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ON THE EMERGENCE OF RANDOM INITIAL CONDITIONS IN FLUID

LIMITS

A. D. BARBOUR, P. CHIGANSKY, AND F. C. KLEBANER

Abstract. The paper presents a phenomenon occurring in population processes that start near
zero and have large carrying capacity. By the classical result of Kurtz (1970), such processes,
normalized by the carrying capacity, converge on finite intervals to the solutions of ordinary
differential equations, also known as the fluid limit. When the initial population is small relative
to carrying capacity, this limit is trivial. Here we show that, viewed at suitably chosen times
increasing to infinity, the process converges to the fluid limit, governed by the same dynamics,
but with a random initial condition. This random initial condition is related to the martingale
limit of an associated linear birth and death process.

1. Introduction

Many models of population growth can be formulated, following the ideas of McKendrick [13]
and Bartlett [3], [4], as Markovian birth and death (BD) processes. The classical Malthusian
model can be viewed as a BD process with population birth rate λz and death rate µz depending
linearly on the population size z, corresponding to constant per capita birth rate λ and death
rate µ. This process cannot stabilize near any finite population size, and so non-linear density
dependent BD processes (Zt, t ≥ 0), with per capita birth rates λ− (λ− µ)g1(z/K) and death
rates µ + (λ − µ)g2(z/K), z ∈ Z+, have been introduced to remedy the defect. In such a
formulation, λ > µ ≥ 0 are fixed constants, g = g1 + g2 is typically an increasing function with
g(0) = 0 and g(x∞) = 1 for some x∞ ∈ (0,∞), and K is a parameter, thought of as being large,
that is representative of the carrying capacity.

The analogue of Verhulst’s (1838) model has g1(x) = 0 and g2(x) = x for all x ≥ 0, and
is known as the stochastic logistic process; it serves as our prototype. Ricker’s [15] model has
g1(x) =

λ
λ−µ(1 − e−αx) and g2(x) = 0; that of Beverton & Holt [5] has g1(x) =

λ
λ−µx/(x +m)

and g2(x) = 0, that of Hassell [7] has g1(x) =
λ

λ−µ

{
1 − (1 + x/m)−c

}
and g2(x) = 0, and that

of Maynard–Smith & Slatkin [14] has g1(x) =
λ

λ−µ

{
1− (1 + (x/m)c)−1

}
and g2(x) = 0.

In these models, when K is large and the initial population size Z0 is relatively small, the birth
rate exceeds the death rate, and the population size begins by growing exponentially, avoiding
extinction in the early stages with a significant probability. As the size gets larger, the net birth
rate decreases and population growth slows down, settling around the carrying capacity Kx∞.
The population typically fluctuates around the carrying capacity for a very long period of time,
until, by chance, it eventually dies out.
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This qualitative behavior can be made precise by considering the normalized density process
Zt = Zt/K. By the result of Kurtz [12], Theorem 2.11, for any fixed T > 0,

sup
0≤t≤T

∣∣Zt − xt
∣∣ d−−−−→

K→∞
0, (1.1)

where x = (xt)t∈R+
is the solution of the o.d.e., or fluid limit,

ẋt = (λ− µ)xt
(
1− g(xt)

)
, t ≥ 0, (1.2)

subject to the initial condition x0 := limK→∞ Z0.
When the initial population size Z0 is proportional to K, the initial condition x0 is positive,

and the density process Z converges to the corresponding positive solution of (1.2). In particular,
this implies that extinction prior to any fixed time T has vanishing probability. As T increases,
the solution of (1.2) approaches its stable equilibrium at x∞. Since Z is a transient Markov
chain, it is absorbed at zero eventually. However, large deviation analysis (see, for example,
Barbour [1] and Jagers & Klebaner [8]) shows that Z does not leave a vicinity of x∞ for a long
period of time, with mean growing exponentially with K.

If the initial population size Z0 is fixed with respect to K, so that x0 = 0, the limit (1.1)
implies that Z converges to the zero function on any bounded interval. This implies that
those trajectories of Z that stay positive up to time T remain of smaller order than K during
that time, so that it takes longer to grow to level comparable with K. Other than that, the
convergence (1.1) reveals no information about the behaviour of those trajectories that eventually
reach the carrying capacity.

In the present paper, we derive a limit theorem showing that, if the initial population is small
when compared to K, so that x0 = 0, the density process nonetheless converges over increasing
time intervals to a nontrivial solution of the same o.d.e. (1.2), but now with a random initial
condition.

The emergence of a random initial condition in the limit can already be seen in the simple
model of pure birth processes. This case admits a one page proof, involving nothing more
complicated than weighted sums of i.i.d. exponential random variables (Section 3). A completely
different approach is required in the more general setup of Theorem 2.1. Here, the proof relies
on the approximation of the non-linear BD process by a linear BD process during the initial
stages, and by the non-linear deterministic dynamics thereafter.

As pointed out in Barbour et al. [2], the idea of such an approximation is not new, going back
to the papers of Kendall [9] and Whittle [18] in the mid 1950’s. However, its rigorous justification
in many of the models where it has heuristically been invoked can be quite involved. Non-linear
multidimensional Markov population processes were considered recently in [2], where it was
established that, after an initial build up phase, the random population follows the solution of
the corresponding deterministic equations, but with a random time shift ([2], Theorem 1.1). The
proof in [2] relies on an abstract coupling construction (Thorisson [16], Theorem 7.3).

Here, we revisit the one-dimensional setting, in which the argument can be made much simpler;
in particular, there is a very neat explicit expression for the random initial condition to be used
with the fluid approximation. In addition, the argument can be carried through under somewhat
weaker assumptions than are used in [2].
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2. The main result

Defining g+l (x) := sup0≤y≤x |gl(y)|, l = 1, 2, and recalling that g = g1+ g2, we work under the
following assumptions:

(i) g(0) = 0, g(x∞) = 1 for some x∞ < ∞, and g(x) < 1 for 0 < x < x∞;

(ii) xg(x) is uniformly Lipschitz on [0, x∞], with constant θ ≥ 1; (2.1)

(iii) g+(x) := g+1 (x) + g+2 (x) is such that x−1g+(x) is integrable from 0.

In view of (2.1) (ii), the o.d.e. (1.2), with initial condition xs = x, has a unique solution. It is
given implicitly by

G(xt)−G(x) :=

∫ xt

x

du

u(1− g(u))
= (λ− µ)(t− s), (2.2)

where the function G is determined up to an additive constant; for any 0 < a < x∞, we can for
instance take

G(x) = Ga(x) :=

∫ x

a

du

u(1− g(u))
+ log a = log x+Ha(x), (2.3)

with

Ha(x) :=

∫ x

a

g(u) du

u(1− g(u))
. (2.4)

With this notation, we can formulate our main result as follows.

Theorem 2.1. For λ > µ > 0 and for 0 ≤ α < 1, let (Z(K), K ≥ 1) be a sequence of BD
processes with per capita birth rates λ − (λ − µ)g1(z/K) and death rates µ + (λ − µ)g2(z/K),

started at the initial population size Z0 = ⌊Kα⌋. Let Z
(K)

(t) := K−1Z(K)(t) and t1(K) :=

(λ− µ)−1 logK1−α. Then, under Assumptions (2.1), the sequence of processes Z
(K)

(t1(K) + ·)
converges weakly as K → ∞, in the uniform topology on bounded intervals, to the solution of
the o.d.e. (1.2) started with the initial condition

w0 :=

{
G−1

0

(
logW

)
, α = 0;

G−1
0

(
0
)
, α ∈ (0, 1),

(2.5)

where W is a random variable with P[W = 0] = µ/λ and P[W > w] = (1 − µ/λ)e−(1−µ/λ)w,
w ≥ 0.

Remark 2.2.

(1) The functionG0 is well defined, because of Assumption (2.1) (iii), and is strictly increasing,
having limx→0+G0(x) = −∞ and limx→x∞

G0(x) = ∞. The latter limit holds, because 0 ≤
x∞ − xg(x) ≤ θ(x∞ − x) in 0 ≤ x ≤ x∞, from Assumption (2.1) (ii), implying that

0 ≤ s− sg(s) = (s− sg(s))− (x∞ − x∞g(x∞)) ≤ (θ − 1)(x∞ − s), 0 < s < x∞, (2.6)
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and that sg(s) ≥ 1
2x∞ in (1− 1/2θ)x∞ ≤ s ≤ x∞. From this it follows that

∫ x

(1−1/2θ)x∞

g(s)

s(1− g(s))
ds >

1

x∞

∫ x

(1−1/2θ)x∞

sg(s)

s− sg(s)
ds >

1

2

∫ x

(1−1/2θ)x∞

ds

(θ − 1)(x∞ − s)

=
1

2(θ − 1)
log

( x∞/2θ

x∞ − x

)
−−−−→
x→x∞

∞.

Hence G := G0 is a bijection from (0, x∞) to R, with bounded continuous inverse G−1 : R 7→
(0, x∞).

In particular, g(x) = xp with p > 0, satisfies our assumptions, with G(x) = 1
p log

xp

1−xp , giving

w0 =





(
W p

1+W p

) 1

p
, α = 0;

(
1
2

) 1

p , α ∈ (0, 1).

The stochastic logistic process corresponds to taking p = 1, and yields the initial condition
w0 =

W
1+W in (1.2).

(2) It follows from (4.12) below that W has the distribution of the a.s. limit of the martingale

e−(λ−µ)tYt, when Y is the linear BD process with per capita birth and death rates λ and µ,
starting with Y0 = 1 = K0. If Y (K) denotes the same process, but with initial condition

Y
(K)
0 = ⌊Kα⌋ for some 0 < α < 1, then the martingale e−(λ−µ)t(Y

(K)
t /Y

(K)
0 ) has mean 1 and

variance of order K−α as K → ∞, explaining why W is replaced by 1 in (2.5) when α ∈ (0, 1).

(3) Theorem 2.1 implies that the trajectories that survive early extinction reach the magnitude
of the carrying capacity at times of order 1

λ−µ logK1−α. For α = 0, since G−1(−∞) = 0, it

follows from (2.5) that the trajectories that vanish are those corresponding to the set {W = 0}.
This set is exactly the set of extinction of the linear branching process Y . For α > 0, the
probability of early extinction vanishes as K → ∞ for both Z(K) and Y (K).

(4) The Lipschitz assumption on the function xg(x) can be replaced by assuming that it is
increasing, and has finite derivative at x∞: see Remark 4.1.

3. A preview: pure Birth Process

This subsection is a short detour from our main setup, which provides an additional insight
into the structure of the limit. Consider a non-linear pure birth process Z that jumps from an
integer z to z+1 at rate λ(z) = az(1− g(z/K)), z = 1, 2, . . . , [Kx∞], where a > 0 is a constant
and g is a function satisfying the assumption of Theorem 2.1. Let Z0 = 1 and define λ(z) = 0
for z > [Kx∞], so that Z is absorbed, once it exceeds the level [Kx∞]. The holding time in
state z equals τz/λ(z), where τz ∼ Exp(1) and τz’s are i.i.d. Consider also a linear pure birth
process Y with Y0 = 1 and birth rates az, z ∈ Z+. It is well known that e−atYt is an L2 bounded
martingale which has an almost sure limit W , and that W has Exp(1) distribution.

Proposition 3.1. Let G be defined as in Theorem 2.1, and Z0 = 1 then

1

K
Z 1

a
logK

d−−−−→
K→∞

G−1(logW ). (3.1)
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Proof. Let Y and Z be defined as above, using the same sequence of random variables (τi). Due
to monotonicity of a pure birth process for t ≥ 0

{
Zt > n

}
=

{
n∑

i=1

1

λi
τi < t

}
=

{
Tn < t

}
, n ≤ [x∞K]

{
Yt > n

}
=

{
n∑

i=1

1

ai
τi < t

}
=

{
T̃n < t

}
, n ∈ N,

where Tn and T̃n are the times of the n-th jump of Z and Y respectively:

Tn =
n∑

i=1

1

λi
τi and T̃n =

n∑

i=1

1

ai
τi. (3.2)

Note that the coefficients in the first sum Tn in (3.2) depend on K, whereas in the second sum

T̃n they do not. Therefore we establish convergence of the second sum first, and then show that

their difference converges to a constant. Since Y
T̃n

= n, limn→∞ T̃n = ∞ and limt→∞ e−atYt = W

T̃n − 1

a
log n = −1

a
log

(
e−aT̃nY

T̃n

)
a.s.−−−→

n→∞
−1

a
logW. (3.3)

Let us show that for any x ∈ (0, x∞)

T[xK] − T̃[xK]
L2

−−−−→
K→∞

1

a

∫ x

0

1

s

g(s)

1− g(s)
ds. (3.4)

Indeed, denoting by h(s) = g(s)
s(1−g(s)) , we have

aE
(
T[xK] − T̃[xK]

)
=

[xK]∑

i=1

1

i

g(i/K)

1− g(i/K)
Eτi =

[xK]∑

i=1

1

i/K

g(i/K)

1− g(i/K)

1

K

=

[xK]∑

i=1

1

K
h(i/K) −−−−→

K→∞

∫ x

0
h(s)ds,

where we used Assumption (2.1) (iii). Similarly,

a2Var
(
T[xK] − T̃[xK]

)
=

[xK]∑

i=1

(
1

i

g(i/K)

1− g(i/K)

)2

=
1

K

[xK]∑

i=1

1

K
h2(i/K) −−−−→

K→∞
0. (3.5)

This can be seen as follows. Let ε > 0 be given. Choose δ > 0 such that 0 ≤ g(x) ≤ ε
for all x ∈ [0, δ]. This is possible because g is continuous and g(0) = 0. It is clear that
1
K

∑[xK]
i=[δK]

1
Kh2(i/K) −−−−→

K→∞
0, because the function h2(s) = (g(s)/s)2 is bounded and integrable

on [δ, x]. The residual sum satisfies

1

K

[δK]∑

i=1

1

K
h2(i/K) ≤ 1

K

(
max

1≤i≤[δK]
h(i/K)

) [δK]∑

i=1

1

K
h(i/K).
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By Assumption (2.1) (iii), the sum in the right hand side converges to
∫ δ
0 h(s)ds < ∞ and

1

K

(
max

1≤i≤[δK]
h(i/K)

)
≤ C

1

K
max

1≤i≤[δK]

g(i/K)

i/K
≤ C max

1≤i≤[δK]
g(i/K) ≤ Cε,

with a constant C independent of K. Thus the convergence in (3.5) holds by arbitrariness of ε
and the limit (3.4) follows.

Now (3.3) and (3.4) imply

T[xK] −
1

a
logK

P−−−−→
K→∞

1

a

(∫ x

0

1

s

g(s)

1− g(s)
ds+ log x− logW

)
=

1

a

(
G(x)− logW

)
.

Since W has a continuous distribution,

P

(
1

K
Z 1

a
logK > x

)
=P

(
Z 1

a
logK > [xK]

)
= P

(
T[xK] <

1

a
logK

)
−−−−→
K→∞

P

(
G(x)− logW < 0

)
= P

(
G−1(logW ) > x

)
, ∀x ∈ (0, x∞)

which proves (3.1). □

4. Proof of Theorem 2.1

The main idea of the proof is to construct the process Z(K), together with an auxiliary linear
BD process Y (K), on the same probability space, in such a way that Z(K) is well approximated
by Y (K) on the interval [0, t0(K)], where t0(K) := 1

λ−µ logKc, and c > 0 is a constant such that

α+ c is less than, but close enough to 1: more precisely, such that

0 < {1− (α+ c)}(1 + θ) < 1/2, (4.1)

for θ as in Assumption (2.1) (ii). Thereafter, we extrapolate this approximation on [t0(K), t1(K)],
using the flow generated by the o.d.e. (1.2). Our proof shows that this approximation is enough
to establish Theorem 2.1. The main effort is in proving that

1

K
Zt1

d−−−−→
K→∞

w0, (4.2)

where w0 is as in (2.5). Once this is done, the rest is immediate from Kurtz [12], Theorem 2.11.

To this end, for each K, we construct a process (Y (K), Z(K), U (K), V (K)) with the following
properties:

(a) Y
(K)
0 = Z

(K)
0 = U

(K)
0 =V

(K)
0 = ⌊Kα⌋;

(b) Y (K) is the linear BD process with per capita birth rate λ and death rate µ;

(c) Z(K) is the non-linear BD process with per capita birth rate λ − (λ − µ)g1(z/K) and
death rate µ+ (λ− µ)g2(z/K), z ∈ Z+;

(d) U (K) is the linear BD process with per capita birth rate {λ+λK} and death rate {µ−µK},
where

λK := (λ− µ)g+1
(
Kα+c+η−1

)
, µK := (λ− µ)g+2

(
Kα+c+η−1

)
,

and where η is a constant satisfying 0 < η < 1− α− c;
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(e) V (K) is the linear BD process with per capita birth rate {λ−λK} and death rate {µ+µK};

(f) V
(K)
t ≤ Y

(K)
t ≤ U

(K)
t for all t ≥ 0;

(g) V
(K)
t ≤ Z

(K)
t ≤ U

(K)
t for t ≤ τ (K), where τ (K) is the first time at which Z(K) hits the

level Kα+c+η:

τ (K) := inf
{
t ≥ 0 : Z

(K)
t ≥ Kα+c+η

}
. (4.3)

The coupling is described in Section 4.3.

Suppressing the dependence on K where possible, define Y t := 1
KYt and another auxiliary

process

Z̃t :=

{
Y t, t ≤ t0;

φt0,t(Y t0), t > t0,
(4.4)

where φs,t(x) is the flow generated by the o.d.e. (1.2); that is, using (2.2),

G(φs,t(x))−G(x) = (λ− µ)(t− s), (4.5)

if x > 0, and φs,t(0) = 0 for all t > s.

It thus follows from (4.4), with our choices of t0 and t1, that, on the set {Y t0 > 0},
G(Z̃t1) = G(Y t0) + (1− α− c) logK;

the equation is also trivially true when {Y t0 = 0}, since then Z̃t1 = Y t0 = 0, and G(0) = −∞.

Thus, introducing WK := K1−α−cχα(K)Y t0 = e−(λ−µ)t0(Yt0/Y0), with χα(K) := Kα/⌊Kα⌋, we
obtain

G(Z̃t1) = logWK − logχα(K) +H
(
Kα+c−1WK/χα(K)

)
. (4.6)

It follows from Remark 2.2 (2) that

WK = e−(λ−µ)t0(K)(Y
(K)
t0(K)/Y

(K)
0 )

d−−−−→
K→∞

{
W, if α = 0;

1 if α ∈ (0, 1).
(4.7)

Hence, since H is continuous and H(0) = 0, since α+ c < 1 and since limK→∞ χα(K) = 1, the
last term in (4.6) converges in distribution to zero as K → ∞. Thus, again using (4.7) in (4.6),
and because the function G−1 is continuous, it follows that

Z̃
(K)
t1(K)

d−−−−→
K→∞

G−1
(
1{α=0} logW

)
.

It remains to show that Z̃(K) is an appropriate approximation for Z(K) at time t1(K); we use
the coupling to show that

Z
(K)
t1(K) − Z̃

(K)
t1(K)

d−−−−→
K→∞

0.

Since
∣∣Zt1 − Z̃t1

∣∣ =
∣∣Zt1 − φt0,t1(Y t0)

∣∣ ≤
∣∣Zt1 − φt0,t1(Zt0)

∣∣+
∣∣φt0,t1(Zt0)− φt0,t1(Y t0)

∣∣ ,
it is enough to show that

Z
(K)
t1(K) − φt0,t1(Z

(K)
t0

)
d−−−−→

K→∞
0, (4.8)
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and, using the coupling of Y (K), Z(K), U (K) and V (K) constructed in Section 4.3, that

φt0,t1(Z
(K)
t0

)− φt0,t1(Y
(K)
t0

)
d−−−−→

K→∞
0. (4.9)

These two relations are proved in Sections 4.1 and 4.2. The proof of (4.2) is then complete.
Before proving (4.8) and (4.9), we collect some useful facts. First, for 0 < x < 1, we have

1
2g

+(x) log(1/x) ≤
∫ √

x

x

g+(s)

s
ds ≤

∫ √
x

0

g+(s)

s
ds,

so that, from Assumption (2.1) (iii), limx→0 g
+(x) log(1/x) = 0. This, in particular, implies that

limK→∞ g+l (K
−γ) logK = 0 for any γ > 0 and l ∈ {1, 2}, and hence that

lim
K→∞

(λK + µK) logK = 0; (4.10)

it also follows that g is continuous at 0. Then, in view of Assumptions (2.1) (i) and (ii), we have

xg(x) ≥ max{−θx, x∞ + θ(x− x∞)} =: fg(x), 0 ≤ x ≤ x∞. (4.11)

Note that fg is convex, and that g̃(x) := x−1fg(x) is increasing, since θ ≥ 1.

Next, let Z(γ,β) := (Z
(γ,β)
t , t ≥ 0) denote the linear birth and death process with per capita

birth rate γ and death rate β, and with Z
(γ,β)
0 = 1; suppose that γ > β. Then, writing

ηt := (β/γ)e−(γ−β)t, we have

β

γ
− P[Z

(γ,β)
t = 0] =

ηt
1− ηt

(
1− β

γ

)
;

P[Z
(γ,β)
t > r] =

1− β/γ

1− ηt

{
1−

(
γ

β
− 1

)
ηt

1− ηt

}r

, r ≥ 1; (4.12)

furthermore, EZ
(γ,β)
t = e(γ−β)t and VarZ

(γ,β)
t ≤ γ+β

γ−β e
2(γ−β)t (see Grimmett & Stirzaker (1982,

p.159)). The process (Z
(γ,β;M)
t , t ≥ 0) with the same birth and death rates, but starting with

Z
(γ,β;M)
0 = M , is distributed as the sum of M independent copies of Z(γ,β); hence, by Cheby-

shev’s inequality,

P[|M−1e−(γ−β)tZ
(γ,β;M)
t − 1| ≥ ε] ≤ γ + β

Mε2(γ − β)
. (4.13)

Now recall the well known semimartingale decomposition of Z:

Zt = Z0 + (λ− µ)

∫ t

0

(
Zs − Zsg(Zs/K)

)
ds+Mt, t ≥ 0, (4.14)

(see, for example, Klebaner [11] p.360), where M = (Mt)t≥0 is a martingale with M0 = 0 a.s.
and

⟨M⟩t =

∫ t

0

(
(λ+ µ)Zs + (λ− µ)Zs(g2(Zs/K)− g1(Zs/K))

)
ds.

Dividing both sides of (4.14) by K, we see that the density process Zt = K−1Zt satisfies the
equation

Zt = Z0 + (λ− µ)

∫ t

0

(
Zs − Zsg(Zs)

)
ds+

1√
K

M̂t, t ≥ 0, (4.15)
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where the martingale M̂ has zero mean and predictable quadratic variation

⟨M̂⟩t =

∫ t

0

(
(λ+ µ)Zs + (λ− µ)Zs(g2(Zs)− g1(Zs)

)
ds

=

∫ t

0

(
(λ+ µ)Zs + (λ− µ)Zsg(Zs)

)
ds. (4.16)

Taking expectations in (4.15), and recalling (4.11), we see that

EZt = EZ0 + (λ− µ)

∫ t

0

(
EZs − E{Zsg(Zs)}

)
ds

≤ EZ0 + (λ− µ)

∫ t

0

(
EZs − Efg(Zs)

)
ds

≤ EZ0 + (λ− µ)

∫ t

0

(
EZs − fg(EZs)

)
ds, (4.17)

this last because fg is convex. Hence EZt satisfies the integral inequality

EZt ≤ EZ0 + (λ− µ)

∫ t

0

(
EZs − EZsg̃(EZs)

)
ds, (4.18)

so that EZt ≤ φ̃0,t(EZ0), where φ̃0,t(x) is the flow generated by replacing g by g̃ in the o.d.e. (1.2).

Thus, in particular, since g̃(x∞) = 1, 0 ≤ EZt ≤ x∞ for all t ≥ 0. This in turn implies,
using (4.15), that

(λ−µ)

∫ t

t0

E{Zsg(Zs)} ds = EZt0+(λ−µ)

∫ t

t0

EZs ds−EZt ≤ x∞{1+(λ−µ)(t−t0)}. (4.19)

4.1. Proof of (4.8). Write δt := Zt − Ẑt, where Ẑt := φt0,t(Zt0) satisfies the equation

Ẑt = Zt0 + (λ− µ)

∫ t

t0

(
Ẑs − Ẑsg(Ẑs)

)
ds, t ≥ t0,

so that, using (4.15),

δt = (λ− µ)

∫ t

t0

(
δs + Ẑsg(Ẑs)− Zsg(Zs)

)
ds+

1√
K

(
M̂t − M̂t0

)
.

Applying Itô’s formula to δ2t as a function of δt, (see, e.g., eq. (8.58) [11]) we obtain

δ2t = 2(λ− µ)

∫ t

t0

(
δ2s −

(
Zsg(Zs)− Ẑsg(Ẑs)

)
(Zs − Ẑs)

)
ds+

1

K

∑

t0≤s≤t

(
∆M̂s

)2
. (4.20)

Taking expectations of both sides, and using Assumption (2.1) (ii), we obtain the inequality

Eδ2t ≤ 2(λ− µ)(1 + θ)

∫ t

t0

Eδ2s ds+
1

K

∫ t

t0

E

(
(λ+ µ)Zs + (λ− µ)Zsg(Zs)

)
ds, t ≥ t0; (4.21)
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for the last integral, we have used the formulae
∑

s≤t(∆M̂s)
2 =

[
M̂

]
t
and E

[
M̂

]
t
= E

⟨
M̂

⟩
t
,

together with (4.16). Using EZs ≤ x∞ and (4.19) in (4.21), we obtain

Eδ2t ≤ 2(λ− µ)(1 + θ)

∫ t

t0

Eδ2s ds+
1

K
x∞{1 + 2λ(t− t0)}.

The Grönwall inequality now yields

Eδ2t1 ≤ 1

K
x∞{1 + 2λ(t1 − t0)}e2(λ−µ)(1+θ)(t1−t0).

Since (λ− µ)(t1 − t0) = logK1−α−c and by the choice (4.1) of c, it follows that

Eδ2t1 ≤ x∞

{
1 +

2λ

λ− µ
logK

}
K2(1+θ)(1−α−c)−1 −−−−→

K→∞
0,

and (4.8) is proved.

4.2. Proof of (4.9). In this section, we use the coupling of (Y, Z, U, V ) established in Section 4.3.

First, we show that limK→∞ P[τ (K) ≤ t0(K)] = 0, where τ (K) is as in (4.3). Because, from

property (g), Zt ≤ Ut for all 0 ≤ t ≤ t(K), we have

P[τ (K) ≤ t0(K)] ≤ P

(
sup

0≤t≤t0

Ut ≥ Kα+c+η
)

≤ P

(
sup

0≤t≤t0

e−γK tUt ≥ e−γKt0Kα+c+η
)
,

where γK := λ− µ+ λK + µK is the exponential growth rate of the birth and death process U .
Applying Doob’s inequality to the martingale e−γK tUt thus shows that

P[τ (K) ≤ t0(K)] ≤ KαK−(α+c+η)eγK t0 ∼ K−η → 0,

as K → ∞, because (λK + µK) logK → 0 from (4.10). In view of (4.5) and of properties (f)
and (g) of the coupling, it is thus enough for (4.9) to show that

φt0,t1(U
(K)
t0 )− φt0,t1(V

(K)
t0 )

d−−−−→
K→∞

0, (4.22)

where U
(K)
t := K−1U

(K)
t and V

(K)
t := K−1V

(K)
t .

If α = 0, by (2.2) and (2.3), and on the set {Ut0 > 0}, we have

G
(
φt0,t1(U t0)

)
= logU t0 +H(U t0) + (λ− µ)(t1 − t0) = log(K−cUt0) +H(U t0).

Define

Ψ(x) :=

{
G−1(log x), x > 0;

0, x = 0.

This is a continuous function from [0,∞) to [0, x∞), and

φt0,t1(U t0) = Ψ
(
K−cUt0e

H(U t0
)
)
; φt0,t1(V t0) = Ψ

(
K−cVt0e

H(U t0
)
)
, (4.23)

irrespective of whether Ut0 and Vt0 are zero or positive. Now, from (4.12) and (4.10),

lim
K→∞

P[U
(K)
t0(K) = 0] =

µ

λ
; lim

K→∞
P[K−cU

(K)
t0(K) > x] = (1− µ/λ) exp{−x(1− µ/λ)}, x > 0.

(4.24)
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The same argument then shows that the limits (4.24) also hold if Ut0 is replaced by Vt0 . Since
K−cUt0 ≥ K−cVt0 a.s., and they both have the same limits in distribution, it follows that

K−c(Ut0 − Vt0)
d→ 0 as K → ∞. Note also, from (4.24), that U t0

d→ 0 as K → ∞, and thus

eH(U t0
) d→ 1 also; and that the same relations are true if U is replaced by V . From (4.23) and

from the continuity of Ψ, the convergence (4.22) now follows. For 0 < α < 1, K−c is replaced by
K−c−α in (4.23), and the convergence in distribution of both K−c−αUt0 and K−c−αVt0 to the
constant 1 follows from (4.13), in view of (4.10).

Remark 4.1. Assumption (2.1) (ii) is used to justify (4.21) on the basis of (4.20), to guarantee
the uniqueness of the solutions of (1.2), and to show that G0 maps to the whole of R. However,
if xg(x) is non-decreasing in x, it follows from (4.20) that (4.21) holds with θ replaced by zero.

Furthermore, if Z is replaced by any solution of the o.d.e. (1.2) other than Ẑ, but also starting

at Zt0 , the difference δt := Zt − Ẑt satisfies (4.20), with M the zero function, from which
it follows, using Gronwall’s inequality, that δt = 0 for all t ≥ t0, implying uniqueness of the
solutions to the o.d.e.

4.3. Coupling birth and death processes. The proof of (4.2) will be completed, once we

construct the processes Y (K), Z(K), U (K) and V (K), all on the same probability space, with the
properties (a)–(g). The basic element of our construction is a coupling of two birth and death
processes, one of which has greater birth rate and smaller death rate than the other. Such a
coupling has been suggested, e.g., in [6]. For the sake of completeness we give a construction in
much the same spirit. As usual, we suppress the index K as far as we can.

The coupling is based on a collection of four sequences of independent standard Poisson pro-
cesses (Πl

n, n ≥ 1), l ∈ {1, 2, 3, 4}, together with two double sequences (J l
n(i), i ≥ 0, n ≥ 1),

l ∈ {3, 4}, of independent uniform U [0, 1] random variables, all of which are mutually indepen-
dent. We then define processes (J l

nt, t ≥ 0) by

J3
nt := J3

n(Π
3
n(2λKt)); J4

nt := J4
n(Π

4
n(2µKt)),

where λK and µK are as defined in property (d). The definitions of the BD processes U, Y and V
are now simple to write down:

Ut := U0 +
∑

n≥1

∫ t

0
1{n≤Us−}{dΠ1

n((λ− λK)s) + dΠ3
n(2λKs)} −

∑

n≥1

∫ t

0
1{n≤Us−}dΠ

2
n((µ− µK)s);

Yt := Y0 +
∑

n≥1

∫ t

0
1{n≤Ys−}{dΠ1

n((λ− λK)s) + 1{J3
ns≤1/2}dΠ

3
n(2λKs)}

−
∑

n≥1

∫ t

0
1{n≤Ys−}{dΠ2

n((µ− µK)s) + 1{J4
ns≤1/2}dΠ

4
n(2µKs)}; (4.25)

Vt := V0 +
∑

n≥1

∫ t

0
1{n≤Vs−} dΠ

1
n((λ− λK)s)−

∑

n≥1

∫ t

0
1{n≤Vs−}{dΠ2

n((µ− µK)s) + dΠ4
n(2µKs)}.

That these representations yield the distributions of the corresponding BD processes follows
because they define Markov processes having the right jump rates. These processes only have
jumps of ±1, so that, for two of them to cross each other, there have to be times at which they
have the same values. However, if Ut = Yt, the next transition either leaves their values the
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same, or increases U by 1, leaving Y unchanged, or reduces Y by 1, leaving U unchanged: so,
if U0 ≥ Y0, then Ut ≥ Yt for all t ≥ 0. The same considerations yield Yt ≥ Vt for all t ≥ 0, if
Y0 ≥ V0, and property (f) follows, assuming property (a).

In order to define the process Z, let

p3(t) := (λK − (λ− µ)g1(Zt−/K))/(2λK); p4(t) := (λK + (λ− µ)g2(Zt−/K))/(2µK),

noting that, if 0 ≤ t ≤ τ (K) := inf{s > 0: Zs ≥ Kα+c+η}, as defined in property (g), then
0 ≤ pl(t) ≤ 1, l ∈ {3, 4}. Then the process

Zt := Z0 +
∑

n≥1

∫ t

0
1{n≤Zs−}{dΠ1

n((λ− λK)s) + 1{J3
ns≤p3(s)}dΠ

3
n(2λKs)}

−
∑

n≥1

∫ t

0
1{n≤Zs−}{dΠ2

n((µ− µK)s) + 1{J4
ns≤p4(s)}dΠ

4
n(2µKs)} (4.26)

is Markovian and has the correct transition rates for 0 ≤ t ≤ τ (K); after that time, Z can be
continued in any way that reproduces the correct distribution. The argument used to show that
Ut ≥ Yt ≥ Vt for all t ≥ 0 also shows that Ut ≥ Zt ≥ Vt for all 0 ≤ t ≤ τ (K), if U0 ≥ Z0 ≥ V0,
and property (g) follows, assuming property (a).
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