¢t) (s +¢)a'/?
=a and by the same way, yy* =a, which implies = and v are in &. Now put a,
=z*¥x and a,=y*y, then a,, a,€ F*, a,=s5"c}c,s"*=<s and a,=¢. Therefore
we have '

Ds) + D) = Pla)) + Va,) = Yz*x) + (™)
= D{xx*) + O(yy*) = Dc,sck) + Dlc,tck)

= D(c,(s + t)ck).
Note that LP(a)c, = c,, it follows that {a'?— c,(s+ 2)/2} {a'? — c,(s + )12} %
=(1/n)LP(a). On the other hand, since a*(s+£)V%c} = a'*(s+£)(1/n)L+s+2) a'/?
=ac T, a’Ys+t)%ck = c (s+t)2a"?, and c,(s+E)V* e F, we get that
Da) — Dcyfs+e)ex) = B{a'’? + cqfs + )2} {a'/? — cfs + £)/2}¥).

Observe that [c,(s+2£)2] =< |la"?||, it follows by the above arguments that

|D{a) — Dlcals + t)ed)] = lla'? + cals+2) 2| V(| a'? — (s + £) ez ]
= 2llal|'*(1/n)"*|D(LPla))|

for each n, that is, a=c,(s+2)c} implies that
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Ds) + t) = Plca(s + t)ex)
= Da) — 2AL/n)*|a]* | D{LP@) -1

for all positive integer n, so that ®(s)+®(t)=P(a) for all ac F* with a<s+t.
Thus by Lemma 3.1, ®(s)+P(¢t)=P(s+2) and (1) follows.

To prove the assertion (4), since it is clear, by Lemma 2.1 and Lemma 3.1,
that a®(t)=®at) for any £ ¢ F* and ae Z+, it is sufficient to show the converse,
Let ¢ be in &+ with c=at, then for each positive integer n, c <a-+(1/n}t, which
implies (a+(1/n)1)'a®(c)=<a ®(t) by Theorem 2.1. Since LPla)c=c LPa)=c
and (a+(1/n)1)'at LP(a), we have ®{c)=ad(t), so that aD(t)=P{at) by Lemma
3.1. This completes the proof.

Let L*={t; t e M*D(t)e Z*}, then by the above lemma, _/* has the following
properties:
(a) If se £ and ue M,, then usu* ¢ [* and Ds) = D{usu*).
(b) Let se.L* and e M+ with t=s, then e [+,
(c) For every s and te L+, s+te L+ and D(s+1) = Ds)+D(t).
Let LY®) = {>_t,sk, tFt, s's, € _[’*}, then

i=1

THEOREM 3.1 ([10]). LYD) is a unique invariant linear system (that is,
MLYND)McC LY®D)) such that LN®)Y = _L*. Moreover, there is a wunique non-

negative linear operation ® on LN®) to Z, which coincides with ® on _L*
with the following properties:

(1) For se LY®) and a< M, dlat)= dita);

(2) for aeZ and se LN®), Dat) = aDlt);

(3) for any te L{®), Sup{|at)l; la| =1, ac M} =¥(t]);

(4) if s, te L{D), then D(|s+t]|)=D|s])+D(]2]).

PROOF. The proof of the assertions except for (3) and (4) are obvious

modifications of those for similar results in section 2 for the case R and &, To
prove the assertion (3 ), we argue as follows. Observe first that from the standard
calculation, |®(st)]?=<®(s*s)D(t*¢) for any s and ¢ with s*sand £¥¢ € _L*, Let t=ul|t|
be the polar decomposition of ¢ in LY®), then for any ae M with [a] =1, it
follows that

|Bat)|? = |Dlau|e])|® = B(|2]2u*a*au|t| /)0 |£])
= o([¢]F,
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So that |®(az)| =&(|¢|) and Dlu*t)=B(|¢]) and || <1 implies the statement ( 3 ).
Next let s, t € L{®) and s+¢=w|s+¢] be the polar decomposition of s+¢, then
by (3)

K[ s+ £]) = BlaoX(s + 1)) = | Blws)| + |D(zo*t) |
= Y[s]) + H]2]),

thus the proof is completed.

REMARK. (1) The linear map @ on L(®) is an extension of & on Rt which
was defined in section 2. (2) If we set ||s||l,=®|s])| for s € LY(®), then L}(D)
is a normed module over Z. (3) LY®)cC In fact, since every element of
L'®) is a finite linear combination of elemens in £+, we have only to show that
L7cC. By the spectral theorem ([11,12]), for any ze¢ [+ there exists an
increasing sequence of projections {f,} in {¢£}” (the double commutant of {¢} in %)
such that #f, =(n+1)1 and (n+1)(1—f,)=¢ for each positive integer n, so that
®(1—12)=(1/(n+1))®P(¢), this implies that {f,} isan SDD. Thus by [11, Theorem
5.1], te C. This completes the proof.

THEOREM 3.2. LY®) is a Banach space with respect to the norm |||, || ,.

ProOOF. First of all, we shall show that for any monotone increasing sequence
{t.} of elements in .L* which is ||, || ,—Cauchy, there is ¢ € _* such that ||| £,—
t|| ;—0(n—oo). By taking a subsequence, we can assume that ||| £, —2,., |l 1<<1/4" for
each positive integer » without loss of generality. Note that #,,,—#, = 0 (resp. £,=0),
by the spectral theorem ([11]), we can choose a sequence {e,} in {f,..—£,}"
(resp. {f»} in {£,}”) of projections such that 0=(t,.,—%,)e,=2°".1 and (¢,,,—%,)
=2""(1—e,) (resp. 0=t¢,f,=2"1 and t,=2"(1—f,)) for each positive integer
n. Now let p,= k/g\nek A Sw then it follows that

D1 — pa) = 2_ DL — e A\ Sf)

{D(1—e) + (1 —fi)}

A
M M 1M

IA

{2%D(2,.1 — L) + (1/2°)D(2,)}

k

I

n

= (1+Supliizell)2™ 1

for each n, so that p, 1 implies that ®(1—p,) | O uniformly, 1—p, ¢ F and p, 11,
that is, {p,} is an SDD([11, Definition 3.1}). Since p,=e, Af,, if k=n=m,
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then (¢, —t,)pr € M and |(¢,—2,)p| <1/2""'. Moreover, &.p, =t fipPe and £ f%
= 2%f,, which implies #,p,€ M. By the mathematical induction, (£,—¢,)p
eMm=n=k) implies ¢,p,cM for all m=k  Now put a(n k) = p.t.ps
+pit (1—pu) +(1—pu)t, pr(n=%k), then f{a(n,k)}CM,, for all n=%  Since
la(n+1, k) —a(n, )|=3. 27 for all n=k, it follows that {a(n,k)},=. is a uniformly
Cauchy sequence in M,,. Hence there exists an element s{k) < M,, such that
aln, k)—s(k)(n—co) uniformly, If k& =k%,, then p,, = p:, implies s(k1)px, = () Pro
so that {s(k), p,} is an EMO ([11, Dfinition 3.1]). Since ||t;p,—tnpil =1/2!
for all m=k, we get that |z.p,—s(k)p,| =1/2*1 for each positiye integer k.
Thus putting ¢ =[s(k), pil{€C:e ([11, Defmition 3.4])), by [11, Theorem 3.1]
Nt pe—tpe] = {t—s(R))pel =1/2F' for all &, which implies that ¢,—¢(n. e.) (k—>o0)
([13, Definition 3.2]). Next we shall show that £=¢#, for each n. Observe that
Pilnbe Z Pt =0 (m=Zn=k) and pit,p,—ptp, uniformly (n—oo)and we have
Pitte=0S k)P = pitn =0 for all n=k. Thus by [11, Theorem 5. 5], it follows
that =2, for each n. Now we shall show that ®{¢)=sup ®(¢,). Since P(t,)=D(t)
for all n, we have only to show the converse. Since put,p. 1 PP, uniformly
(n—co), for any ec F,, |Dlepit,pe)—Dleptpie)|—>0n—cc), which implies by
Lemma 1.1.1, ®epit.pre) T Plepitpie)(0) in Z*. Since Dlt,)= Bt ’pepitil?)
=®(ept,pie), it follows that

D) = Sup B(t,) = Dlepipie) = OV prep '),
so that by the last paragraph of section 2 and Lemma 4.1, ®(2p.ept'/?)
1T ®(E2p 22 in Z. Hence ()= Sup O¢,) = D(/?p,2"?). Again by Lemma 4.1,

®(t)=Sup ®(¢,). Sup £, |l ;,<<oo implies D) e Z and £ £+, Sincey . | n—tn-1lll1

n=1

8

= > 1/4"<C o0, for every positive number &, there is a positive integer k(&) such
1

n

that Sl fn—taos I € for all k= E(E), that is, 3 Bt,—1t,_1) = Dt,) — Blry) = &- 1
n=k n=k+1
for all m=k+1=k(E). D(z,) T D{E)0) implies P(t)—D(t,)=&-1, that is, || t—2. ]|l =8
for all 2=%(¢). Thus the statement described above follows.
Using this fact, we can prove the completeness of L(®) by the similar way as

that of [10, Theorem 14], so we omit the details. This completes the proof.

4. AW*.module L*®) over Z. Let L®)= {se M, s*se.L*}, then for
any s and ¢ in LAD), (s+)*(s+8) =2As*s+¥¢)e L+ shows by Lemma 3.2,s+¢
e L¥®), For any ae Z and se< LY®), we have ®(|a|is*s)= |a|*D(s*s)e Z*, so
that as € L¥®), that is, L*®) is a module over Z.

At first, we shall give the following lemma.
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LEMMA 4.1. Let se M} and oy(x)= ®(s*xs) for any x < M*, then for any
increasing net {a,} in M* such that a,? e(@-0) for some e<M,, ofa,)}asle) in
Z. In particular, o, is completely additive on projections.

PROOF, Since o,(¢)=Sup o,(a,), we have only to show the converse. Let
Y
be F* with b=<ess*e, then eb=be=>0 and b'*a)b? 1 b'/2%eb'/*S-0), so that by
the continuity of ®, ®(b"2a,b'?) 1 B(b/%eb'?). On the other hand, since ®(5'%a,b'/?)
= O(a*bal’) =< Dlal’ss*al/?) = D(s*a,s), it follows that D) =< Sup,s,(a,). Therefore by
Lemma 3.1, oy(€)=Sup o,{a,) and the proof is now completed.
b

LEMMA 4.2 ([10]). L¥®) has the following properties:
(1) For s and t in LY®D)*, ®(st)=0;
(2) if s, te LA®) with |s| = |t|, then ¥|s|)=d]s||t])=D([t]?);
(3) if s and t are self-adjoint elements in L¥®) such that ®(s?) =D(t?), then
P(st) =D(e?) ;
(4) let t be in LY®) and uec M,, then ®(|t]?) = ®(|utu®|?);
(

4
5) if s, te LY®), then st< LAD), |D(st)|? < D{|st])? < D(s*s)D(t*2) and
D(s*s)1/2 = Sup {| D(st)|, Pt*¢) =1} .

PROOF. Let s and ¢ be in L¥®)", then note that by the remark following
Theorem 3.2, s and t< C*, by [11, Theorem 5. 1], we can write £ = [£,,e,], where
tm€,€ {817, the,=t,=0and ¢, 7. Let u be the Cayley transform of z, T" is the
spectrum of {«}”’([1]) and T, = {v; luly)+1| >1/n}~ where A~ is the closure of a
set A. Denote the projection in {«#}” corresponding to the clopen subset I', by f,,
then £, T LP(t) and (€ ,)—>(1L+u(v)™* is a continuous function on I',. Thus e,f,,
€ L¥®) implies e,f,, € F, for each pair of positive integers m and 7z Since
te,fneSF, t'2%e, fr,c F and st LN®), it follows that

Dle, fust) = Dsten fr) = Dlsltenf ) {tenf ")

= Dlte, ) s(ten f)?)
— (I)(sl/ztl/zenfmtlmsx/z) .

By Lemma 4.1, ®le, f.5t) 1 D(s¥%572)0) in Z. On the other hand, by Lemma
1.1.1, Dle,f,st)—D(st)(0) in Z, therefore P(st) = Bs¥2s"?)=0, so that the,
statement (1) follows. To prove (2), we argue as follows. Let s, #<L¥®) such
that [s| =l¢|, then by (1), [s|"*(]z]—|s]"*)=0 implies that &(|s|(|¢|—]s|)
=@(|s|2([£] — |s])|s]V2)=0, that is, D(|s||z])=D(|s|?). By the same way,
@(|£]2)=D(|s])£]). Next let s,¢ € L{D),, such that ®(s?)<D#), then 0=D((t—s))
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= B — 2D(st) + B(s?) = 2 D(t?)— 2 D(st) and this completes the proof of the statement
(3). Let te L¥®) and u< M,, thep |utu*|*s*, which implies by Lemma 3.2 (3)
that the assertion (4) follows. Now we shall show the statement (5). Let s, ¢
be in L¥P) and st=w|st| be the polar decomposition of sz, then it follows, by the
argument used in the proof of Theorem 3.1, that

[D{st)|? = |Dlw|st])|* = ([l |st] )2 = B |st]
= (®(w*st)) = O((w*sy¥(w*s)D(t*z)
= O(s*s5)D(t*t) .

Now let a=Sup{|®(st)]; Dr*t)=1} in Z, then by the above inequality
a=®P(s*s)2, Let ¢t,=(D(s*s}+(1/n)1)"2s*( e L}(®P)) for each positive integer =,
then ®(t¥t,) = (B(s*s) + (1/n)1) 1 Bs*s) = (D(s*s) + (1/n)1)D(s*s) =<1 and &(st,)
= (P(s*s)+(1/7)1)"2D(s*s), so that

(D(s*s)+(1/n)1)2D(s*s)*D(s*sV/* = a

for all n, that is, a=®(s*s)'* and the statement (5) follows. This completes the
proof.

Now for any pair @ and & in LY{®), we define (a,b)y= D{b*a), then (, ),
satisfies the following properties :

(1) (a b)y = (b a);,
(2) (aa)e=0,(a,a)e =0 only if a =0,
(3) (sa-+b,cle = sla,cls +1b,¢)s,

for all a, b, cc LX®) and s Z. If we define ||alll,={a, a)p||”* for a e L{D), then
by ([9, 82]), L*(®P) is a normed module over Z with respect to |||, ||l ;. Moreover, we
have the following :

(1) Let {e} be an orthogonal family of projections in Z such that > _.e,=e{ € Z,)
and if a € L¥®) such that e,a =0 for all 7, then ea =0.

(2) Let{e} be an orthogonal family of projections in Z such that > e =1,
and let {a,} be a bounded subset of Li®), then there exists in Li{®P) an element a
such that e,a = e,a, for each 1.

In fact, by the Baer*-ring property of ¥ ([12, Theorem 3.1]), we can easily
show the statement (1). On the other hand, since {[12, Theorem 4. 1]), there exists
a unique a € H such that e;a =e¢,a,, to prove the assertion (2 ), it suffices to show
that a € LY{®). e,a*a=e,a}a, implies e,a*a < LY(®) for each 7. Denote Sup ffjall.
by k and we have ®le,a*a) = eDla*a)= e, Dlaa,) = ke, for all 7, that is, Dla*a)
=k-l,ac L(®) and [|all|,=*%. The statement (2) follows.
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The rest of this section is devoted to prove that LX®P) is complete with respect
to the norm |||, |||, that is, LYD) is an AW *-module over Z. To prove this, we
need the following lemma.

LEMMA 4.3. Let {t,} be an increasing sequence in LAD) such that
Nl 2 —2, | e —>0(m, n—o0), then there is an element t € L{®)* such that ||t,—t]|,

—0(n— ).

PROOF. By passing to a subsequence if necessary, we can suppose || £,+1—%x lll
<1/16" for each n. By the spectral theorem ([11]) we can choose sequences of
projections f{e,} in {t,.,—%,}" and {f,} in {£.}” such that 0=(t,,; — t.)e,
=(1/5%) L {tpr1—2.) Z=(1/5"f1—€,), t, fn = 2"+ 1 and ¢,= 2%(1—f,) for each n. Now

put p,= /\ek /\ S by the same arguments as in the proof of Theorem 3. 2, {,}

k=n
is an SDD and there exists a sequence {s(k)} in M,, such that ¢,p,— s(k)ps
uniformly and {s(&), p,} is an EMO. Denote [s(k),p.] by ¢ Let £—¢,t,
=u, | 12— tnt, |(veSp. tpt,—t=v, |t~ |) be the polar deccmrosition of #,—¢,z,
(resp. t,.t,—t%), then by Theorem 3.1 (4) and Lemma 4.2, we get that

O |tr —ta]) = V| 6h — tatn|) + N[ Lty — tul)
= Q(ut,(tn — b)) + DK (tn — £, )En)

=(Wealllat Mtn o) Wta—tn lll 2= 1

for each pair of integers m and »n. Thus {3} isa ||, || ,—Cauchy sequence in LY{<P).
By Theorem 3.2, there exists an se LY®} such that [||z2—s||;—0n—oc0) and

tI—s n. e.(ﬂ—’°°)- Let rg= /\ ((tn+1 _tn)—l[Pn]) /\ (tzl[Pn]) and gn=pPn /\ Tns

n=k

then by [11, Lemma 3.1], {g,} is an SDD. For any pair £ and n with n=%,

(thas — 820Gk = tnarltnss — Ea)Qic + (Enir — Ea)nGy

= tn+lpn(tn+1 - tn)qk + (tn+1 - tn)Pntnqka

therefore (£%,,—t3g. ¢ M and (4., —£)g:]|<<2+(2/5), so that by the similar reason
to that of Theorem 3.2, there is a sequence of elements {s(k)} in M,, such that
£.q, — s|k) g, uniformly (m—oo) and {s(k), g} is an EMO. Let #=[s(k),qc]€C,
then 2 —t'n.e. (n— o). Thus q,s(k)*q,=q.s(k)'q. for all k, so that by the Baer*-
ring property of M, there is an SDD {g;} such that s(k)q; = s(k)q:. for each £,
while £, —s(zn.e.), by the unicity of n.e. limit, it follows that £ =¢ =se LY{®D),
that is, € L¥®). On the other hand #=¢, implies by Lemma 4. 2,
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D[t — ta)?) = Dt?) — 2D(tt,) + DE2)
= P*) — Dth)

=Ds—2)=|ls—£ll,-1.

Thus || £—2. ! ;—0(m— oo) and ¢, —#n. e.)(n — oo). This completes the proof.

THEOREM 4.1. LY®) is a faithful AW *-module over Z([9]) with respect
to the norm ||, |l .

PROOF. The proof of that L¥®P) is an AW *-module is an obvious modification
of that for Theorem 3.2, thus it is sufficient to show that L¥®) is faithful. In
fact if ae Z with at=0 for all #e L¥®), then the semi-finiteness of ® and the
Baer*-ring property of C show the desired property that a=0. This completes the
proof.

5. Proof of the main theorem. In the followings, we always denote L*D)
by M. By [9, Theorem 7], the set BM) of all bounded module homomorphisms of
M into M is an AW *-algebra of type 1 with the center Z. The left (resp. right) regular
representation m(resp. z,) of M is a *-homomorphism (resp. *-antihomomorphism)
of M into BIM) which is defined by i (x)t=xt{resp.my{x)t=tx) for any x < M and
t< M. Since FCM, m,(x) = Ofresp. m,(x)=0) implies that there exists an orthogonal
family {e,} of projections in M such that xe,=Oresp. e.x=0) for each a and
> «e.=1. By [7, Lemma 2.2], £=0, that is, m(resp. m,) is a *-isomorphism (resp.
*_antiisomorphism).

LEMMA 5.1. (M) and (M) are AW *-subalgebras of BM).

PrROOF. We have only to prove the first of these statements, the second
follows similarly. By [8, Definition], it suffices to show that for any orthogonal set

{e} <1 of projections in M with e=)_,.,e,, m (Zie Jet) 1T mle) in BMY\J<F D).

In fact, since (m(e)— b2 (Z ei)x, x)q, = @(x*(e—ziqet> x), therefore from Lemma

ied

4.1 and [14, Lemma 1.4] > ;.,me;) T mile) in B(M). This completes the proof.

LEMMA 5.2. For any ac M, there is a sequence {a,} in MW such that
Nall:=lally and |a,—als —00) in Z*, whre |x|s=(x,x}? for any zx<M.

PrROOF. Let a=u|a| be the polar decomposition of a in C, then for any
be F*, \ulla]—b)|e=||a| —b]|s so that we have only to prove the assertion for
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the case when a= 0. Let v be the Cayley transform of g, then from the spectral
theorem ([11)), there are an SDD {e,} in {v}” and a sequence of projections {f,}
in {v}” such that n(l—e,)=<a, ae, and (1+wv)f, is invertible in .f,Mf, for each =.
Since a, = ae,fn€ F' and a*=ai=da’ if m<n, then

0= ¥(@) — Pla}) = Ve (Ll—enfs) = Dla*(Ll—enfn)
so that by Lemma 4.1, 0=0—Lm(®{a®)—D(al)) =D(a*(1—f,) for all m, which
implies by Lemma 1.1. 1, ®a2) I ®(a?)(0). While from Lemma 4. 2, it follows that
Dl(a—a,)?) = Da?)— D(a}). This shows that |a~—a,|,— 0(0) and the proof is completed,

LEMMA 5.3. #(M) = m (M) and n,M)" = z,(M} in BIWM) where W is
the commutant of % in BM).

PrROOF. The methods which will be used here are patterned after those of
[2, Chapter 1, Section 5]. Since m,(M) DayM) and 7z (M) D\ (M), we have only
to prove the converse inclusion. Let x be a left (resp. right) bounded element in M,
that is, an element x such that there is Bj(x) (resp. B,{x)) in BM) such that
Bi(x)a = my(a)x(resp. By(x)a = mi{a)x) for all MNIM. First of all, we shall show
that the set M,= {B,(x); = is left bounded} is a left ideal of 7,(M Y. In fact, for any
aand b in MNM, an easy calculation shows that (Bi(x)wy(a)b, ¥)e =(ma(a)Bi(x)8,¥)s
for any ye L}®). Therefore, by Lemma 1.1.1, Lemma 5.2 and the Schwarz’
inequality, (¢, (Bi(x)mq(a)}*v)s = (¢, (msla)B\(x))*y), for any c e M, that is, Bi(x)w.a)
=my(a)B,(x} for any ae MNM. The semi-finiteness of @ implies that there is an
increasing family of projections {e.} in MNIM such that for any ae M, ae.c M
and s(ae.) — mi(a) weakly ([14, p. 311]). Thus B,(z)z.(a)=n.a)B.{x) for all ae M,
that is,3, C 2,(M). Since for any T € z,(M), TByx)a=T - wa)r=m,{a)Tx for all
acs MNIM, Tx is left bounded and B,(Tx)=TB,(x). Hence the assertion follows.
From the same reason, M,= {B,(x); x is right bounded} is a left ideal of =, (M.
Let M=M M} and M,=M, DM}, where U*={x¥,.x< U} for any subset A
of BM), then My Cw (M) and M, C 7, (M). Next we shall show that My ==, (M.
In fact, for any T € m, (M) and T, € WMo, T 1wy (b)T mi(a) = m(0)T « my(@)T;, for any a
and b in MNM, so that from the above argument, we have 17,7 =TT, that is,
(MY =M;. By the same way, =,(M)=M"* To prove Lemma 5. 2. it suffices to
show M, M;. In fact, let B,(a)c M; and B,(b) < M,, then B,(aj* = B,(c)(resp. By(b)*
= B,(d)) for some left (resp. right) bounded element c¢ (resp. d). Therefore, by a
standard calculation shows that for any & and vy in MNM, (@xy)e = (¥, 2y)s. By
lemma 5. 2, it follows that a=c¥*. By the same way b=d*. Again by Lemma 5. 2,
there exist sequences {x,} and {¥,} in MNM such that |x,—al,=|xF—c]|,—00),
|¥n=ble = |¥i—d]s —00), llz:ll.=llall, and [[y.ll:=[l&]l, for each =
Therefore, by Lemma 1.1.1, from the similar arguments ([2, p.68,Lemma 3]) it
follows that (Bi(a)B.(b)x, v)e = (By(b)Bi(a)x, ¥)s for any x and ¥ in MNM. From
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Lemma 5. 2, we have B,(a)B;(b)= B,(b)B\(a), which Implies My C M;. This completes
the proof.

For any ae M, let V {7 (M) a} be the AW*.submodule generated by {=,(M)a}
and E, be the projection on V {m,(M)a} ([9, Theorem 3]), then E, ¢ =,(M)’". In
fact, for any Aen (M), A{mi(MYa}CV {m(M)a}. Let {e.} be an orthogonal
family of projections in Z with 3.e.=1 and let {y.} be a uniformly bounded
subset of {=(M)a}, then [9, p. 842, Definition], A(Z.e.Y.)=2c€.Ay. in M, so
that A(S.e.y.)e V {m{M)a}. The continuity of A implies A(V {m{M)a})C
V {m(MYa}, that is, AE,=E,AE, for all A< x{M), so that E,c m(M)’. E, is
called a cyclic projection relative to a.

Now we are in the position to state

THEOREM 5.1. m(M)’ = m(M), that is, M can be imbedded as a double
commutator in a type 1 AW*-algebra BM) with the center which is
*.isomorphic with Z.

PROOF. By the spectral theorem, it suffices to show that = (M), = m,(M,).
For any Pe m(M),, let {E,} be a maximal family of orthogonal cyclic projections
in m(M)" majorized by P. By the definition of E,, the standard argument shows
that P=3_E. in B(M). Since ={M) is an AW*-subalgebra of FH(M), by [14,
Lemma 4.5], in order to prove Pe m(M),, we have only to show that E, ¢ m{M)
for all ze M.

Let z=u|x] be the polar decomposition of x in C, then E,=mu)E,, mw)¥*.
In fact, observe that r=m(u)|x| and |z|=mu)*x, Ax=m(u)A|x| and m(uw)*Ax
=A|x| for any Aem(M), so that V {m(M)z} >mu)V {m(M) |x]|}). For any
ye V{m(MYyz} and for any positive real number & we can choose an orthogonal
set {e,} of projections in Z and a family {B.} in x(M) such that S.e.=1,
S:Jp MBexlll ;<< oo and ||y—Z.e.B.xll <& Since e,m(u)m(u)*B.x = e.B.x for

each a, we have ||y—mw)m(ef*y || s <28, that is, y=m(u)m(e}*y. On the other
hand, m(w)*B,x=B.|x| and ||B.|x|||,= ||B.xlll, for each a implies that
| i)y — Se€aBe| x| Il ;<< & and mi(we)*y € V {m(M) |z|}. Therefore combining the
above results, y € mu)lV {m{M) |z|}), that is, V {m(M)x}=mlu)V {m(M) |x]|}).
By the same way, it follows that m(Rp(x)) (V (m(M) |z|)=V {m(M) |x|}. From
these facts, we get that E,=mu)E ;= (u}*. Hence to prove that E, € n{M), we
may assume x==0 without loss of generality.

Let zeM with £=0, then there exist a projection e, and f, in {x}”
satisfying the properties described in the proof of Lemma 5.2. Let a,=xe.fi € F),
then a,7,a.=x and |a,—x|,—0(0). Since a,=mle.fr)x= mle.fo)x: Es, = E,
and E,, 1. Moreover |a,—x|s—0(0) implies E, 1 E, in BM). Thus by [14,
Lemma 4.5], to prove E_ € m(M), we have only to show that E, ¢ m(M) for each
n.
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Now we shall prove that E, e n(M) for all ac &. Since ={{(M) is an AW*-
subalgebra of FH(M), it is sufficient to show that E,=LP(B(M)) m(a) (8, Lemma
2]). Observe that for any be MNM, #yb)a=ab=m(a)bec V {m(a)M}, let E be
the projection in B(IM) corresponding to V {m(a)M}, then Em,(b)a=mn,b)a for all
be MNIM. The semi-finiteness of & implies that for any A e #,(M), there is a net
{a.} in MNIM such that [mya.)|=|Al for each & and mya.)— A strongly in
BM). Therefore Exyb)a= nyb)a for all be M. For any A € (M) (=m(M)),
since (M) is an AW *-subalgebra of B(M), by [14, Lemma 4.2], there is a bounded
net {A:} Cw, (M) such that A;—A strongly in BM), thus EAa= Aa, which
implies V {m{M)a} CV {mla) M}, that is E,<E. For any x<M, by Lemma 5.2,
there is a sequence {b,} in MNM such that [x—b,],—0(0) and || &, 1l .=l xlll,
for each n, so that E,mla)b, = m{a)b, implies E,m(a)x = m{a)z, that is, E=E,.
An easy calculation shows that E=LP(B(IM)(xa)) and the proof is now completed.

COROLLARY. Let B be an AW*-algebra of type 1 with center & and
let A be a semi-finite AW*-subalgebra of B which contains B, then A=A’
in B.

By Theorem 5.1, the proof proceeds in entire analogy to that of [14, Theorem
4.4], so we omit the details.
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