ON THE EMBEDDING AS A DOUBLE COMMUTATOR IN A TYPE 1 AW*-ALGEBRA

KAZUYUKI SAITÔ

(Rec. April 30, 1971)

The purpose of this paper is to prove the following:

THEOREM. Let M be a semi-finite AW^* -algebra with center Z. If M possesses a complete set $\mathfrak S$ of Z-valued bounded positive module homomorphisms which are completely additive on projections, then M can be embedded as a double commutator in an AW^* -algebra of type 1 with center which is isomorphic to Z.

One of the problems concerning AW^* -algebras is: Whether or not there is a non-trivial AW^* -subalgebra of a W^* -algebra ([3], [16])? As an application of the above result, we shall show the following result which is a partial answer to this problem and is a generalization of [13, Theorem 5.2] on a problem of Feldman.

COROLLARY. Let \mathcal{B} be an AW^* -algebra of type 1 with center \mathcal{Z} and let \mathcal{A} be a semi-finite AW^* -subalgebra of \mathcal{B} which contains \mathcal{Z} , then $\mathcal{A} = \mathcal{A}''$ (the double commutator of \mathcal{A} in \mathcal{B}) in \mathcal{B} .

Under the finiteness assumption on M and \mathcal{A} , H. Widom ([14]) showed the same result (see also [3], [4], [9] and [15]).

The main tool in this paper is a "non-commutative integration theory" with respect to a Z-valued trace Φ (a non-commutative vector measure) on the algebra of "locally measurable operators" affiliated with the given AW^* -algebra M.

This paper is devided into five sections. Section 1 is the preliminaries for the later sections and we will introduce the notion of " \mathfrak{S} -0-convergence" in M (Definition 1.1.2) such that for any orthogonal set $\{e_{\alpha}\}$ of projections in M with $e = \sum_{\alpha} e_{\alpha}$ and any element $a \in M$, $a^*ea = \sum_{\alpha} a^*e_{\alpha}a$ (unconditional sum of $a^*e_{\alpha}a$ with respect to \mathfrak{S} -0-convergence). In section 2, we shall prove the existence of a " \mathfrak{S} -0-continuous" natural application (Z-valued trace) Φ on M, using the Goldman's result ([4]). In section 3, along the same lines with [10], the extension theory of Φ to "locally measurable operators" affiliated with M ([11], [12]) are discussed. In particular, we shall show that the set $L^1(\Phi)$ of all Φ -integrable locally measurable operators is a

complete normed module over Z. Section 4 concerns with the construction of AW^* -module $L^2(\Phi)$ (the collection of all Φ -square integrable locally measurable operators) over Z. The last section is devoted to prove our main theorem, more precisely to say, we shall show that the left regular representation π_1 of M on $L^2(\Phi)$ is a *-isomorphism of M into $\mathcal{B}(L^2(\Phi))$ (the set of all bounded module endomorphisms of $L^2(\Phi)$) such that $\pi_1(M)'' = \pi_1(M)$ in $\mathcal{B}(L^2(\Phi))$ ($\pi_1(M)''$ is the double commutator of $\pi_1(M)$ in $\mathcal{B}(L^2(\Phi))$).

1. Definitions and preliminary results. An AW^* -algebra M means that it is both a C^* -algebra and a Baer*-ring ([7]).

The set of all self-adjoint elements, non-negative elements, projections, partial isometries and unitary elements in M is written with M_{sa} , M^+ , M_p , M_{pi} and M_u , respectively.

We will say AW^* -algebra M to be semi-finite if every non-zero projection in M contains a non-zero finite projection in M.

For other informations about AW^* -algebras, in particular, the lattice structure theory of projections, and the algebra of "locally measurable operators", we refer to the papers [7], [8], [11], [12], [13], [14] and [16].

Denote the collection of all finite subset of a set A by $\mathcal{F}(A)$.

1.1. Order limits and center-valued c.a. states. Let Z be an abelian AW^* -algebra, then in virtue of the Gelfand representation, Z (resp. Z_{sa}) can be identified with the algebra $C(\Omega)$ (resp. $C_r(\Omega)$) of all complex (resp. real)-valued continuous functions on a stonian space Ω . Topologized the extended real line $[-\infty, +\infty]$ by the interval topology, let $C_r^*(\Omega)$ be the set of all $[-\infty, +\infty]$ -valued continuous functions on Ω , then it is a complete lattice which is lattice isomorphic with the unit interval of the bounded complete lattice $C_r(\Omega)$ relative to the natural ordering for real functions and contains $C_r(\Omega)$ and Z (the set of all $[0, +\infty]$ -valued continuous functions on Ω ([1])) as sublattices.

Let $\{a_{\lambda}\}$ be a net in $C_{r}^{*}(\Omega)$ and $a \in C_{r}^{*}(\Omega)$. By $a_{\lambda} \to a(0)$, we mean that $a = \limsup a_{\lambda} = \liminf a_{\lambda}$. In these circumstances, we say that the net $\{a_{\lambda}\}$ order converges to a. For any net $\{b_{\lambda}\}$ in $C(\Omega)$, $\{b_{\lambda}\}$ order-converges to b in $C(\Omega)$ if $(1/2)(b_{\lambda}+b_{\lambda}^{*}) \to (1/2)(b+b^{*})(0)$ and $(1/2i)(b_{\lambda}-b_{\lambda}^{*}) \to (1/2i)(b-b^{*})(0)$ where $i = \sqrt{-1}$. If Z is a von Neumann algebra, then $b_{\lambda} \to b(0)$ if and only if $\{b_{\lambda}\}$ converges strongly to b. In the case of an AW^{*} -algebra, the following criterion is useful for the later discussions.

LEMMA 1.1.1 ([14]). Let $\{a_{\lambda}\}$ be a net in an abelian AW* algebra Z and a be in Z, then $a_{\lambda} \rightarrow a(0)$ if and only if for any positive real number ε and a non-zero projection e in Z, there are a λ_0 and a non-zero projection f with $f \leq e$ such that $\|(a_{\lambda}-a)f\| < \varepsilon$ for all $\lambda \geq \lambda_0$.

Next let N be an AW^* -algebra and N^* be the center of N. A center-valued state ϕ on N is a non-negative module homomorphism ϕ from N to N^* . ϕ satisfies the following additional properties: (1) $\|\phi(a)\| \leq k\|a\|$ for all $a \in N$ (k depends only on ϕ), (2) $\|\phi(a^*b)\|^2 \leq \phi(a^*a)\phi(b^*b)$ for $a, b \in N$, (3) $\phi(b^*a^*ab) \leq \|a^*a\|\phi(b^*b)$ for $a, b \in N$. By a center-valued c.a. state ϕ on N, we mean a center-valued state on N with the property that for any orthogonal family of projections $\{e_a\}$ in N_p with $e = \Sigma_a e_a$ ($e \in N_p$), $\phi(e) = \Sigma_a \phi(e_a)$ in N^* , where $\Sigma_a \phi(e_a)$ is the unconditional sum of the $\phi(e_a)$ in N^* .

LEMMA 1.1.2. Let ϕ be a center-valued c.a. state on N, then for any $a \in N$ and any orthogonal family $\{e_{\alpha}\}$ of projections in N with $e = \Sigma_{\alpha} e_{\alpha}$, $\phi(a^*ea) = \Sigma_{\alpha} \phi(a^*ea)$ in N^* .

Since N^{6+} is a bounded complete lattice, by Lemma 1.1.1, the proof is an obvious modification of that for a similar result in [3, Lemma 3].

In the followings, let M be a semi-finite AW^* -algebra with the center Z and suppose that there is a set $\mathfrak S$ of Z-valued c.a. states on M such that $\phi(a^*a)=0$ for all $\phi \in \mathfrak S$ implies a=0. Let $\mathcal L(\mathfrak S)$ be the set of finite linear combinations of elements in $\{a^*\phi a, \phi \in \mathfrak S, a \in M\}$, where $(a^*\phi a)(x)=\phi(axa^*)$ for $x \in M$.

DEFINITION 1.1.2. A net $\{a_{\alpha}\}$ in $M \in 0$ -converges to a in $M(a_{\alpha} \rightarrow a) \in \mathcal{L}(\mathfrak{S})$ if $\phi(a_{\alpha} - a) \rightarrow 0(0)$ in Z for all $\phi \in \mathcal{L}(\mathfrak{S})$.

REMARK. (1) Let $\{e_{\alpha}\}$ be an orthogonal family of projections in M with $\Sigma_{\alpha}e_{\alpha}=e(\in M_p)$, then $\Sigma_{\alpha\in J}e_{\alpha}\to e(\mathfrak{S}-0)(J\in \mathcal{F}(\{\alpha\}))$ by Lemma 1.1.2. (2) Since \mathfrak{S} is a separating set, an \mathfrak{S} -0-limit is unique.

1.2. Existence of a trace. Let N be a finite AW^* -algebra with the center N^* which has a separating set \mathfrak{S}' of center-valued c.a. states. Then, we have

PROPOSITION 1.2.1. There is a unique central trace Φ having the additional property that for any increasing net $\{a_{\gamma}\}$ in N^{+} , with $a_{\gamma} \uparrow a(\mathfrak{S}'-0)$ for some $a \in N^{+}$, then $\Phi(a_{\gamma}) \uparrow \Phi(a)$ in N^{+} .

PROOF. Existence of a trace Φ on N is due to M. Goldman [4]. Therefore we have only to show that Φ satisfies the continuity described above. Since \mathfrak{S}' is a separating set, by [4, Lemma 2.6], for any $p \in N_p^{\ell}$, there are a non-zero projection e in N ($e \leq p$) and a non-negative mapping ϕ in $\mathcal{L}(\mathfrak{S}')$ with $\phi(e) \neq 0$ such that $\Phi(a) \leq \phi(a)$ for all $a \in (eNe)^+$. Take a positive integer m and a non-zero central projection $(q \leq p)$ with $\Phi(e) \geq (1/m)q$ such that there exists a projection $h \in N$ with $\Phi(h) = (1/m)q$. Hence we can choose a family $\{h_i\}_{i=1}^m$ of mutually orthogonal

projections in N such that $h_1 \leq e$, $h_i \sim h_j$ and $\sum_{j=1}^m h_j = q$. Let v_j be in N_{pi} such that $v_j^*v_j = h_i$, $v_iv_j^* = h_j$ and put $\psi(b) = \sum_{j=1}^m \phi(v_j^*bv_j)$ for $b \in N$, then $\psi \in \mathcal{L}(\mathfrak{S}')$ and $\psi(1-q)=0$. Now, noting that $v_i^*bv_j \in eNe$ for each pair of i and j, it follows that for each $b \in Nq$,

$$\psi(b^*b) = \sum_{i,j=1}^m \phi((v_i^* b^* v_j)(v_i^* b^* v_j)^*)$$

$$\geq \sum_{i,j=1}^m \Phi((v_i^* b^* v_j)(v_i^* b^* v_j)^*)$$

$$= \Phi(b^* b).$$

Hence by Zorm's lemma there are families $\{q_{\alpha}\}\subset N_p^{\beta}$ and $\{\phi_{\alpha}\}\subset \mathcal{L}(\mathfrak{S}')$ such that $q_{\alpha}q_{\beta}=0$ $(\alpha \neq \beta)$, $\Sigma_{\alpha}q_{\alpha}=1$, $\phi_{\alpha}(q_{\alpha})\neq 0$, $\phi_{\alpha}(1-q_{\alpha})=0$ and $\phi_{\alpha}(b^*b)\geqq \Phi(b^*b)$ for all $b\in Nq_{\alpha}$ for each α . If $\{a_{\gamma}\}$ is an increasing net of N^+ such that $a_{\gamma}\uparrow a(\mathfrak{S}-0)$ for some $a\in N$, then $q_{\alpha}\Phi(a_{\gamma})\uparrow q_{\alpha}\Phi(a)$ in $N^{\beta+}$ for each α . Therefore by Lemma 1.1.1, $\Phi(a_{\gamma})\uparrow \Phi(a)(0)$. This completes the proof.

2. Existence of a natural application on M^+ . Let Ω be the spectrum of the center Z of the given semi-finite AW^* -algebra M and Z be the collection of all $[0, +\infty]$ -valued continuous functions on Ω .

To prove the existence of a natural application, we need the following, whose proof can be easily supplied by the reader.

LEMMA 2.1. Let $\{a_{\alpha}\}$ be an increasing net in \mathbf{Z} such that $a_{\alpha} \uparrow a(0)$ in \mathbf{Z} for some $a \in \mathbf{Z}$, then for any $b \in \mathbf{Z}$, $ba_{\alpha} \uparrow ba(0)$ in \mathbf{Z} .

Since M is semi-finite, there is a finite projection p in M such that z(p)=1. Let $\{p_{\alpha}\}_{\alpha \in \pi}$ be a maximal family of orthogonal equivalent projections in M such that $p \sim p_{\alpha}$ for each α and $p \in \{p_{\alpha}\}_{\alpha \in \pi}$. By the maximality of $\{p_{\alpha}\}_{\alpha \in \pi}$, there is a central projection z such that $p_0 = (1 - \sum_{\alpha \in \pi} p_{\alpha})z \lesssim pz \neq 0$. Therefore we can take families $\{z_{\beta}\}_{\alpha \in \pi}$ and $\{p(\alpha_{\beta}, \beta)\}_{\alpha_{\beta} \in \pi_{\beta} \cup \{0\}}$ in M_p such that $z_{\beta}z_{\gamma} = 0$ $(\beta \neq \gamma)$, $p(\alpha_{\beta}, \beta)p(\gamma_{\beta}, \beta) = 0$ $(\alpha_{\beta} \neq \gamma_{\beta})$, $z_{\beta} = p(0, \beta) + \sum_{\alpha_{\beta} \in \pi_{\beta} \cup \{0\}} p(\alpha_{\beta}, \beta)z_{\beta}$, $p(\alpha_{\beta}, \beta)z_{\beta} \sim p_{\beta}z_{\beta}$ for each $\alpha_{\beta} \in \pi_{\beta}$, $z(p_{\beta}) = z_{\beta}$, p_{β} is finite for each β , $p_{\beta} \in \{p(\alpha_{\beta}, \beta)\}_{\alpha_{\beta} \in \pi_{\beta}}$ for each β , $(1 - \sum_{\alpha_{\beta} \in \pi_{\beta}} p(\alpha_{\beta}, \beta)z_{\beta} = p(0, \beta) \lesssim p_{\beta}z_{\beta} \neq 0$ and $\sum_{\beta}z_{\beta} = 1$. Noting that $z_{\beta}p_{\beta}Mz_{\beta}p_{\beta}$ is a finite AW^* -algebra whose center is $Zz_{\beta}p_{\beta}$, if $\mathfrak{S}_{\beta} = \{(z_{\beta}p_{\beta}\phi z_{\beta}p_{\beta})p_{\beta}, \phi \in \mathfrak{S}\}$ (where $(z_{\beta}p_{\beta}\phi z_{\beta}p_{\beta})p_{\beta}(x) = p_{\beta}\phi(z_{\beta}p_{\beta}xz_{\beta}p_{\beta})$, $x \in M$), then \mathfrak{S}_{β} is a separating set of centervalued c.a. states on $z_{\beta}p_{\beta}Mz_{\beta}p_{\beta}$. By Proposition 1.2.1, for each β , we can choose a $Zz_{\beta}p_{\beta}$ -valued \mathfrak{S}_{β} -0-continuous trace Φ_{β} on $z_{\beta}p_{\beta}Mz_{\beta}p_{\beta}$. Now let ψ_{β} be the

*-isomorphism of $Zz_{\beta}p_{\beta}$ onto Zz_{β} which is defined by $\psi_{\beta}^{-1}(x) = xp_{\beta}$ for each β and let $v(\alpha_{\beta}, \beta)$ be the partial isometry such that $v(\alpha_{\beta}, \beta)^*v(\alpha_{\beta}, \beta) = z_{\beta}p_{\beta}$, $v(\alpha_{\beta}, \beta)v(\alpha_{\beta}, \beta)^* = p(\alpha_{\beta}, \beta)$ for each $\alpha_{\beta} \in \pi_{\beta}$ and each β , $v(0, \beta)^*v(0, \beta) \leq z_{\beta}p_{\beta}$ and $v(0, \beta)v(0, \beta)^* = p(0, \beta)$ for each β . Define a new linear operation Φ on M^+ to Z as follows:

$$\Phi(h) = \Sigma_{eta} \{ \Sigma_{lpha_{eta} \in \pi_{eta} \cup \{0\}} \psi_{eta}(\Phi_{eta}(v(lpha_{eta},oldsymbol{eta})^* hz_{eta}v(lpha_{eta},oldsymbol{eta}))) \}, \hspace{0.5cm} h \in M^+$$

where $\Sigma_{\alpha \in A} a_{\alpha}$ is the unconditional sum of the a_{α} in \mathbb{Z} , then Φ is a natural application on M^+ , that is,

THEOREM 2.1. The operation Φ on M^+ to \boldsymbol{Z} satisfies the following properties:

- (1) If $h_1, h_2 \in M^+$ and λ is a non-negative number, $\Phi(h_1 + h_2) = \Phi(h_1) + \Phi(h_2)$ and $\Phi(\lambda h_1) = \lambda \Phi(h_1)$.
 - (2) If $s \in M^+$ and $t \in Z^+$, then $\Phi(st) = t\Phi(s)$.
 - (3) If $a \in M^+$ and $u \in M_u$, $\Phi(uau^*) = \Phi(a)$.
 - (4) $\Phi(a)=0 \ (a \in M^+) \ implies \ a=0.$
- (5) For every increasing net $\{a_{\mu}\}$ in M^+ such that $a_{\mu} \uparrow a(\mathfrak{S}-0)$ for some $a \in M^+$, $\Phi(a_{\mu}) \uparrow \Phi(a)(0)$ in \mathbf{Z} .
- (6) For any non-zero a in M^+ , there is a non-zero b in M^+ majorized by a such that $\Phi(b) \in Z^+$.

Using Lemma 2.1 and \mathfrak{S} -0-convergence instead of Lemma 2.12 and $\sigma(\mathfrak{S})$ -topology in [13], the proof of this theorem proceeds in a manner entirely analogous to that of [13, Theorem 3.1], so we omit it.

Next let $\mathfrak{P} = \{s \in M^+, \ \Phi(s) \in Z^+\}$, then since \mathfrak{P} satisfies the conditions of Lemma 1 in [2, Chapter 1 §1, 6], it follows that \mathfrak{P} is the positive portion of a two-sided ideal \mathfrak{N} and that there is a unique linear operation $\dot{\Phi}$ on \mathfrak{P} to Z which coincides with Φ on \mathfrak{P} with the properties; (a) $\dot{\Phi}(st) = \dot{\Phi}(ts)$ if $s \in M$, $t \in \mathfrak{N}$; (b) $\dot{\Phi}(st) = s\dot{\Phi}(t)$ if $s \in Z$ and $t \in \mathfrak{N}$.

Define Rank $(x) = \Phi(LP(x))$ for every $x \in M$, where LP(x) is the left projection of x in M, and Rank(x) has the following properties: (1) Rank $(x) \ge 0$, it is = 0 only if x = 0. (2) Rank $(x) = \text{Rank}(x^*)$, Rank $(\alpha x) = \text{Rank}(x)$ for every complex number $\alpha \ne 0$. (3) Rank $(x+y) \le \text{Rank}(x) + \text{Rank}(y)$. (4) Rank $(xy) \le \text{Rank}(x)$, Rank(y). In fact, (1) and the last half part of (2) are clear from definitions. By [7, Theorem 5.2], $LP(x) \sim LP(x^*)$, which implies by [13, Lemma 2. 4] $\Phi(LP(x)) = \Phi(LP(x^*))$. An easy calculation shows $LP(x+y) \le LP(x) \lor LP(y)$ and by the fact that $LP(x) \lor LP(y) - LP(x) \sim LP(y) - LP(x) \land LP(y)$, it follows that $\text{Rank}(x+y) \le \text{Rank}(x) + \text{Rank}(y)$. $LP(xy) \le LP(x)$ shows that $\text{Rank}(xy) \le \text{Rank}(x)$ and $\text{Rank}(xy) = \text{Rank}((xy)^*) = \text{Rank}(y^*x^*) \le \text{Rank}(y^*) = \text{Rank}(y)$. Thus (3) follows.

Therefore let $\mathcal{F} = \{a; a \in M, \operatorname{Rank}(a) \in Z^+\}$, then \mathcal{F} is a two-sided ideal

contained in \mathfrak{R} such that $\mathfrak{F}_p = \mathfrak{R}_p$. Moreover, by Theorem 2.1 (6) for any non-zero projection e in M, we can choose a non-zero projection in \mathfrak{F} majorized by e.

3. An extension of Φ to "locally measurable operators". We shall now consider "locally measurable operators" affiliated with M ([12]). An essentially locally measurable operator (ELMO) is a family of ordered pairs $\{x_{\alpha}, e_{\alpha}\}$, where $\{x_{\alpha}\} \subset \mathcal{C}$ (the algebra of measurable operators affiliated with M) and $\{e_{\alpha}\}$ is an orthogonal family of central projections such that $\Sigma_{\alpha}e_{\alpha}=1$. Two ELMO's $\{x_{\alpha}, e_{\alpha}\}$ and $\{y_{\beta}, f_{\beta}\}$ are said to be equivalent if $e_{\alpha}f_{\beta}x_{\alpha}=e_{\alpha}f_{\beta}y_{\beta}$ for all α and β . The equivalence class of $\{x_{\alpha}, e_{\alpha}\}$ is denoted by (x_{α}, e_{α}) and it is called a locally measurable operator affiliated with M(LMO), and the collection of all LMO's affiliated with M is denoted by \mathcal{M} . Algebraic operations in \mathcal{M} are componentwise, then it is a *-algebra in which \mathcal{C} is naturally imbedded as a *-subalgebra. We use letters x, y, z, \cdots for the elements in \mathcal{M} .

In [12], we showed the followings: (1) \mathcal{M} is a Baer*-ring, and (2) every element x in \mathcal{M} has a polar decomposition $x = w|x|(|x| = (x^*x)^{1/2})$ where $w^*w = RP(x)$ and $ww^* = LP(x)$. The self-adjoint part of \mathcal{M} is partially ordered by defining $x \ge y$ if $x - y = z^*x$ for some z. The subalgebra M is characterized as $\{x; x \in \mathcal{M}, x^*x \le \alpha 1 \text{ for some positive real number } \alpha\}$.

We want to extend Φ to \mathcal{M}^+ (the non-negative part of \mathcal{M}). The following definition is due to [10].

DEFINITION 3.1. For every $x \in \mathcal{M}^+$, we define

$$\Phi(x) = \sup \{\Phi(a), \ a \in M^+, \ a \leq x\},\$$

where the supremum is taken in **Z**.

It is clear that the new definition agrees with the old one in case $x \in M^+$. The following Lemma is helpful for the later discussions.

LEMMA 3.1. For every $x \in \mathcal{M}^+$, $\Phi(x) = \sup\{\Phi(a); a \in \mathbb{R}^+, a \leq x\} = \sup\{\Phi(a); a \in \mathcal{F}^+, a \leq x\}$.

PROOF. Since $\Phi(x) \ge \sup \{\Phi(a), a \in \mathfrak{R}^+, a \le x\} \ge \sup \{\Phi(a), a \in \mathcal{F}^+, a \le x\}$, we have only to prove the converse. Let $b = \sup \{\Phi(a); a \in \mathcal{F}^+, a \le x\}$ in \mathbf{Z} . By Theorem 2.1, there is an orthogonal family of projections $\{e_a\}$ in \mathcal{F}_p such that $\Sigma_a e_a = 1$. For any $J \in \mathcal{F}(\{\alpha\})$ and $a \in M^+$, $a^{1/2}(\Sigma_{\alpha \in J} e_\alpha)a^{1/2} \le a, a^{1/2}(\Sigma_{\alpha \in J} e_\alpha)a^{1/2} \in \mathcal{F}^+$ and $a^{1/2}(\Sigma_{\alpha \in J} e_\alpha)a^{1/2} \uparrow a(\mathfrak{S}^-)$. Therefore again by Theorem 2.1, $\Phi(a) = \sup \{\Phi(a^{1/2}(\Sigma_{\alpha \in J} e_\alpha)a^{1/2}); J \in \mathcal{F}(\{\alpha\})\}$, that is, $\Phi(a) \le b$. Thus $b = \Phi(x)$ and the lemma follows.

REMARK. For any $x \in \mathcal{M}$, $\Phi(x^*x) = \Phi(xx^*)$. In fact, let x = w |x| be the polar decomposition of x, then $xx^* = wx^*xw^*$ and $w^*xx^*w = x^*x$. If $x^*x \ge a$, $a \in \mathcal{F}^+$, then $aw^*w = w^*wa = a$ and $xx^* = wx^*xw^* \ge waw^* \in \mathcal{F}^+$. Thus, $\Phi(xx^*) \ge \Phi(waw^*) = \Phi(w^*wa) = \Phi(a)$, which implies $\Phi(xx^*) \ge \Phi(x^*x)$. By symmetry $\Phi(x^*x) = \Phi(xx^*)$.

Relations between the algebraic operations in \mathcal{M}^+ and our extended operation Φ are given in the following:

LEMMA 3.2. Let s and t be in \mathcal{M}^+ , then

- $(1) \quad \Phi(s+t) = \Phi(s) + \Phi(t);$
- (2) $\Phi(\lambda t) = \lambda \Phi(t)$ for any non-negative number λ ;
- (3) $\Phi(usu^*) = \Phi(s)$ for any $u \in M_u$;
- (4) $\Phi(as) = a\Phi(s)$ for any $a \in Z^+$.

PROOF. The statements (2) and (3) are clear from the definitions. For the assertion (1), since $\Phi(s)+\Phi(t) \leq \Phi(s+t)$, we have only to show the converse. Let a be in \mathcal{F}^+ such that $a \leq s+t$ and $c_n = a^{1/2}((1/n)1+s+t)^{-1}(s+t)^{1/2}$ (note that since $s+t \geq 0$, s+t+(1/n)1 is invertible in \mathcal{M} and $(s+t+(1/n)1)^{-1} \in \{s+t\}$ " for each positive integer n), then c_n and $a^{1/2}-c_n(s+t)^{1/2}$ are bounded elements such that $\|a^{1/2}-c_n(s+t)^{1/2}\| \leq 1/n$ and $\|c_n\| \leq 1$ for each n. Observe that $a \in \mathcal{F}^+$, let $x=c_ns^{1/2}$ and $y=c_nt^{1/2}$, then $xx^*=c_nsc_n^* \leq c_n(s+t)c_n^* \leq a^{1/2}((1/n)1+s+t)^{-2}(s+t)^2a^{1/2} \leq a$ and by the same way, $yy^* \leq a$, which implies x and y are in \mathcal{F} . Now put $a_1=x^*x$ and $a_2=y^*y$, then $a_1, a_2\in \mathcal{F}^+$, $a_1=s^{1/2}c_n^*c_ns^{1/2}\leq s$ and $a_2\leq t$. Therefore we have

$$\begin{aligned} \Phi(s) + \Phi(t) &\ge \Phi(a_1) + \Phi(a_2) = \Phi(x^*x) + \Phi(y^*y) \\ &= \Phi(xx^*) + \Phi(yy^*) = \Phi(c_nsc_n^*) + \Phi(c_ntc_n^*) \\ &= \Phi(c_n(s+t)c_n^*). \end{aligned}$$

Note that $LP(a)c_n = c_n$, it follows that $\{a^{1/2} - c_n(s+t)^{1/2}\}\{a^{1/2} - c_n(s+t)^{1/2}\}$ $\leq (1/n)LP(a)$. On the other hand, since $a^{1/2}(s+t)^{1/2}c_n^* = a^{1/2}(s+t)((1/n)1+s+t)^{-1}a^{1/2}$ $\leq a \in \mathcal{F}$, $a^{1/2}(s+t)^{1/2}c_n^* = c_n(s+t)^{1/2}a^{1/2}$, and $c_n(s+t)^{1/2} \in \mathcal{F}$, we get that

$$\Phi(a) - \Phi(c_n(s+t)c_n^*) = \Phi(\{a^{1/2} + c_n(s+t)^{1/2}\} \{a^{1/2} - c_n(s+t)^{1/2}\}^*).$$

Observe that $||c_n(s+t)^{1/2}|| \le ||a^{1/2}||$, it follows by the above arguments that

$$\begin{split} \|\Phi(a) - \Phi(c_n(s+t)c_n^*)\| &\leq \|a^{1/2} + c_n(s+t)^{1/2}\| \|\Phi(|a^{1/2} - (s+t)^{1/2}c_n^*|)\| \\ &\leq 2\|a\|^{1/2}(1/n)^{1/2}\|\Phi(LP(a))\| \end{split}$$

for each n, that is, $a \ge c_n(s+t)c_n^*$ implies that

$$\Phi(s) + \Phi(t) \ge \Phi(c_n(s+t)c_n^*)$$

$$\ge \Phi(a) - 2(1/n)^{1/2} ||a||^{1/2} ||\Phi(LP(a))|| \cdot 1$$

for all positive integer n, so that $\Phi(s) + \Phi(t) \ge \Phi(a)$ for all $a \in \mathcal{F}^+$ with $a \le s + t$. Thus by Lemma 3.1, $\Phi(s) + \Phi(t) \ge \Phi(s+t)$ and (1) follows.

To prove the assertion (4), since it is clear, by Lemma 2.1 and Lemma 3.1, that $a\Phi(t) \leq \Phi(at)$ for any $t \in \mathcal{M}^+$ and $a \in \mathbb{Z}^+$, it is sufficient to show the converse. Let c be in \mathcal{F}^+ with $c \leq at$, then for each positive integer n, $c \leq a + (1/n)t$, which implies $(a+(1/n)1)^{-1}a\Phi(c) \leq a \Phi(t)$ by Theorem 2.1. Since LP(a)c = c LP(a) = cand $(a+(1/n)1)^{-1}a\uparrow LP(a)$, we have $\Phi(c) \leq a\Phi(t)$, so that $a\Phi(t) \geq \Phi(at)$ by Lemma 3. 1. This completes the proof.

Let $\mathcal{L}^+ = \{t; t \in \mathcal{M}^+, \Phi(t) \in Z^+\}$, then by the above lemma, \mathcal{L}^+ has the following properties:

- (a) If $s \in \mathcal{L}^+$ and $u \in M_u$, then $usu^* \in \mathcal{L}^+$ and $\Phi(s) = \Phi(usu^*)$.
- (b) Let $s \in \mathcal{L}^+$ and $t \in \mathcal{M}^+$ with $t \leq s$, then $t \in \mathcal{L}^+$. (c) For every s and $t \in \mathcal{L}^+$, $s+t \in \mathcal{L}^+$ and $\Phi(s+t) = \Phi(s) + \Phi(t)$.

Let
$$L^{1}(\Phi) = \left\{ \sum_{i=1}^{n} t_{i} s_{i}^{*}, t_{i}^{*} t_{i}, s_{i}^{*} s_{i} \in \mathcal{L}^{+} \right\}$$
, then

THEOREM 3.1 ([10]). $L^{1}(\Phi)$ is a unique invariant linear system (that is, $ML^{1}(\Phi)M\subset L^{1}(\Phi)$) such that $L^{1}(\Phi)^{+}=\mathcal{L}^{+}$. Moreover, there is a unique nonnegative linear operation $\dot{\Phi}$ on $L^1(\Phi)$ to Z, which coincides with Φ on \mathcal{L}^+ , with the following properties:

- (1) For $s \in L^1(\Phi)$ and $a \in M$, $\dot{\Phi}(at) = \dot{\Phi}(ta)$;
- (2) for $a \in Z$ and $s \in L^1(\Phi)$, $\dot{\Phi}(at) = a\dot{\Phi}(t)$;
- (3) for any $t \in L^{1}(\Phi)$, Sup $\{|\dot{\Phi}(at)|; ||a|| \leq 1, a \in M\} = \Phi(|t|);$
- (4) if $s, t \in L^1(\Phi)$, then $\Phi(|s+t|) \leq \Phi(|s|) + \Phi(|t|)$.

PROOF. The proof of the assertions except for (3) and (4) are obvious modifications of those for similar results in section 2 for the case $\mathfrak R$ and Φ . To prove the assertion (3), we argue as follows. Observe first that from the standard calculation, $|\dot{\Phi}(st)|^2 \leq \Phi(s^*s)\Phi(t^*t)$ for any s and t with s^*s and $t^*t \in \mathcal{L}^+$. Let t=u|t|be the polar decomposition of t in $L^1(\Phi)$, then for any $a \in M$ with $||a|| \leq 1$, it follows that

$$|\dot{\Phi}(at)|^2 = |\dot{\Phi}(au|t|)|^2 \le \Phi(|t|^{1/2}u^*a^*au|t|^{1/2})\Phi(|t|)$$

$$\le \Phi(|t|)^2,$$

So that $|\dot{\Phi}(at)| \leq \Phi(|t|)$ and $\dot{\Phi}(u^*t) = \Phi(|t|)$ and $||u|| \leq 1$ implies the statement (3). Next let $s, t \in L^1(\Phi)$ and s+t=w|s+t| be the polar decomposition of s+t, then by (3)

$$\Phi(|s+t|) = \Phi(w^*(s+t)) \leq |\dot{\Phi}(w^*s)| + |\dot{\Phi}(w^*t)|$$
$$\leq \Phi(|s|) + \Phi(|t|),$$

thus the proof is completed.

REMARK. (1) The linear map $\dot{\Phi}$ on $L^1(\Phi)$ is an extension of $\dot{\Phi}$ on \mathfrak{N} which was defined in section 2. (2) If we set $|||s|||_1 = ||\Phi(|s|)||$ for $s \in L^1(\Phi)$, then $L^1(\Phi)$ is a normed module over Z. (3) $L^1(\Phi) \subset \mathcal{C}$. In fact, since every element of $L^1(\Phi)$ is a finite linear combination of elemens in \mathcal{L}^+ , we have only to show that $\mathcal{L}^+ \subset \mathcal{C}$. By the spectral theorem ([11, 12]), for any $t \in \mathcal{L}^+$ there exists an increasing sequence of projections $\{f_n\}$ in $\{t\}$ " (the double commutant of $\{t\}$ in \mathcal{M}) such that $tf_n \leq (n+1)1$ and $(n+1)(1-f_n) \leq t$ for each positive integer n, so that $\Phi(1-f_n) \leq (1/(n+1))\Phi(t)$, this implies that $\{f_n\}$ is an SDD. Thus by [11, Theorem 5.1], $t \in \mathcal{C}$. This completes the proof.

THEOREM 3.2. $L^{1}(\Phi)$ is a Banach space with respect to the norm $\| \|$, $\| \|_{1}$.

PROOF. First of all, we shall show that for any monotone increasing sequence $\{t_n\}$ of elements in \mathcal{L}^+ which is $\|\cdot\|_1$ —Cauchy, there is $t \in \mathcal{L}^+$ such that $\|t_n - t_n\|_1 \to 0 (n \to \infty)$. By taking a subsequence, we can assume that $\|t_n - t_{n+1}\|\|_1 < 1/4^n$ for each positive integer n without loss of generality. Note that $t_{n+1} - t_n \ge 0$ (resp. $t_n \ge 0$), by the spectral theorem ([11]), we can choose a sequence $\{e_n\}$ in $\{t_{n+1} - t_n\}$ " (resp. $\{f_n\}$ in $\{t_n\}$ ") of projections such that $0 \le (t_{n+1} - t_n)e_n \le 2^{-n}$. 1 and $(t_{n+1} - t_n)e_n \le 2^{-n}$. 1 and $(t_{n+1} - t_n)e_n \le 2^{-n}$. 1 and $(t_n + t_n)e_n \le 2^{-n}$. 1 and $(t_n + t_n)e_n \le 2^{-n}$. 1 and $(t_n + t_n)e_n \le 2^{-n}$. Now let $(t_n + t_n)e_n \le 2^{-n}$. 1 and $(t_n + t_n)e_n \le 2^{-n}$. 1 and 1 and 2 and 3 and

$$\begin{split} \Phi(1-p_n) & \leq \sum_{k=n}^{\infty} \Phi(1-e_k \wedge f_k) \\ & \leq \sum_{k=n}^{\infty} \left\{ \Phi(1-e_k) + \Phi(1-f_k) \right\} \\ & \leq \sum_{k=n}^{\infty} \left\{ 2^k \Phi(t_{k+1} - t_k) + (1/2^k) \Phi(t_k) \right\} \\ & \leq (1 + \sup \||t_k|||_1) 2^{-n}. \ 1 \end{split}$$

for each n, so that $p_n \uparrow$ implies that $\Phi(1-p_n) \downarrow 0$ uniformly, $1-p_n \in \mathcal{F}$ and $p_n \uparrow 1$, that is, $\{p_n\}$ is an SDD([11, Definition 3.1]). Since $p_n \leq e_n \land f_n$, if $k \leq n \leq m$,

then $(t_m-t_n)p_k \in M$ and $\|(t_m-t_n)p_k\| < 1/2^{n-1}$. Moreover, $t_kp_k = t_kf_kp_k$ and t_kf_k $\leq 2^k f_k$, which implies $t_k p_k \in M$. By the mathematical induction, $(t_m - t_n) p_k$ $\in M(m \ge n \ge k)$ implies $t_m p_k \in M$ for all $m \ge k$. Now put $a(n, k) = p_k t_n p_k$ $+p_kt_n(1-p_k)+(1-p_k)t_np_k(n\geq k)$, then $\{a(n,k)\}\subset M_{sa}$ for all $n\geq k$. $||a(n+1,k)-a(n,k)|| \le 3$. 2^{-n} for all $n \ge k$, it follows that $\{a(n,k)\}_{n \ge k}$ is a uniformly Cauchy sequence in M_{sa} . Hence there exists an element $s(k) \in M_{sa}$ such that $a(n, k) \rightarrow s(k)(n \rightarrow \infty)$ uniformly. If $k_1 \ge k_2$, then $p_{k_1} \ge p_{k_2}$ implies $s(k_1)p_{k_2} = s(k_2)p_{k_2}$, so that $\{s(k), p_k\}$ is an EMO ([11, Dfinition 3.1]). Since $||t_k p_k - t_m p_k|| \le 1/2^{k-1}$ for all $m \ge k$, we get that $||t_k p_k - s(k)p_k|| \le 1/2^{k-1}$ for each positive integer k. Thus putting $t = [s(k), p_k] (\in C_{sa}$ ([11, Definition 3.4])), by [11, Theorem 3.1] $||t_k p_k - t p_k|| = ||(t_k - s(k))p_k|| \le 1/2^{k-1}$ for all k, which implies that $t_k \to t(n, e)$ ([13, Definition 3.2]). Next we shall show that $t \ge t_n$ for each n. Observe that $p_k t_m p_k \ge p_k t_n p_k \ge 0 \ (m \ge n \ge k)$ and $p_k t_n p_k \to p_k t p_k$ uniformly $(n \to \infty)$ and we have $p_k t p_k = p_k s(k) p_k \ge p_k t_n p_k \ge 0$ for all $n \ge k$. Thus by [11, Theorem 5.5], it follows that $t \ge t_n$ for each n. Now we shall show that $\Phi(t) = \sup_{n} \Phi(t_n)$. Since $\Phi(t_n) \le \Phi(t)$ for all n, we have only to show the converse. Since $p_k t_n p_k \uparrow p_k t p_k$ uniformly $(n \to \infty)$, for any $e \in \mathcal{F}_p$, $\|\Phi(ep_kt_kp_ke) - \Phi(ep_kt_kp_ke)\| \to 0 (n \to \infty)$, which implies by Lemma 1.1.1, $\Phi(ep_kt_np_ke) \uparrow \Phi(ep_ktp_ke)(0)$ in Z^+ . Since $\Phi(t_n) \geq \Phi(t_n^{1/2}p_kep_kt_n^{1/2})$ $=\Phi(ep_kt_np_ke)$, it follows that

$$\Phi(t) \geq \mathop{\operatorname{Sup}}_{n} \Phi(t_{n}) \geq \Phi(ep_{k}tp_{k}e) = \Phi(t^{1/2}p_{k}ep_{k}t^{1/2}),$$

so that by the last paragraph of section 2 and Lemma 4.1, $\Phi(t^{1/2}p_kep_kt^{1/2})$ $\uparrow \Phi(t^{1/2}p_kt^{1/2})$ in \mathbf{Z} . Hence $\Phi(t) \geq \sup_n \Phi(t_n) \geq \Phi(t^{1/2}p_kt^{1/2})$. Again by Lemma 4.1, $\Phi(t) = \sup_n \Phi(t_n)$. Sup $\||t_n|||_1 < \infty$ implies $\Phi(t) \in \mathbb{Z}$ and $t \in \mathcal{L}^+$. Since $\sum_{n=1}^{\infty} \||t_n - t_{n-1}|||_1 \leq \sum_{n=1}^{\infty} 1/4^n < \infty$, for every positive number \mathcal{E} , there is a positive integer $k(\mathcal{E})$ such that $\sum_{n=k}^{\infty} \||t_n - t_{n-1}|||_1 \leq \mathcal{E}$ for all $k \geq k(\mathcal{E})$, that is, $\sum_{n=k+1}^{\infty} \Phi(t_n - t_{n-1}) = \Phi(t_n) - \Phi(t_k) \leq \mathcal{E} \cdot 1$ for all $m \geq k+1 \geq k(\mathcal{E})$. $\Phi(t_m) \uparrow \Phi(t)(0)$ implies $\Phi(t) - \Phi(t_k) \leq \mathcal{E} \cdot 1$, that is, $\||t - t_k||_1 \leq \mathcal{E}$ for all $k \geq k(\mathcal{E})$. Thus the statement described above follows.

Using this fact, we can prove the completeness of $L^1(\Phi)$ by the similar way as that of [10, Theorem 14], so we omit the details. This completes the proof.

4. AW^* -module $L^2(\Phi)$ over Z. Let $L^2(\Phi) = \{s \in \mathcal{M}, s^*s \in \mathcal{L}^+\}$, then for any s and t in $L^2(\Phi)$, $(s+t)^*(s+t) \leq 2(s^*s+t^*t) \in \mathcal{L}^+$ shows by Lemma 3. 2, $s+t \in L^2(\Phi)$. For any $a \in Z$ and $s \in L^2(\Phi)$, we have $\Phi(|a|^2s^*s) = |a|^2\Phi(s^*s) \in Z^+$, so that $as \in L^2(\Phi)$, that is, $L^2(\Phi)$ is a module over Z.

At first, we shall give the following lemma.

LEMMA 4.1. Let $s \in \mathcal{M}$ and $\sigma_s(x) = \Phi(s^*xs)$ for any $x \in M^+$, then for any increasing net $\{a_\gamma\}$ in M^+ such that $a_\gamma \uparrow e(\mathfrak{S}-0)$ for some $e \in M_p$, $\sigma_s(a_\gamma) \uparrow \sigma_s(e)$ in Z. In particular, σ_s is completely additive on projections.

PROOF. Since $\sigma_s(e) \geq \sup_{\gamma} \sigma_s(a_{\gamma})$, we have only to show the converse. Let $b \in \mathcal{G}^+$ with $b \leq \operatorname{ess}^*e$, then eb = be = b and $b^{1/2}(a_{\gamma})b^{1/2} \uparrow b^{1/2}eb^{1/2}(\mathfrak{S}-0)$, so that by the continuity of Φ , $\Phi(b^{1/2}a_{\gamma}b^{1/2}) \uparrow \Phi(b^{1/2}eb^{1/2})$. On the other hand, since $\Phi(b^{1/2}a_{\gamma}b^{1/2}) = \Phi(a_{\gamma}^{1/2}ba_{\gamma}^{1/2}) \leq \Phi(a_{\gamma}^{1/2}ss^*a_{\gamma}^{1/2}) = \Phi(s^*a_{\gamma}s)$, it follows that $\Phi(b) \leq \sup_{\gamma} \sigma_s(a_{\gamma})$. Therefore by Lemma 3.1, $\sigma_s(e) \leq \sup_{\gamma} \sigma_s(a_{\gamma})$ and the proof is now completed.

LEMMA 4.2 ([10]). $L^2(\Phi)$ has the following properties:

- (1) For s and t in $L^{2}(\Phi)^{+}$, $\Phi(st) \geq 0$;
- (2) if $s, t \in L^2(\Phi)$ with $|s| \leq |t|$, then $\Phi(|s|^2) \leq \Phi(|s||t|) \leq \Phi(|t|^2)$;
- (3) if s and t are self-adjoint elements in $L^2(\Phi)$ such that $\Phi(s^2) \leq \Phi(t^2)$, then $\dot{\Phi}(st) \leq \Phi(t^2)$;
 - (4) let t be in $L^{2}(\Phi)$ and $u \in M_{u}$, then $\Phi(|t|^{2}) = \Phi(|utu^{*}|^{2})$;
 - (5) if $s, t \in L^2(\Phi)$, then $st \in L^1(\Phi)$, $|\dot{\Phi}(st)|^2 \leq \Phi(|st|)^2 \leq \Phi(s^*s)\Phi(t^*t)$ and

$$\Phi(s^*s)^{1/2} = \sup\{|\Phi(st)|, \Phi(t^*t) \leq 1\}.$$

PROOF. Let s and t be in $L^2(\Phi)^+$, then note that by the remark following Theorem 3.2, s and $t \in \mathcal{C}^+$, by [11, Theorem 5.1], we can write $t = [t_n, e_n]$, where $t_n, e_n \in \{t\}^n$, $t_n e_n = t_n \geq 0$ and $t_n \uparrow$. Let u be the Cayley transform of t, Γ is the spectrum of $\{u\}^n([1])$ and $\Gamma_n = \{\gamma; |u(\gamma) + 1| > 1/n\}^-$ where A^- is the closure of a set A. Denote the projection in $\{u\}^n$ corresponding to the clopen subset Γ_n by f_n , then $f_n \uparrow LP(t)$ and $\gamma \in \Gamma_n \to (1+u(\gamma))^{-1}$ is a continuous function on Γ_n . Thus $e_n f_m \in L^2(\Phi)$ implies $e_n f_m \in \mathcal{F}_p$ for each pair of positive integers m and n. Since $te_n f_m \in \mathcal{F}$, $t^{1/2}e_n f_m \in \mathcal{F}$ and $st \in L^1(\Phi)$, it follows that

$$\begin{split} \dot{\Phi}(e_n f_m s t) &= \dot{\Phi}(s t e_n f_m) = \dot{\Phi}(s (t e_n f_m)^{1/2} (t e_n f_m)^{1/2}) \\ &= \dot{\Phi}(t e_n f_m)^{1/2} s (t e_n f_m)^{1/2}) \\ &= \Phi(s^{1/2} t^{1/2} e_n f_m t^{1/2} s^{1/2}) \; . \end{split}$$

By Lemma 4.1, $\dot{\Phi}(e_n f_m st) \uparrow \Phi(s^{1/2} t s^{1/2})(0)$ in \mathbf{Z} . On the other hand, by Lemma 1.1.1, $\dot{\Phi}(e_n f_m st) \rightarrow \dot{\Phi}(st)(0)$ in \mathbf{Z} , therefore $\dot{\Phi}(st) = \Phi(s^{1/2} t s^{1/2}) \geq 0$, so that the statement (1) follows. To prove (2), we argue as follows. Let $s, t \in L^2(\Phi)$ such that $|s| \leq |t|$, then by (1), $|s|^{1/2}(|t| - |s|^{1/2}) \geq 0$ implies that $\dot{\Phi}(|s|(|t| - |s|)) = \Phi(|s|^{1/2}(|t| - |s|)|s|^{1/2}) \geq 0$, that is, $\dot{\Phi}(|s||t|) \geq \Phi(|s|^2)$. By the same way, $\Phi(|t|^2) \geq \dot{\Phi}(|s||t|)$. Next let $s,t \in L^2(\Phi)_{sa}$ such that $\Phi(s^2) \leq \Phi(t^2)$, then $0 \leq \Phi((t-s)^2)$

 $=\Phi(t^2)-2\Phi(st)+\Phi(s^2) \leq 2\Phi(t^2)-2\Phi(st)$ and this completes the proof of the statement (3). Let $t \in L^2(\Phi)$ and $u \in M_u$, then $|utu^*|^2u^*$, which implies by Lemma 3.2 (3) that the assertion (4) follows. Now we shall show the statement (5). Let s, t be in $L^2(\Phi)$ and st=w|st| be the polar decomposition of st, then it follows, by the argument used in the proof of Theorem 3.1, that

$$|\dot{\Phi}(st)|^{2} = |\dot{\Phi}(w|st|)|^{2} \leq (||w||\Phi(|st|))^{2} \leq \Phi(|st|)^{2}$$

$$= (\Phi(w^{*}st))^{2} \leq \Phi((w^{*}s)^{*}(w^{*}s))\Phi(t^{*}t)$$

$$\leq \Phi(s^{*}s)\Phi(t^{*}t).$$

Now let $a = \sup\{|\dot{\Phi}(st)| : \Phi(t^*t) \leq 1\}$ in Z, then by the above inequality $a \leq \Phi(s^*s)^{1/2}$. Let $t_n = (\Phi(s^*s) + (1/n)1)^{-1/2}s^*(\in L^2(\Phi))$ for each positive integer n, then $\Phi(t_n^*t_n) = (\Phi(s^*s) + (1/n)1)^{-1}\Phi(s^*s) = (\Phi(s^*s) + (1/n)1)^{-1}\Phi(s^*s) \leq 1$ and $\dot{\Phi}(st_n) = (\Phi(s^*s) + (1/n)1)^{-1/2}\Phi(s^*s)$, so that

$$(\Phi(s^*s) + (1/n)1)^{-1/2}\Phi(s^*s)^{1/2}\Phi(s^*s)^{1/2} \le a$$

for all n, that is, $a = \Phi(s*s)^{1/2}$ and the statement (5) follows. This completes the proof.

Now for any pair a and b in $L^2(\Phi)$, we define $(a,b)_{\Phi}=\dot{\Phi}(b^*a)$, then $(\ ,\)_{\Phi}$ satisfies the following properties:

- $(1) (a,b)_{\Phi} = (b,a)_{\Phi}^*,$
- (2) $(a, a)_{\Phi} \ge 0, (a, a)_{\Phi} = 0$ only if a = 0,
- (3) $(sa+b,c)_{\Phi} = s(a,c)_{\Phi} + (b,c)_{\Phi}$,

for all a, b, $c \in L^2(\Phi)$ and $s \in Z$. If we define $|||a|||_2 = ||(a, a)_{\Phi}||^{1/2}$ for $a \in L^2(\Phi)$, then by ([9, §2]), $L^2(\Phi)$ is a normed module over Z with respect to $|||, |||_2$. Moreover, we have the following:

- (1) Let $\{e_i\}$ be an orthogonal family of projections in Z such that $\sum_i e_i = e(\in Z_p)$ and if $a \in L^2(\Phi)$ such that $e_i a = 0$ for all i, then ea = 0.
- (2) Let $\{e_i\}$ be an orthogonal family of projections in Z such that $\sum_i e_i = 1$, and let $\{a_i\}$ be a bounded subset of $L^2(\Phi)$, then there exists in $L^2(\Phi)$ an element a such that $e_i a = e_i a_i$ for each i.

In fact, by the Baer*-ring property of \mathcal{M} ([12, Theorem 3.1]), we can easily show the statement (1). On the other hand, since ([12, Theorem 4.1]), there exists a unique $a \in \mathcal{M}$ such that $e_i a = e_i a_i$, to prove the assertion (2), it suffices to show that $a \in L^2(\Phi)$. $e_i a^* a = e_i a_i^* a_i$ implies $e_i a^* a \in L^1(\Phi)$ for each i. Denote Sup $|||a_i|||_2$ by k and we have $\Phi(e_i a^* a) = e_i \Phi(a^* a) = e_i \Phi(a_i a_i) \leq k^2 e_i$ for all i, that is, $\Phi(a^* a) \leq k^2 \cdot 1$, $a \in L^2(\Phi)$ and $|||a|||_2 \leq k$. The statement (2) follows.

The rest of this section is devoted to prove that $L^2(\Phi)$ is complete with respect to the norm $\|\cdot\|_2$, that is, $L^2(\Phi)$ is an AW^* -module over Z. To prove this, we need the following lemma.

LEMMA 4.3. Let $\{t_n\}$ be an increasing sequence in $L^2(\Phi)^+$ such that $\||t_n-t_m||_2\to 0 (m,n\to\infty)$, then there is an element $t\in L^2(\Phi)^+$ such that $\||t_n-t||_2\to 0 (n\to\infty)$.

PROOF. By passing to a subsequence if necessary, we can suppose $||t_{n+1}-t_n|||_2$ $<1/16^n$ for each n. By the spectral theorem ([11]) we can choose sequences of projections $\{e_n\}$ in $\{t_{n+1}-t_n\}$ " and $\{f_n\}$ in $\{t_n\}$ " such that $0 \le (t_{n+1}-t_n)e_n \le (1/5^n) \cdot 1$, $(t_{n+1}-t_n) \ge (1/5^n)(1-e_n)$, $t_n f_n \le 2^n \cdot 1$ and $t_n \ge 2^n (1-f_n)$ for each n. Now put $p_n = \bigwedge_{k \ge n} e_k \bigwedge f_k$, by the same arguments as in the proof of Theorem 3. 2, $\{p_n\}$ is an SDD and there exists a sequence $\{s(k)\}$ in M_{sa} such that $t_n p_k \to s(k) p_k$ uniformly and $\{s(k), p_k\}$ is an EMO. Denote $[s(k), p_k]$ by t. Let $t_n^2 - t_n t_m = u_n |t_n^2 - t_n t_m|$ (resp. $t_n t_m - t_m^2 = v_n |t_n t_m - t_m^2|$) be the polar decomposition of $t_n^2 - t_n t_m$ (resp. $t_n t_m - t_m^2$), then by Theorem 3. 1 (4) and Lemma 4. 2, we get that

$$\begin{split} \Phi(|t_{n}^{2}-t_{m}^{2}|) & \leqq \Phi(|t_{n}^{2}-t_{n}t_{m}|) + \Phi(|t_{n}t_{m}-t_{m}^{2}|) \\ & = \Phi(u_{n}^{*}t_{n}(t_{n}-t_{m})) + \Phi(v_{n}^{*}(t_{n}-t_{m})t_{m}) \\ & \leqq (|||t_{n}|||_{2} + |||t_{m}|||_{2}) |||t_{n}-t_{m}|||_{2} \cdot 1 \end{split}$$

for each pair of integers m and n. Thus $\{t_n^2\}$ is a $\|\|\cdot\|_1$ -Cauchy sequence in $L^1(\Phi)$. By Theorem 3. 2, there exists an $s \in L^1(\Phi)$ such that $\|\|t_n^2 - s\|\|_1 \to 0 (n \to \infty)$ and $t_n^2 \to s$ n. $e(n \to \infty)$. Let $r_k = \bigwedge_{n \ge k} ((t_{n+1} - t_n)^{-1}[p_n]) \bigwedge (t_n^{-1}[p_n])$ and $q_n = p_n \bigwedge r_n$, then by [11, Lemma 3. 1], $\{q_n\}$ is an SDD. For any pair k and n with $n \ge k$,

$$(t_{n+1}^{2} - t_{n}^{2})q_{k} = t_{n+1}(t_{n+1} - t_{n})q_{k} + (t_{n+1} - t_{n})t_{n}q_{k}$$

$$= t_{n+1}p_{n}(t_{n+1} - t_{n})q_{k} + (t_{n+1} - t_{n})p_{n}t_{n}q_{k},$$

therefore $(t_{n+1}^2-t_n^2)q_k \in M$ and $\|(t_{n+1}^2-t_n^2)q_k\| < 2 \cdot (2/5)^n$, so that by the similar reason to that of Theorem 3. 2, there is a sequence of elements $\{s(k)'\}$ in M_{sa} such that $t_n^2q_k \to s(k)'q_k$ uniformly $(m \to \infty)$ and $\{s(k)', q_k\}$ is an EMO. Let $t' = [s(k)', q_k] \in C$, then $t_n^2 \to t'n$. e. $(n \to \infty)$. Thus $q_k s(k)^2 q_k = q_k s(k)' q_k$ for all k, so that by the Baer*-ring property of M, there is an SDD $\{q_k'\}$ such that $s(k)^2 q_k' = s(k)' q_k'$ for each k, while $t_n^2 \to s(n, e)$, by the unicity of n. e. limit, it follows that $t^2 = t' = s \in L^1(\Phi)$, that is, $t \in L^2(\Phi)$. On the other hand $t \ge t_n$ implies by Lemma 4. 2,

$$\begin{split} \Phi((t-t_n)^2) &= \Phi(t^2) - 2\dot{\Phi}(tt_n) + \Phi(t_n^2) \\ &\leq \Phi(t^2) - \Phi(t_n^2) \\ &= \dot{\Phi}(s-t_n^2) \leq \||s-t_n^2||_{L^1}.1. \end{split}$$

Thus $|||t-t_n|||_2 \to 0 (n \to \infty)$ and $t_n \to t(n, e_n)(n \to \infty)$. This completes the proof.

THEOREM 4.1. $L^2(\Phi)$ is a faithful AW*-module over Z([9]) with respect to the norm $\| \| , \| \|_2$.

PROOF. The proof of that $L^2(\Phi)$ is an AW^* -module is an obvious modification of that for Theorem 3.2, thus it is sufficient to show that $L^2(\Phi)$ is faithful. In fact if $a \in \mathbb{Z}$ with at = 0 for all $t \in L^2(\Phi)$, then the semi-finiteness of Φ and the Baer*-ring property of \mathbb{C} show the desired property that a = 0. This completes the proof,

5. Proof of the main theorem. In the followings, we always denote $L^2(\Phi)$ by \mathfrak{M} . By [9, Theorem 7], the set $\mathcal{B}(\mathfrak{M})$ of all bounded module homomorphisms of \mathfrak{M} into \mathfrak{M} is an AW^* -algebra of type 1 with the center Z. The left (resp. right) regular representation $\pi_1(\text{resp. }\pi_2)$ of M is a *-homomorphism (resp. *-antihomomorphism) of M into $\mathcal{B}(\mathfrak{M})$ which is defined by $\pi_1(x)t=xt(\text{resp.}\pi_2(x)t=tx)$ for any $x \in M$ and $t \in \mathfrak{M}$. Since $\mathcal{F} \subset \mathfrak{M}$, $\pi_1(x)=0(\text{resp. }\pi_2(x)=0)$ implies that there exists an orthogonal family $\{e_a\}$ of projections in \mathfrak{M} such that $xe_a=0(\text{resp. }e_ax=0)$ for each α and $\sum_a e_a=1$. By [7, Lemma 2.2], x=0, that is, $\pi_1(\text{resp. }\pi_2)$ is a *-isomorphism (resp. *-antiisomorphism).

LEMMA 5.1. $\pi_1(M)$ and $\pi_2(M)$ are AW^* -subalgebras of $\mathcal{B}(\mathfrak{M})$.

PROOF. We have only to prove the first of these statements, the second follows similarly. By [8, Definition], it suffices to show that for any orthogonal set $\{e_i\}_{i\in I}$ of projections in M with $e = \sum_{i\in I} e_i$, $\pi_1\left(\sum_{i\in J} e_i\right) \uparrow \pi_1(e)$ in $\mathcal{B}(\mathfrak{M})(J\in\mathcal{F}(I))$. In fact, since $\left(\pi_1(e) - \pi_1\left(\sum_{i\in J} e_i\right)x, x\right)_{\Phi} = \Phi\left(x^*\left(e - \sum_{i\in J} e_i\right)x\right)$, therefore from Lemma 4.1 and [14, Lemma 1.4] $\sum_{i\in J} \pi_1(e_i) \uparrow \pi_1(e)$ in $\mathcal{B}(\mathfrak{M})$. This completes the proof.

LEMMA 5.2. For any $a \in \mathfrak{M}$, there is a sequence $\{a_n\}$ in $M \cap \mathfrak{M}$ such that $\|\|a_n\|\|_2 \leq \|\|a\|\|_2$ and $\|a_n - a\|_{\Phi} \to 0$ (0) in Z^+ , whre $\|x\|_{\Phi} = (x,x)_{\Phi}^{1/2}$ for any $x \in \mathfrak{M}$.

PROOF. Let a=u|a| be the polar decomposition of a in C, then for any $b \in \mathcal{F}^+$, $|u(|a|-b)|_{\Phi} \leq ||a|-b|_{\Phi}$, so that we have only to prove the assertion for

the case when $a \ge 0$. Let v be the Cayley transform of a, then from the spectral theorem ([11)), there are an SDD $\{e_n\}$ in $\{v\}''$ and a sequence of projections $\{f_n\}$ in $\{v\}''$ such that $n(1-e_n)\le a$, ae_n and $(1+v)f_n$ is invertible in f_nMf_n for each n. Since $a_n=ae_nf_n\in \mathcal{F}^+$ and $a^2\ge a_n^2\ge a_m^2$ if m< n, then

$$0 \le \Phi(a^2) - \Phi(a_n^2) = \Phi(a^2(1 - e_n f_n)) \le \Phi(a^2(1 - e_n f_n))$$

so that by Lemma 4.1, $0 \le 0 - \lim(\Phi(a^2) - \Phi(a_n^2)) \le \Phi(a^2(1 - f_m))$ for all m, which implies by Lemma 1.1. 1, $\Phi(a_n^2) \uparrow \Phi(a^2)(0)$. While from Lemma 4.2, it follows that $\Phi((a-a_n)^2) \le \Phi(a^2) - \Phi(a_n^2)$. This shows that $|a-a_n|_{\Phi} \to 0(0)$ and the proof is completed.

LEMMA 5.3. $\pi_1(M)'' = \pi_2(M)'$ and $\pi_2(M)'' = \pi_1(M)'$ in $\mathcal{B}(\mathfrak{M})$ where \mathfrak{A}' is the commutant of \mathfrak{A} in $\mathcal{B}(\mathfrak{M})$.

PROOF. The methods which will be used here are patterned after those of [2, Chapter 1, Section 5]. Since $\pi_1(M) \supset \pi_2(M)$ and $\pi_2(M) \supset \pi_1(M)$, we have only to prove the converse inclusion. Let x be a left (resp. right) bounded element in \mathfrak{M} , that is, an element x such that there is $B_1(x)$ (resp. $B_2(x)$) in $\mathcal{B}(\mathfrak{M})$ such that $B_1(x)a = \pi_2(a)x$ (resp. $B_2(x)a = \pi_1(a)x$) for all $M \cap \mathfrak{M}$. First of all, we shall show that the set $\mathfrak{M}_1 = \{B_1(x); x \text{ is left bounded}\}\$ is a left ideal of $\pi_2(M)'$. In fact, for any a and b in $M \cap \mathfrak{M}$, an easy calculation shows that $(B_1(x)\pi_2(a)b, y)_{\Phi} = (\pi_2(a)B_1(x)b, y)_{\Phi}$ for any $y \in L^2(\Phi)$. Therefore, by Lemma 1.1.1, Lemma 5.2 and the Schwarz' inequality, $(c, (B_1(x)\pi_2(a))^*y)_{\Phi} = (c, (\pi_2(a)B_1(x))^*y)_{\Phi}$ for any $c \in \mathfrak{M}$, that is, $B_1(x)\pi_2(a)$ $=\pi_2(a)B_1(x)$ for any $a\in M\cap\mathfrak{M}$. The semi-finiteness of Φ implies that there is an increasing family of projections $\{e_{\alpha}\}$ in $M \cap \mathfrak{M}$ such that for any $a \in M$, $ae_{\alpha} \in M$ and $\pi_2(ae_a) \to \pi_2(a)$ weakly ([14, p. 311]). Thus $B_1(x)\pi_2(a) = \pi_2(a)B_1(x)$ for all $a \in M$, that is, $\mathfrak{M}_1 \subset \pi_2(M)'$. Since for any $T \in \pi_2(M)'$, $TB_1(x)a = T \cdot \pi_2(a)x = \pi_2(a)Tx$ for all $a \in M \cap \mathfrak{M}$, Tx is left bounded and $B_1(Tx) = TB_1(x)$. Hence the assertion follows. From the same reason, $\mathfrak{M}_2 = \{B_2(x); x \text{ is right bounded}\}\$ is a left ideal of $\pi_1(M)'$. Let $\mathfrak{M}_3 = \mathfrak{M}_1 \cap \mathfrak{M}_1^*$ and $\mathfrak{M}_4 = \mathfrak{M}_2 \supset \mathfrak{M}_2^*$, where $\mathfrak{A}^* = \{x^*, x \in \mathfrak{A}\}$ for any subset \mathfrak{A} of $\mathcal{B}(\mathfrak{M})$, then $\mathfrak{M}_3'' \subset \pi_2(M)'$ and $\mathfrak{M}_4'' \subset \pi_1(M)'$. Next we shall show that $\mathfrak{M}_3'' = \pi_2(M)'$. In fact, for any $T \in \pi_2(M)$ and $T_1 \in \mathfrak{M}_3, T_1\pi_1(b)T\pi_1(a) = \pi_1(b)T \cdot \pi_1(a)T_1$ for any aand b in $M \cap \mathfrak{M}$, so that from the above argument, we have $T_1T = TT_1$, that is, $\pi_2(M) = \mathfrak{M}_3''$. By the same way, $\pi_1(M) = \mathfrak{M}''^4$. To prove Lemma 5.2. it suffices to show $\mathfrak{M}_3 \subset \mathfrak{M}_4$. In fact, let $B_1(a) \in \mathfrak{M}_3$ and $B_2(b) \in \mathfrak{M}_4$, then $B_1(a)^* = B_1(c)$ (resp. $B_2(b)^*$ $=B_2(d)$) for some left (resp. right) bounded element c (resp. d). Therefore, by a standard calculation shows that for any x and y in $M \cap \mathfrak{M}$, $(a,xy)_{\Phi} = (c^*,xy)_{\Phi}$. By lemma 5.2, it follows that $a=c^*$. By the same way $b=d^*$. Again by Lemma 5.2, there exist sequences $\{x_n\}$ and $\{y_n\}$ in $M \cap \mathfrak{M}$ such that $|x_n-a|_{\Phi} = |x_n^*-c|_{\Phi} \to 0(0)$, $\|y_n - b\|_{\Phi} = \|y_n^* - d\|_{\Phi} \to 0$ (0), $\|x_n\|\|_2 \le \|a\|\|_2$ and $\|y_n\|\|_2 \le \|b\|\|_2$ for each n. Therefore, by Lemma 1.1.1, from the similar arguments ([2, p. 68,Lemma 3]) it follows that $(B_1(a)B_2(b)x, y)_{\Phi} = (B_2(b)B_1(a)x, y)_{\Phi}$ for any x and y in $M \cap \mathfrak{M}$. From

Lemma 5.2, we have $B_1(a)B_2(b)=B_2(b)B_1(a)$, which implies $\mathfrak{M}_3''\subset \mathfrak{M}_4'$. This completes the proof.

For any $a \in \mathfrak{M}$, let $\bigvee \{\pi_1(M)'a\}$ be the AW^* -submodule generated by $\{\pi_1(M)'a\}$ and E_a be the projection on $\bigvee \{\pi_1(M)'a\}$ ([9, Theorem 3]), then $E_a \in \pi_1(M)''$. In fact, for any $A \in \pi_1(M)'$, $A\{\pi_1(M)'a\} \subset \bigvee \{\pi_1(M)'a\}$. Let $\{e_a\}$ be an orthogonal family of projections in Z with $\Sigma_a e_a = 1$ and let $\{y_a\}$ be a uniformly bounded subset of $\{\pi_1(M)'a\}$, then [9, p. 842, Definition], $A(\Sigma_a e_a y_a) = \Sigma_a e_a A y_a$ in \mathfrak{M} , so that $A(\Sigma_a e_a y_a) \in \bigvee \{\pi_1(M)'a\}$. The continuity of A implies $A(\bigvee \{\pi_1(M)'a\}) \subset \bigvee \{\pi_1(M)'a\}$, that is, $AE_a = E_a A E_a$ for all $A \in \pi_1(M)'$, so that $E_a \in \pi_1(M)''$. E_a is called a cyclic projection relative to a.

Now we are in the position to state

THEOREM 5.1. $\pi_1(M)'' = \pi_1(M)$, that is, M can be imbedded as a double commutator in a type 1 AW^* -algebra $\mathcal{B}(\mathfrak{M})$ with the center which is *-isomorphic with Z.

PROOF. By the spectral theorem, it suffices to show that $\pi_1(M)_p' = \pi_1(M_p)$. For any $P \in \pi_1(M)_p''$, let $\{E_x\}$ be a maximal family of orthogonal cyclic projections in $\pi_1(M)''$ majorized by P. By the definition of E_x , the standard argument shows that $P = \Sigma_x E_x$ in $\mathcal{B}(\mathfrak{M})$. Since $\pi_1(M)$ is an AW^* -subalgebra of $\mathcal{B}(\mathfrak{M})$, by [14, Lemma 4.5], in order to prove $P \in \pi_1(M)_p$, we have only to show that $E_x \in \pi_1(M)$ for all $x \in \mathfrak{M}$.

Let x=u|x| be the polar decomposition of x in C, then $E_x=\pi_1(u)E_{|x|}\pi_1(u)^*$. In fact, observe that $x=\pi_1(u)|x|$ and $|x|=\pi_1(u)^*x$, $Ax=\pi_1(u)A|x|$ and $\pi_1(u)^*Ax=A|x|$ for any $A \in \pi_1(M)'$, so that $\bigvee \{\pi_1(M)'x\} \supset \pi_1(u) \bigvee \{\pi_1(M)'|x|\}$. For any $y \in \bigvee \{\pi_1(M)'x\}$ and for any positive real number \mathcal{E} , we can choose an orthogonal set $\{e_a\}$ of projections in Z and a family $\{B_a\}$ in $\pi_1(M)'$ such that $\Sigma_a e_a = 1$, $\sup \|\|B_a x\|\|_2 < \infty$ and $\|\|y - \Sigma_a e_a B_a x\|\|_2 < \mathcal{E}$. Since $e_a \pi_1(u) \pi_1(u)^*B_a x = e_a B_a x$ for each α , we have $\|\|y - \pi_1(u)\pi_1(u)^*y\|\|_2 < 2\mathcal{E}$, that is, $y = \pi_1(u)\pi_1(u)^*y$. On the other hand, $\pi_1(u)^*B_a x = B_a|x|$ and $\|\|B_a|x\|\|\|_2 \le \|\|B_a x\|\|_2$ for each α implies that $\|\|\pi_1(u)^*y - \Sigma_a e_a B_a|x|\|\|_2 < \mathcal{E}$ and $\|\pi_1(u)^*y \in \bigvee \{\pi_1(M)'|x|\}$. Therefore combining the above results, $y \in \pi_1(u)(\bigvee \{\pi_1(M)'|x|\})$, that is, $\bigvee \{\pi_1(M)'x\} = \pi_1(u)(\bigvee \{\pi_1(M)'|x|\})$. By the same way, it follows that $\pi_1(Rp(x))(\bigvee \{\pi_1(M)'|x|\} = \bigvee \{\pi_1(M)'|x|\}$. From these facts, we get that $E_x = \pi_1(u)E_{|x|}\pi_1(u)^*$. Hence to prove that $E_x \in \pi_1(M)$, we may assume $x \ge 0$ without loss of generality.

Let $x \in \mathfrak{M}$ with $x \geq 0$, then there exist a projection e_n and f_n in $\{x\}''$ satisfying the properties described in the proof of Lemma 5.2. Let $a_n = xe_n f_n \in \mathcal{F}$, then $a_n \uparrow$, $a_n \leq x$ and $|a_n - x|_{\Phi} \to 0(0)$. Since $a_n = \pi_1(e_n f_n)x = \pi_2(e_n f_n)x$, $E_{a_n} \leq E_x$ and $E_{a_n} \uparrow$. Moreover $|a_n - x|_{\Phi} \to 0(0)$ implies $E_{a_n} \uparrow E_x$ in $\mathcal{B}(\mathfrak{M})$. Thus by [14, Lemma 4.5], to prove $E_x \in \pi_1(M)$, we have only to show that $E_{a_n} \in \pi_1(M)$ for each n.

Now we shall prove that $E_a \in \pi_1(M)$ for all $a \in \mathcal{F}$. Since $\pi_1(M)$ is an AW^* subalgebra of $\mathcal{B}(\mathfrak{M})$, it is sufficient to show that $E_a = LP(\mathcal{B}(\mathfrak{M})) \pi_1(a)$ ([8, Lemma 2]). Observe that for any $b \in M \cap \mathfrak{M}$, $\pi_2(b)a = ab = \pi_1(a)b \in \bigvee \{\pi_1(a)\mathfrak{M}\}$, let E be the projection in $\mathcal{B}(\mathfrak{M})$ corresponding to $\bigvee \{\pi_1(a)\mathfrak{M}\}$, then $E_{\pi_2}(b)a = \pi_2(b)a$ for all $b \in M \cap \mathfrak{M}$. The semi-finiteness of Φ implies that for any $A \in \pi_2(M)$, there is a net $\{a_{\alpha}\}$ in $M \cap \mathfrak{M}$ such that $\|\pi_2(a_{\alpha})\| \leq \|A\|$ for each α and $\pi_2(a_{\alpha}) \to A$ strongly in $\mathcal{B}(\mathfrak{M})$. Therefore $E_{\pi_2}(b)a = \pi_2(b)a$ for all $b \in M$. For any $A \in \pi_2(M)''$ $(=\pi_1(M)')$, since $\pi_2(M)$ is an AW^* -subalgebra of $\mathcal{B}(\mathfrak{M})$, by [14, Lemma 4.2], there is a bounded net $\{A_{\lambda}\}\subset\pi_{2}(M)$ such that $A_{\lambda}\to A$ strongly in $\mathcal{L}(\mathfrak{M})$, thus EAa=Aa, which implies $\bigvee \{\pi_1(M)'a\} \subset \bigvee \{\pi_1(a)\mathfrak{M}\}\$, that is $E_a \leq E$. For any $x \in \mathfrak{M}$, by Lemma 5.2, there is a sequence $\{b_n\}$ in $M\cap\mathfrak{M}$ such that $|x-b_n|_{\Phi}\to 0$ (0) and $|||b_n|||_2\leq |||x|||_2$ for each n, so that $E_a \pi_1(a) b_n = \pi_1(a) b_n$ implies $E_a \pi_1(a) x = \pi_1(a) x$, that is, $E = E_a$. An easy calculation shows that $E = LP(\mathcal{D}(\mathfrak{M}))(\pi_1(a))$ and the proof is now completed.

COROLLARY. Let \mathcal{B} be an AW*-algebra of type 1 with center \mathcal{Z} and let \mathcal{A} be a semi-finite AW*-subalgebra of \mathcal{B} which contains \mathcal{Z} , then $\mathcal{A} = \mathcal{A}'$ in \mathcal{B} .

By Theorem 5.1, the proof proceeds in entire analogy to that of [14, Theorem 4.4], so we omit the details.

REFERENCES

- [1] J. DIXMIER, Sur certains espaces considèrès par M. H. Stone, Summa Brasil. Math., 2 (1951), 151-182.
- [2] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, (1957).
- [3] J. Feldman, Embedding of AW^* -algebras, Duke Math. J., 23(1956), 303-307. [4] M. Goldman, Structure of AW^* -algebras I., Duke Math. J., 23(1956), 23-34.
- [5] H. HALPERN, Embedding as a double commutator in a type 1 AW*-algebras, Trans. Amer. Math. Soc., 148(1970), 85-98.
- [6] R. V. KADISON AND G. K. PEDERSEN, Equivalence in operator algebras, to apperar.
- [7] I. KAPLANSKY, Projections in Banach algebras, Ann. of Math., 53(1951), 235-249.
- [8] I. KAPLANSKY, Algebras of type 1, Ann. of Math., 56(1952), 460-472.
 [9] I. KAPLANSKY, Modules over operator algebras, Amer. J. Math., 45(1953), 839-858.
- [10] T. OGASAWARA AND K. YOSHINAGA, Extension of 4-application to unbounded operators, J. Sci. Hiroshima, 19(1955), 273-299.
- [11] K. SAITÔ, On the algebra of measurable operators for a general AW^* -algebra, Tôhoku Math. J., 21(1969), 249-270.
- [12] K. SAITÔ, On the algebra of measurable operators for a general AW^* -algebra II, to appear.
- [13] K. SAITÔ, A non-commutative theory of integration for a semi-finite AW*-algebra and a problem of Feldman, Tôhoku Math. J., 22(1970), 420-461.
- [14] H. WIDOM, Embedding in Algebras of type 1, Duke Math. J., 23(1956), 309-324.
- J. D. MAITLAND WRIGHT, The Radon-Nikodym theorem for Stone-algebra valued measures, Trans. Amer. Math. Soc., 139(1969), 75-94.
 [16] TI YEN, Trace on finite AW*-algebras, Duke Math. J., 22(1955), 207-222.

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI, JAPAN