
Journal of Economic Behavior & Organization
Vol. 49 (2002) 217–239

On the emergent properties of artificial stock
markets: the efficient market hypothesis and the

rational expectations hypothesis�

Shu-Heng Chena,∗, Chia-Hsuan Yeha,b
a Department of Economics, AI-ECON Research Center, National Chengchi University,

Taipei 11623, Taiwan
b Department of Information Management, Yuan Ze University, Chungli, Taoyuan 320, Taiwan

Received 9 April 2001; received in revised form 3 August 2001; accepted 9 August 2001

Abstract

By studying two well known hypotheses in economics, this paper illustrates how emergent prop-
erties can be shown in an agent-based artificial stock market. The two hypotheses considered are
the efficient market hypothesis and the rational expectations hypothesis. We inquire whether the
macrobehavior depicted by these two hypotheses is consistent with our understanding of the mi-
crobehavior. In this agent-based model, genetic programming is applied to evolving a population
of traders learning over time. We first apply a series of econometric tests to show that the EMH
and the REH can be satisfied with some portions of the artificial time series. Then, by analyzing
traders’ behavior, we show that these aggregate results cannot be interpreted as a simple scaling-up
of individual behavior. A conjecture based on sunspot-like signals is proposed to explain why
macrobehavior can be very different from microbehavior. We assert that the huge search space
attributable to genetic programming can induce sunspot-like signals, and we use simulated evolved
complexity of forecasting rules and Granger causality tests to examine this assertion. © 2002 Else-
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1. Background and motivation

While it is claimed quite frequently that the stock market is a complex adaptive sys-
tem, conventional financial models, constrained by computing power, are not capable of
demonstrating this feature. However, recent progress in computing technology has made
possible a more ambitious vehicle to construct and simulate the stock market. The fledgling
research field, known as the artificial stock market, is distinguished from the conventional
model-building in many essential ways.1 Generally speaking, models in this field are com-
posed of many heterogeneous interacting adaptive traders. The conventional devices such
as the rational expectations hypothesis and the representative agent are discarded (Arthur,
1992). In principle, the artificial stock market is a promising way to study the stock market
as a complex adaptive system. By that, we mean two things. First, the artificial stock market
is rich in dynamics. Second, it is rich in emergent properties.2

The rich dynamics of the artificial stock market have been documented in the literature.
One of the early attempts of this research was to show that many econometric properties
(stylized facts) of financial time series can be replicated by artificial stock markets. The
properties replicated include volatility clustering (autoregressive conditional heteroskedas-
ticity (ARCH)), excess kurtosis (fat-tail distribution), bubbles and crashes, chaos, unit roots,
and many others.3 Thus, there is little doubt that the artificial stock market can generate
rich dynamics. However, being able to generate rich dynamics is only a minor part of com-
plex adaptive systems. To be a complex adaptive system, rich dynamics must be generated
endogenously (or from bottom up), rather than be given exogenously (top down). It is
this difference that leads to the main characteristic of complex adaptive systems, namely,
emergence.

Emergence is about “how large interacting ensembles exhibit collective behavior that is
very different from anything one may have expected from simply scaling up the behavior of
the individual units” (Krugman, 1996, p. 3), or “. . . in a structured system, new properties
emerge at higher levels of integration which could not have been predicted from a knowledge
of the lower level components” (Mayr, 1997, p. 19). Examples of emergence abound in other
fields (Holland, 1998), and economists are anything but unfamiliar with the significance
of this term. Apart from the Santa Fe Institute Economists, Krugman (1996) and Epstein
and Axtell (1996) are among the first few economists who exemplified emergence with
a series of economic phenomena. Nevertheless, the emergent properties of the artificial
stock market has not received a full attention. This paper considers a different research
direction. Instead of replicating the econometric properties of financial time series, though
it is still worth doing, we are concerned with identifying some areas of the artificial stock
market where the phenomena observed can be plausibly argued as emergent behavior. The
areas considered in this paper are two celebrated hypotheses in economics and finance,
namely, the efficient market hypothesis (EMH) and the rational expectations hypothesis
(REH).

1 See LeBaron (2000).
2 Publishing the article “More is Different” in 1972s Science magazine, Philip Anderson, the 1977 Nobel laureate

physicist, may be regarded as the father of the science of emergence.
3 See, e.g. Lux (1995, 1997, 1998), Lux and Marchesi (1999), and LeBaron et al. (1999).
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First, the efficient market hypothesis. What does it mean if the EMH can be an emergent
property? Consider the EMH as a collective behavior. It would be an emergent property if it
is not expected from our understanding of the behavior of individual traders. Let us take an
extreme case. Suppose that none of the traders believe in the EMH, then this property will not
be expected to be a feature of their collective behavior. Even if it is observed, it has no direct
link to the individual behavior. So, if the collective behavior of these traders indeed satisfies
the EMH as tested by the standard econometric procedures, then we would consider the
EMH as an emergent property. Second, the rational expectations hypothesis. Consider the
rational expectations hypothesis as a collective behavior. It would be an emergent property
if all our traders are boundedly rational, with their collective behavior satisfying the REH
as tested by econometrics.

This way of identifying the EMH and the REH as emergent properties may not seem
rigorous, since the word “expected” or “surprising” is somewhat subjective. Nonethe-
less, in the light of the long-lasting debate on the two hypotheses, this particular way
of defining emergent properties is quite normal, if not satisfactory. In a sense, it pro-
vides a new perspective to reflect upon these controversies. Consider a spectrum. On
the leftmost are individuals, and the rightmost an aggregate of individuals (the repre-
sentative agent). It seems much easier to reject these hypotheses at the leftmost point
than at the other extreme. To the leftmost is the area of psychology, where evidence of
bounded rationality dates back to 1970s (Tversky and Kahneman, 1974), whereas to the
rightmost is the turf of the representative agent whose rational behavior has been evi-
denced by advanced econometrics since Hall’s work (1978) on consumption theory in
1978.

Therefore, instead of thinking of this spectrum as an encapsulation of conflicting
viewpoints, one may consider it a system whose microbehavior is rather different
from macrobehavior (Kirman, 1992). Of course, this manner of thinking is nothing new
in economics. A list of early examples, such as Adam Smith’s invisible hand and
Hayek’s hypothesis, was well documented in Krugman (1996). However, what has not
been done in conventional economics is to construct a system (artificial society) where
to allow both views of the world are represented. What we have in mainstream eco-
nomics is a highly abstract representative agent. Under these circumstances, there is no
distinction between the microbehavior and the macrobehavior of traders, and hence, no
room for the study of emergent properties. Recent advancement in research technology
provides us with an opportunity to address the issue. This paper is not the first one in
this line of research, and certainly not the last. What distinguishes this study from ear-
lier ones, however, is that this study may be viewed as a first attempt to formally
interpret the EMH and the REH as emergent properties in the context of artificial stock
markets.

The rest of the paper is organized as follows. In Section 2, we present the analytical
model upon which our artificial stock market is built. Genetic programming is introduced
in Section 3 to model a population of traders learning over time. We then present and
analyze the results of simulations in Sections 4 and 5. A series of econometric tests and
microstructure analysis were conducted to show that the EMH and REH can be emergent
properties which will be further discussed in Section 6. Concluding remarks are given in
Section 7.
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2. The artificial stock market

2.1. The analytical model

The basic framework of the artificial stock market considered in this paper is the standard
asset pricing model (Grossman and Stiglitz, 1980). The market dynamics can be described
as an interaction of many heterogeneous traders each of them has the goal to maximize
her expected utility based on her forecast of the future. Technically, there are two major
components of this market, namely, traders and their interactions.

2.2. Model of traders

The trader part includes traders’ objectives and their adaptation. We shall start from
traders’ motives by introducing their utility functions. For simplicity, we assume that all
traders share the same utility function. More specifically, this function is assumed to be a
constant absolute risk aversion (CARA) utility function:

U(Wi,t ) = −exp(−λWi,t ) (1)

whereWi,t is the wealth of traderi at time periodt , andλ is the degree of relative risk
aversion. Traders can accumulate their wealth by making investments. There are two assets
available for traders to invest in. One is the riskless interest-bearing asset called money, and
the other is the risky asset known as the stock. In other words, at each point in time, each
trader has two ways to keep her wealth, i.e.

Wi,t = Mi,t + Pthi,t (2)

whereMi,t andhi,t denote the money and shares of the stock held by traderi at time t .
Given this portfolio (Mi,t ,hi,t ), a trader’s total wealthWi,t+1, is thus,

Wi,t+1 = (1 + r)Mi,t + hi,t (Pt+1 + Dt+1) (3)

wherePt is the price of the stock at time periodt andDt is per share cash dividends paid
by the companies issuing the stocks.Dt can follow a stationary stochastic process. In this
paper, we assume thatDt is an i.i.d. normal process with meanµ and varianceσ 2

ξ ; r is the
riskless interest rate. Given this wealth dynamic, the goal of each trader is to myopically
maximize the one-period expected utility function,

Ei,t (U(Wi,t+1)) = E(−exp(−λWi,t+1)|Ii,t ) (4)

subject to Eq. (3), whereEi,t (·) is traderi’s conditional expectations ofWt+1 given her
information up tot (the information setIi,t ). The choice variable of this optimization
problem ishi,t .

It is well known that under CARA utility and Gaussian distribution for forecasts, trader
i’s desire demand,h∗

i,t , for holding shares of the risky asset is linear in the expected excess
return (Grossman and Stiglitz, 1980, p. 396):

h∗
i,t = Ei,t (Pt+1 + Dt+1) − (1 + r)Pt

λσ 2
i,t

, (5)

whereσ 2
i,t is the conditional variance of (Pt+1 + Dt+1) givenIi,t .
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One of the essential elements of agent-based artificial stock markets is the formation of
Ei,t (·), which will be given in detail later.

2.3. Model of price determination

Givenh∗
i,t , the market mechanism is described as follows. Letbi,t be the number of shares

traderi would like to buy at periodt , and letoi,t be the number of shares traderi would
like to sell at periodt . It is clear that

bi,t =
{

h∗
i,t − hi,t−1, h∗

i,t ≥ hi,t−1,

0, otherwise
(6)

and

oi,t =
{

hi,t−1 − h∗
i,t , h∗

i,t < hi,t−1,

0, otherwise
(7)

Clearly, from Eqs. (6) and (7), the trader can only buy or sell but not both at the same time.
Furthermore, let

Bt =
N∑
i=1

bi,t (8)

and

Ot =
N∑
i=1

oi,t (9)

be the totals of the bids and offers for the stock at timet , whereN is the number of traders.
Following Palmer et al. (1994), we use the following simple rationing scheme:

hi,t =




hi,t−1 + bi,t − oi,t , if Bt = Ot,

hi,t−1 + Ot

Bt

bi,t − oi,t , if Bt > Ot ,

hi,t−1 + bi,t − Bt

Ot

oi,t , if Bt < Ot .

(10)

All these cases can be subsumed into

hi,t = hi,t−1 + Vt

Bt

bi,t − Vt

Ot

oi,t (11)

whereVt ≡ min(Bt ,Ot ) is the volume of trade in the stock.
Based on Palmer et al.’s rationing scheme, we can have a very simple price adjustment

scheme, based solely on the excess demandBt − Ot :

Pt+1 = Pt(1 + β(Bt − Ot)) (12)



222 S.-H. Chen, C.-H. Yeh / J. of Economic Behavior & Org. 49 (2002) 217–239

whereβ is a function of the difference betweenBt andOt . β can be interpreted as the speed
of adjustment of prices. One of theβ functions we consider is given as

β(Bt − Ot) =
{

tanh(β1(Bt − Ot)), if Bt ≥ Ot,

tanh(β2(Bt − Ot)), if Bt < Ot

(13)

where tanh is the hyperbolic tangent function.

2.4. Model of adaptive traders

In this section, we will address the formation of traders’ expectations,Ei,t (Pt+1 +Dt+1)

andσ 2
i,t . There are several ways to generateEi,t (·). First,Ei,t (·) can be a function directly

generated by genetic programming. This is certainly the most straightforward way. But, in
this case, the range ofEi,t (·) can hardly be held in check, and that can potentially make the
price dance in a crazy manner. Second, instead of level, one may be interested in forecasting
increments instead of level. That is what we are doing in this paper. The specific function
form we consider is the following,

Ei,t (Pt+1 + Dt+1) = (Pt + µ)(1 + θ1 tanh(θ2fi,t )). (14)

wherefi,t generated by genetic programming is fed into a hyper-tangent transformation,
and that restricts the range to a (−1,1) open interval.4 After being pre-multiplied by a
constantθ1, its range is (−θ1, θ1). So, Eq. (14) can be interpreted as a forecast of the growth
rate (rate of return) ofPt + µ.

Apart from the technical reason given above, function (14) has two other advantages in
economic sense. First, in the case of homogeneous rational expectations equilibrium, the
price is a constantP ∗, and the best forecast (conditional expectations) is just5

Et(Pt+1 + Dt+1) = Pt + µ = P ∗ + µ. (15)

In terms of Eqs. (14), (15) is a special case corresponding tofi,t = 0. Furthermore, since
Dt follows an i.i.d. process with meanµ, it would be interesting to consider the case where
Pt fails to converge toP ∗, but instead follows a random walk. In this case,

Et(Pt+1 + Dt+1) = Pt + µ, (16)

or simply Et(Pt+1) = Pt .6 In plain English, the best forecast for tomorrow’s price is
today’s price, a property known as the martingale hypothesis in finance. Again, Eq. (16) is
a special case of Eq. (14) whenfi,t = 0.

So, when the condition for Eq. (16) holds, i.e. when the martingale hypothesis is validated
as an aggregate phenomenon,fi,t = 0 would imply that macrobehavior is consistent with
microbeliefs. Alternatively speaking, on the top the market is efficient in the martingale

4 The population of functionsfi,t (i = 1, . . . , N ) is determined by the genetic programming procedure to be
detailed in the following section.

5 See Arthur et al. (1997).
6 More rigorously, one needs the assumption thatDt fails to Granger causePt . But, theoretically, this is

self-evident because the sequence{Dt } is independent. For technical details, see Arthur et al. (1997).
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sense, and on the bottom traderi also believes so. Therefore, from the cardinality of the
set{i|fi,t = 0}, denoted byN1,t , one can know how well the efficient market hypothesis is
accepted among traders, or how well macrobehavior is consistent with microbeliefs.

As to the subjective risk equation, we adopt a modified version of the equation originally
used by Arthur et al. (1997):

σ 2
i,t = (1 − θ3) σ

2
t−1|n1

+ θ3[(Pt + Dt − Ei,t−1(Pt + Dt))
2], (17)

where

σ 2
t |n1

=
∑n1−1

j=0 [Pt−j − P̄t |n1]2

n1 − 1
, and P̄t |n1 =

∑n1−1
j=0 Pt−j

n1
. (18)

In other words,σ 2
t−1|n1

is simply the historical volatility based on the pastn1 observations.

3. Modeling traders’ adaptation with genetic programming

In this paper, we will use genetic programming to evolve traders’ forecasts denoted by
fi,t . Like genetic algorithms, genetic programming is a model for a population of agents
learning over time. In this paper, it is used to evolve a population of forecasting function
{fi,t } held by traders, as outlined in the following sections.

First, each trader is working under survival pressure. The pressure traders have to bear
prompts them to search (struggle) for something better, in our case a better forecasting rule.
The stronger the pressure, the stronger the incentive to search. Second, once a trader decides
to search, the whole search process is driven by genetic programming. On the other hand,
if a trader decides not to search, her forecasting rule shall remain unchanged.

3.1. Pressure

Pressure is basically a psychological term which is sometimes not very objective and
hence not very easy to model. What we propose here is to quantify two basic types of
pressure well studied by psychologists, namely, peer pressure and self-pressure. The way to
quantify peer pressure is as follows. Suppose that traders will examine how well they have
performed over the lastn2 trading days, when compared with other traders. Moreover, they
rank their performance by the net change of wealth over the lastn2 trading days. LetWn2

i,t

be this net change of wealth over an2 time horizon of traderi at time periodt , i.e.

!W
n2
i,t ≡ Wi,t − Wi,t−n2, (19)

and, letRn2
i,t be her ranking. ThenRn2

i,t can be considered as a measure for peer pressure
traderi bears at timet .

In addition to peer pressure, traders may also examine how much progress they have
made over the lastn2 trading days, i.e. the growth rate of income over the lastn2 days:

δ
n2
i,t = !W

n2
i,t − !W

n2
i,t−n2

|!W
n2
i,t |

. (20)

This measureδn2
i,t defines the self-pressure for traderi.
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3.2. Search incentive

Under peer pressure and self-pressure, traderi’s incentive to search can be modeled as
follows. First of all, traderi has a particular probability of searching. Denote this probability
by pi,t , and assume that

pi,t = R
n2
i,t

N
. (21)

The choice of function (21) is quite intuitive. It simply means that

pi,t < pj,t , if R
n2
i,t < R

n2
j,t . (22)

In other words, traders who come out top shall suffer less peer pressure, and hence be less
motivated to search than those who are ranked at the bottom.

In addition topi,t , under pressureδn2
i,t , there is another chance with which traderi will

search. This probability, denoted byqi,t , is assumed to be:

qi,t = 1

1 + exp(δn2
i,t )

. (23)

The choice of density function (23) is also straightforward. Notice that

lim
δ
n2
i,t →∞

qi,t = 0, and lim
δ
n2
i,t →−∞

qi,t = 1. (24)

Therefore, the traders who have made great progress will naturally be more confident, and
thus, have little incentive to search, whereas those who suffer devastating regression will
have a strong desire to search.

In sum, for traderi, the decision to search can be considered as a result of a two-stage in-
dependent Bernoulli experiment. The success probability of the first stage of the experiment
is pi,t . If the outcome of the first experiment is success, the trader will decide to search. If,
however, the outcome of the first experiment is failure, the trader will continue to carry out
the second stage of the experiment with the success probabilityqi,t . If the outcome of the
second stage is success, then the trader will also decide to search. Otherwise, the trader will
quit school. Letri,t be the probability that traderi decides to search, then

ri,t = pi,t + (1 − pi,t )qi,t = R
n2
i,t

N
+ N − R

n2
i,t

N

1

1 + exp(δn2
i,t )

(25)

And the number of traders who decide to search, denoted byN2,t , is a sum of these
Bernoulli random variables:

N2,t =
N∑
i=1

χi,t , (26)

whereχi,t is a Bernoulli random variable with a probability of successri,t .
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3.3. Search process

The search process to be detailed below will determine the outcome of the trader’s search.
Basically, it describes how promising ideas (forecasting rules) are popularized or how new
ideas are discovered during traders’ search and adaptive process, i.e. the evolution of a
population of ideas. Recently, genetic algorithms (GAs) and genetic programming (GP)
have been extensively used to substantiate processes like this. However, the straightforward
application of single-population GAs or GP, which rests on the assumption that strategies
are observable and imitable, has been seriously criticized by Harrald (2000). Harrald (2000)
pointed out the traditional distinction between the phenotype and genotype in biology and
doubted whether the adaptation can be directly operated on the genotype via the phenotype
in social processes.

Chen and Yeh (2001) had a lengthy discussion on this issue, and proposed a solution
to it. The solution is based on an idea called business school. They argued that, in the
case of school, observability and imitability (replicatability) is not an assumption but a
rule. Hence, there is no distinction between genotype and phenotype in school. Thus, the
original operation of single-population GP in a society of traders can now be replaced by
a society of faculty members. Single-population GP is then conducted in a standard way.
In a separate study (Chen and Yeh, 2000), they also found that the time series generated
by the architecture without the business school are highly serially correlated and linearly
predictable, which casts doubts on whether running single-population GP directly on a
society of traders is a proper design for agent-based financial markets. Accordingly, in this
paper, we only present the architecture with business school.

In Chen and Yeh (2001), the business school mainly consists of faculty members. Let
F be the number of faculty members (forecasting rules). Each faculty member (forecast-
ing model) is represented by a tree (GP parse tree). The faculty will be evaluated with a
prespecified schedule, say once for everym1 trading days. The review procedure proceeds
as follows. At the evaluation date, sayt , each forecasting rule (faculty member) will be
reviewed by a visitor. The visitor is another model which is generated randomly from the
collection of the existing rules in the business school att − 1, denoted byGPi,t−1, by one
of the following three genetic operators, reproduction, crossover, and mutation, each with
probabilitypr, pc, andpm(= 1 − pr − pc). In the case of reproduction, we first randomly
select two GP trees, say,gpj,t−1 andgpk,t−1. The mean absolute percentage error (MAPE)
of these two trees over the lastm2 days’ forecasts are calculated. A tournament selection is
then applied to these two trees. The one with the lower MAPE, saygpj,t−1, is selected. We
then run a tournament over the hostgpi,t−1 and the visitorgpj,t−1 based on the criterion
MAPE, andgpi,t is the winner of this tournament. In the case of mutation, we follow the
same procedure as reproduction except that, before meeting its matchgpi,t−1, gpj,t−1 has
a chance of being perturbed togp′

j,t−1 by tree mutation.
In the case of crossover, we first randomly select two pairs of trees, say (gpj1,t−1, gpj2,t−1)

and (gpk1,t−1, gpk2,t−1). The tournament selection is applied separately to each pair, and
the winners are chosen to be parents. The children, say (gp1, gp2), are born. One of them is
randomly selected to compete withgpi,t−1, and the winner isgpi,t .

Given the business school described above, traders’ decision to search is a decision to
go to school. Once a trader decides to go to school, she has to make a decision on what
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kinds of classes to take. Since we assume that business school, at periodt , consists of
F faculty members (forecasting rules), let us denote them bygpj,t (j = 1,2, . . . , F ).
The class-taking behavior of traders is assumed to follow the following sequential search
process. The trader will randomly select one forecasting rulegpj,t (j = 1, . . . , F ) with
a uniform distribution. She will then experiment this model by using it to fit the stock
price and dividends over the lastn3 trading days, and compare the result (MAPE) with her
original model. If it outperforms the old model, she will discard the old model, and put the
new one into practice. If this happens, the trader is considered to have a successful search.
Otherwise, she will start another random selection, and do it again and again until either
she has a successful search or she continuously failI ∗ times. The number of successful
searchers in timet is denoted byN3,t .

4. The efficient market hypothesis

4.1. Macrobehavior

Based on the parameter values specified in Table 1, a single run with 20,000 trading
days was conducted. This generated a time series of the artificial stock price with 20,000
observations. A time series plot of this artificial price series is given in Fig. 1. In addition,
Table 2 gives the basic statistics of the return series, including the mean, the standard
deviation, etc.7 During the whole simulation period, the price ranges from 75 to 100
with a mean 85, which is very close to the homogeneous rational expectations equilibrium
(HREE) price 80.8 Fig. 2 exhibits the time series plot of the stock return{rt }, where
rt = ln (Pt )− ln (Pt−1).9 We can see that the return series centers around zero. However,
the distribution is not symmetric. In particular, there seems to be a flat (Fig. 2) for negative
returns, but not for positive returns. The flat is situated at−0.010050, i.e. the value of
ln (1 + β(−500)). This is the value corresponding to the case where all the traders would
like to sell all their stocks, and none would like to buy. What happens then is an excess offer
to sell up to 500 units. By the price adjustment equation (Eq. (13)), this sell pressure will
lead to a return which is ln(1 + β(−500)), i.e.−0.010050. Since traders are not allowed
to sell short, the excess offer will not be higher than 500, andrt cannot be lower than
−0.010050. On the other hand, traders can buy whatever amount they can afford; hence,
there is no such flat for positive returns.

The first macrobehavior we would like to examine is to see whether our artificial stock
market is efficient in the sense that the stock returns are statistically independent. To do so,

7 Most statistics reported in the following are based on a non-overlapping decomposition of the original 20,000
into 10 subperiods, each with 2000 observations.

8 Under full information and homogeneous expectations, the HREE price is given in Eq. (27) (Arthur et al.,
1997, pp. 40–41).

Pt = 1

r

[
µ − λσ 2

ξ

(
H

N

)]
= 1

r

[
µ − λσ 2

ξ h
]
. (27)

Since in our experiments (Table 1),(µ, σ 2
ξ , r, λ, h) = (10,4,0.1,0.5,1), the HREE price is 80.

9 A detail analysis of the statistical behavior of the stock return can be found in Chen and Yeh (2000).
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Table 1
Parameters of the stock market

The stock market
Shares of the stock (H ) 100
Initial money supply (M1) 100
Interest rate (r) 0.1
Stochastic process(Dt )(∼ normal(µ, σ 2

ξ ) i.i.d. normal(10, 4)
Price adjustment function tanh
Price adjustment (β1) 0.2 × 10−4

Price adjustment (β2) 0.2 × 10−4

Business school
Number of faculty members (F ) 500
Number of trees created by the full method 50
Number of trees created by the grow method 50
Function set {+,−,×, /, sin, cos,exp, rlog,abs, sqrt}
Terminal set {Pt , Pt−1, . . . , Pt−10, Pt−1 + Dt−1, . . . , Pt−10 + Dt−10}
Selection scheme Tournament selection
Tournament size 2
Probability of creating a tree by reproduction 0.10
Probability of creating a tree by crossover 0.70
Probability of creating a tree by mutation 0.20
Probability of mutation 0.0033
Probability of leaf selection under crossover 0.5
Mutation scheme Tree mutation
Maximum depth of tree 17
Number of generations 20000
Maximum number in the domain of Exp 1700
Criterion of fitness (faculty members) MAPE
Evaluation cycle (m1) 20
Sample size (MAPE) (m2) 10

Traders
Number of traders (N ) 500
Degree of RRA (λ) 0.5
Criterion of fitness (traders) Increments in wealth (income)
Sample size ofσ 2

t |n1
(n1) 10

Evaluation cycle (n2) 1
Sample size (n3) 10
Search intensity (I ∗) 5
θ1 0.5
θ2 10−4

θ3 0.0133

The number of trees created by the full method or grow method is the number of trees initialized in Generation 0
with the depth of tree being 2–6. For details, see Koza (1992).

we followed the procedure of Chen, Lux and Marchesi (2000). This procedure is composed
of two steps, namely, the PSC filtering and the BDS testing. We first applied the Rissanen’s
(Rissanen, 1989) predictive stochastic complexity (PSC) to the return series. The PSC
criterion is a model selection criterion. It selects the model with the minimum PSC. By the
PSC criterion, we can identify the linear ARMA model(p, q) of a series. If a series satisfies
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Fig. 1. Time series plot of the stock price.

Table 2
Basic statistics of the artificial stock return series and tests for i.i.d.

Periods r̄ σ SKew Kur PSC BDS GARCH Kaplan

1–2000 −4.17 9.54 1.16 5.01 (0, 0) A (0.69) R (0, 1) A
2001–4000 −3.81 9.53 0.98 3.78 (0, 0) A (1.74) R (0, 1) R
4001–6000 −0.27 9.63 1.24 5.69 (1, 0) A (1.00) R (0, 1) R
6001–8000 3.92 9.78 1.20 4.94 (0, 0) A (1.05) R (0, 1) A
8001–10000 1.24 9.81 1.37 6.68 (0, 0) A (1.12) A (0, 0) R
10001–12000 0.01 10.94 5.15 92.67 (0, 0) A (0.35) A (0, 0) R
12001–14000 −1.62 9.60 1.22 5.44 (0, 0) A (1.10) R (0, 1) Am
14001–16000 2.78 10.61 2.76 26.28 (0, 0) A (1.44) A (0, 0) R
16001–18000 −3.06 10.09 1.85 13.51 (0, 0) A (1.15) A (0, 0) A
18001–20000 −0.01 9.41 0.87 3.49 (0, 0) A (1.29) R (0, 1) R

Here,r̄ andσ are 105 and 103 times of the respective original value. “SKew” refers to “skewness”, and “Kur”
refers to kurtosis. The pairs of numbers(p, q) in the column “PSC” are the orders of the ARMA(p, q) model
selected by the PSC criterion. The test result “A” (accept) or “R” (reject) in the column “BDS” is based on a
significance level at 0.05. Inside the bracket is the BDS test statisticJε,m. The test result shown in the column
“GARCH” are based on the Lagrange multiplier (LM) test. The pairs of numbers inside the bracket are the orders
of the GARCH(p, q) model selected by the SIC criterion. “Am” shown in the Kaplan test refers to “ambiguous”.

Fig. 2. Time series plot of the stock return.
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the EMH, then bothp andq should be 0, i.e. there is no linear dependence, and hence, the
series is not linearly predictable. The fifth column of Table 2 gives us the ARMA(p, q)

process extracted from the return series. Interestingly enough, all these seven periods are
linearly uncorrelated (p = 0, q = 0) except the third period 4001–6000, which is identified
as an AR(1) process.

We filtered out the linear signal detected so that any signal left in the residual series
must be non-linear. One of the most frequently used tests for non-linear dependence is the
celebrated BDS test (Brock et al., 1996). The BDS test is a test based on the fact that, if
{rt } is an i.i.d. series, then the BDS test statistic has a limiting standard normal distribution.
The BDS test was then applied to the prewhitened series. Since most return series have no
linear signal, the BDS test was simply directly applied to the original series except the for
third one. There are two parameters required to conduct the BDS test. One is the distance
parameter (ε standard deviations), and the other the embedding dimension (DIM). Since
our results are not sensitive to either choice, only those withε = 1 and DIM = 5 are
reported here. The results are given in the sixth column of Table 2. By the BDS test, what
is interesting is that the null hypothesis of i.i.d. (identically and independently distributed)
is not rejected in any of these ten periods.

Motivated by Barnett et al. (1998), we also carried out the Lagrange multiplier (LM)
test for the presence of the autoregressive conditional heteroskedasticity (ARCH) effect
of the residual. We took lags up to 12. If the null hypothesis is rejected, we will further
identify the GARCH (generalized ARCH) order of the series by the Schwartz Information
Criterion (SIC). These results are exhibited in the seventh column of Table 2. Out of the 10
subperiods, six exhibit the ARCH effect. By the SIC criterion, they are all GARCH(0,1).
This result is somewhat inconsistent with the BDS test in non-linear independence. Here,
six out of the 10 series which fail to reject the null of i.i.d. under the BDS test are now
identified as GARCH(0,1) series.

Finally, considering possibility that the time series may be chaotic rather than stochastic,
we also conduct the Kaplan test (Kaplan, 1994). Kaplan (1994) used the fact that deter-
ministic processes, unlike stochastic processes, have the following property: points that are
nearby are also nearby under their image in phase space. That is, ifXi andYj are close
to each other, thenXi+1 andYj+1 are also close to each other. Technically speaking, let
Xi = (ri, ri−τ , ri−2τ , ..., ri−(m−1)τ ) embedded inm-dimensional phase space, then there
is a recursive function given

Xi+τ = f (Xi) (28)

with the fixed positive integer time delayτ . For a given choice of embedding dimensionm,
one can calculate

δij = |Xi − Xj |, and εi,j = |Xi+τ − Xj+τ |, (29)

for all pairs of time subscripts(i, j). Let E(ζ ) = ∑
Aζ

εi,j /#{Aζ }, whereAζ ≡ {(i, j) :
δi,j < ζ }. For a perfectly deterministic system with continuousf , one expects to have
limζ→0E(ζ ) = 0. Based on this theoretical property, Kaplan’s valueK is defined as the
limit of E(ζ ) asζ → 0.

The essential ingredient of the Kaplan test is to find a piecewise regression line for
(δi,j , εi,j ) and use the intercept as an estimation of the Kaplan valueK, K̂. The test statistic
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for K̂ is produced based on the linear surrogates, i.e. the artificial series which has the same
histogram and a similar autocorrelation function as the target series. By this test statistic, one
can then accept (reject) the null of i.i.d. if̂K is smaller (larger) relative to the test statistic.
A Matlab computational algorithm prepared by Kaplan is used to generateK̂. Barnett et al.
(1998) suggested two test statistics forK̂. We attempted both of these tests here, and, except
for period 12001–14000, these two tests always lead to the same results. The last column of
Table 2 is a summary of the Kaplan test applied to different periods of the return series.10

Is the return series i.i.d.? Only for period 16001–18000 is the null of i.i.d. consistently
accepted by the three tests. For other series, the null of i.i.d. is either rejected by the ARCH
test (six out of ten), or the Kaplan test (six out of ten) or both (three out of ten). Since to
show that the EMH is an emergent property, we must have the aggregate result of i.i.d.
return series as a precondition, the following analysis of microbehavior will mainly focus
on period 16001–18000. However, given the divergence of the test results, the analysis is
also extended to all other series as well.

4.2. Mircobehavior

In the previous section, we followed a very standard econometric procedure, and by this
procedure, one of the return series is “proved” to be an i.i.d. series, which implies that the
price series{Pt } from which these return series{rt } are derived is a martingale. So, the
EMH in the form of the martingale hypothesis is satisfied in this series. To proceed further
and to show that the EMH is an emergent property, one has to ask whether this property can
be expected from our understanding of individual behavior. But, the question here is what
do we mean by “expected”.

One of the advantages of the artificial stock market is that it allows us to observe what
traders are actually thinking and doing. For example, we can directly examine whether
each trader is effectively a martingale believer. To do so, we simply check the forecasting
rules employed by these traders. As argued earlier (Section 2.4), if a trader is effectively a
martingale believer, then her forecasting function is simply

Et(Pt+1 + Dt+1) = Pt + E(Dt+1) = Pt + µ, (30)

or the functionfi,t in Eq. (14) is a zero function. In Section 2.4, we define the number of
martingale believers at timet :

N1,t = card{i|fi,t = 0}. (31)

Therefore, by examiningN1,t , one can see how well the martingale hypothesis is accepted
by traders. Fig. 3 is a time series plot ofN1,t . From this figure, we can see that most of
the time the number of martingale believers is quite small. To have a more precise picture
of these numbers, the averages of martingale believers over each subperiods are given in
the second column of Table 3. The average corresponding to the period 16001–18000,
where the null of i.i.d. is consistently accepted by all tests is only 5.37 (italic-faced in
Table 3), i.e. about 1% of the traders. As a result, the martinagle property observed in this
period actually comes from a market where few of the participants are martingale believers.

10 The Kaplan test result is detailed in Appendix C of Chen and Yeh (2000).
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Fig. 3. The number of traders with Martingale strategies on each trading day.

By this inconsistency, we may claim that the martinagle, as an aggregate property, is not
expected from our understanding of individual traders. Hence, the EMH is an emergent
property.

To make this argument more plausible, and not too much dependent on a single aspect
of traders, we also provided evidences in other aspects, namely, traders’ search behavior.
The efficient market hypothesis has two implications for search. First, there is no need to
search, and, second, there is no gain from search. Hence, we do not expect to see too many
searchers there, and even if there are, most of them will end up with a futile search. Earlier,
we defineN2,t as the number of traders who decide to search, andN3,t the number of
successful searchers. Here, let the ratioN3,t /N2,t be the proportion of traders who have
a successful search, and call it the chance of success, then this chance should be nothing
different from throwing a fair coin, which is 0.5. We report the average ofN3,t /N2,t over
different periods of trading days in the fourth column of Table 3. The rate of success search,
on the average, is higher than 50%, and that includes the period 16001-18000 even though
its success rate, 51%, is the lowest among the 10 series. Notice also that all these averages
are taken over the period with 2000 observations (a quite large sample) and the binomial test

Table 3
Traders’ belief and adaptation

Periods N̄1 N̄3 N̄3/N̄2 k̄ κ̄

1–2000 3.88 183.71 0.527 7.41 12.57
2001–4000 0.57 183.05 0.528 9.05 15.81
4001–6000 1.37 177.59 0.514 9.03 14.51
6001–8000 2.99 191.98 0.556 9.89 19.13
8001–10000 5.60 184.53 0.535 10.14 22.99
10001–12000 14.02 195.40 0.566 8.61 16.62
12001–14000 12.55 194.06 0.562 8.85 18.23
14001–16000 4.99 177.10 0.514 10.71 24.98
16001–18000 5.37 175.89 0.510 10.16 21.31
18001–20000 10.16 193.69 0.562 8.72 15.41

The time series is equally decomposed into 10 non-overlapping subperiods. All these numbers are the averages
taken over one of these subperiods.N̄1, N̄3, N̄3/N̄2, k̄, andκ̄ refer to the average number ofN1,t , N2,t , N3,t /N2,t ,
kt , andκt respectively.
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(the asymptotic normal test) shows that they are all significantly different from 0.5 though
the difference is not greater than 10%. Clearly, search in business school is not entirely
futile.

Another way to justify the EMH as an emergent property is to examine the complexity
of evolving traders. Intuitively, the EMH says two things about complexity. First, there
is no need to be complex. Naive strategies such as martingale (fi,t = 0) should be good
enough. Second, since there is no need to be complex in the first place, time plays no role,
i.e. complexity is not a function of time. To see whether these two observations holds for
our traders, we have to first give a definition of complexity, which in general is not an easy
job. Fortunately, since all traders’ behavior are characterized by their forecasting models,
which are in the format of the LISP language, we can easily give two definitions of traders’
complexity. The first definition is based on the number of nodes appearing in the tree, while
the second is based on the depth of the tree. For both measures, the complexity degree of
the martingale model (fi,t = 0) is 1, which can be taken as a benchmark to be compared
with the observed behavior of our traders.

On each trading day, we have a profile of the evolved GP-trees for 500 traders,{fi,t }.
Since all forecasting models are in the format of LISP parse trees, their complexity can be
measured by the assoicated depth or length. The depth of a parse tree can be defined as
the length of the longest path from root to endpoint, whereas the length of a parse tree is
measured by counting the number of nodes that appear in the tree (number of elements used
in the program). Letki,t be the depth (the length of the longest path) of the modelfi,t and
κi,t be the length (the number of nodes) offi,t , then

kt =
∑500

i ki,t

500
, and κt =

∑500
i κi,t

500
. (32)

The average ofkt andκt are reported in the fifth and sixth column of Table 3. Both figures
evidence that traders can evolve toward a higher degree of sophistication, and at some point
in time, they can be simple as well. Nevertheless, there is no evidence that traders’ behavior
will converge to the simple martingale model.

In sum, the three perspectives about traders’ behavior, as summarized in Table 3, show
that traders are not believers of the EMH, not only in words, but in action as well. While
most of the time traders are searching for and using some forecasting models which are
much more complex than the simple martingale model, traders do not consider their efforts
devoted to these activities futile. As a result, the EMH is anything but what we learned from
a analysis of our traders. Like Adam Smith’s invisible hand and the Hayek hypothesis, it is
an emergent property.

5. The rational expectations hypothesis

The second hypothesis we would like to examine is the rational expectations hypothesis.
To some extent, treating the REH as an emergent property seems to be well motivated
especially when all traders are given a life which is explicitly boundedly rational. Therefore,
it would “surprise” us if these traders can collectively generate a phenomenon that, in a sense,
satisfies the REH. However, some qualifications are needed here.
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First, the observation that boundedly rational agents can collectively generate phenom-
ena which satisfy the REH is nothing new in economics. Sargent (1993) has an excellent
collection of these studies. However, most of these studies were conducted with the device
of the representative agent. In this case, they are not suitable for studying the REH as an
emergent property. They are a few studies which were conducted without the device of the
representative agent and used what is now called agent-based modeling. But, these studies
actually showed that the heterogeneity (diversity) of agents eventually disappears and the
whole population converges to a representative agent when the aggregate behavior con-
verges to the REH (Arifovic, 1994; Chen and Yeh, 1996). In this case, the REH observed
is not an emergent property. Therefore, obtaining the REH as an emergent property is not
that trivial.

Second, without the device of the representative agent, it can be quite difficult to define
and locate the rational expectations equilibria or fixed points (Spear, 1989; Arthur, 1992;
Sargent, 1993), not to mention to observe the REH. Therefore, in this paper, we only give
one simple version of the REH, and proceed as follows. We first constructed a representative
agent by using the market expectations (objective expectations). The market expectations
is defined as the average of all traders’ expectations, i.e.Et = ∑N

i=1 Ei,t /N . GivenEt , the
prediction error of the representative agent at timet is

et = Et − (Pt + E(Dt)). (33)

The time series plot of{et } is given in Fig. 4. We can see thatet fluctuates around the center
0 in a quite stochastic manner. A browse around the figure shows that the representative
agent does not persistently overestimate or underestimate the stock price.

Second, in the spirit of the conventional rational expectations hypothesis test, we assume
that the representative agent would not make systematic errors. By systematic errors, we
mean that the time series{et } has patterns. In other words, the time series{et } is totally
unpredictable, or{et } is an independent series with mean 0. Hence, to test this version
of rational expectations hypothesis, we did two things. First, we tested whether the mean
forecasting errors are significantly different from 0. Thet-statistics are given in the second
column of Table 4, which indicate that the null hypothesis is not rejected in all subperi-
ods, and the mean forecasting error is not significantly different from 0. Therefore, the
representative agent does not make a systematic error at least in mean (the first moment).

Fig. 4. Time series plot of the forecasting errors of the representative agent.
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Table 4
Rational expectations hypothesis and granger causality tests

Period t-Value PSC R2 BDS Kaplan EView Q-statistic

1–2000 0.03 (2, 0) 0.008 R (11.29) R 0.00 14.52
2001–4000 0.06 (0, 0) 0.000 A (1.12) A 0.00 14.54
4001–6000 0.01 (0, 0) 0.000 A (0.85) A 0.00 14.48
6001–8000 0.07 (1, 0) 0.007 R (2.44) A 0.00 14.43
8001–10000 0.09 (0, 0) 0.000 A (0.91) A 0.00 14.37
10001–12000 0.08 (0, 0) 0.000 A (1.63) A 0.00 13.32
12001–14000 0.07 (0, 0) 0.000 A (1.40) A 0.00 14.44
14001–16000 0.03 (0, 0) 0.000 A (0.91) R 0.00 13.38
16001–18000 0.13 (1, 0) 0.006 A (1.41) A 0.00 14.34
18001–20000 0.06 (0, 0) 0.000 A (1.28) A 0.00 14.69

The ordersp andq are selected based on the Rissanen’s PSC criterion.R2 is the coefficient of determination
derived by running the PSC-selected ARMA(p, q) regression. The null hypothesis of the Granger causality test is
thatDt does not Granger causert . What is reported in the column of EView is theP -value of the test statistic with
20 lags. TheQ-statistic is based on Kau (1997). By the functional central limit theorem and continuous mapping
theorem, it can be shown that the 0.05 (0.01) significance level of theQ-statistic is 2.241 (2.807).

Then, one step further, we tested whether the error series is white noise. To do so, we
used the PSC filter to extract the linear signal of the error series. The third column of Table 4
gives us the ARMA orders determined by the PSC criterion. From this result, we can see
that most of the orders chosen are simply (0, 0). While there are three subperiods (periods
1–2000, 6001–8000, 16001–18000) which are not white noise, from theR2 given in the
next column of the same table, the linear pattern is very weak.

Finally, non-linear patterns. As in Section 5, we used the BDS test and the Kaplan test
to test the null of i.i.d. For the BDS test, we only report the result withε = 1 and DIM= 5
since it is not sensitive to these two parameters. Based on the BDS test statistics shown
in the fifth column of Table 4, the null of i.i.d. is not rejected in most subperiods. As to
the Kaplan test, we followed the same procedure introduced in Section 4.1. Two different
measures are taken, and if the test results based on these two measures are inconsistent,
the decision to reject or accept the null will be ambiguous. The result of the Kaplan test is
summarized in the sixth column of Table 4.11 Like the BDS test, in most series, the null of
i.i.d. is not rejected by the Kaplan test.

Putting these four tests together, we find that the null of i.i.d. is not rejected in six out
of the 10 series. These six series are bold-faced in Table 4. In other words, there are no
systematic patterns of errors made by the representative agent found in these six series;
therefore, the REH is not rejected in these six periods.

In sum, what we found is that a collection of boundedly rational agents, through their ener-
getic search and interactions, could in effect generate a representative agent (the “market”)
who did not make systematic errors in her forecasts. In other words, there is no hidden
structure which could be used to improve forecasts but was neglected. In that sense, the
REH can be considered another emergent property.

11 The result of the Kaplan test is detailed in Table 13, Appendix C of Chen and Yeh (2000).
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6. Discussion: why emergent?

The main feature of our model that produces the emergent results may be attributed to
the use of genetic programming. Unlike GAs, or the specific application of GAs by Arthur
et al. (1997), we do not restrict our traders to initialize their search in a small neighborhood
of the HREE. This allows us to generate a much larger search space. This larger space can
potentially support many forecasting models in capturing short-term predictability, which
makes simple beliefs, such as thatDt is an i.i.d. series, or thatPt follows a random walk,
difficult to be accepted by traders. In traders’ subjective perception, the world is absolutely
non-linear, but far from random. This picture has been fully reflected in the complexity
statistics (Table 3).

One may suggest that if we slow down the learning speed or reduce the rate of invocation of
genetic programming, then the traders will behave more like conventional statisticians who
rely heavily on asymptotic theory, and hence will more likely accept those simple beliefs.
To test this argument, we ran two experiments. These two experiments were conducted with
the same parameters values specified in Table 1, except the evaluation cycle for the business
school (m1) and the evaluation cycle for traders (n2). For the first experiment, we increased
n2 from 1 to 10, but keptm1 unchanged; for the second, we keptn2 at 10 but increasedm1
from 20 to 40. In plain language, in the first experiment we decreased the exploration rate
for the traders, but not the b-school, whereas in the latter, we decreased it for both.

Fig. 5 is the time series plot of the evolved complexity of traders’ forecasting rules, i.e.
depth complexity (kt ) and node complexity (κt ). By these two experiments, reducing the
exploration rate has little effect on the evolved complexity. Instead, the effect of a huge
search space on evolved complexity seems to be dominating.

In addition to preventing traders from easily accepting simple beliefs, another conse-
quence of a huge search space is the generation of sunspot-like signals through mutually
reinforcing expectations. Traders provided with a huge search space may look for some-
thing which is originally irrelevant to price forecasts. However, there is a chance that such
kinds of attempts may mutually get reinforced and validated. The generation of sun-spot
signals will then drive traders further away from accepting simple beliefs.

To see a version of sunspot-like signals, we take advantage of the assumption thatDt is
an i.i.d. series. Earlier, we mentioned that sinceDt is assumed to be an i.i.d. series, in the
homogeneous rational expectations, it is independent of{Pt+1}, and the history ofDt will
not help forecast future price and dividends. However, if a group of traders believe thatDt

is not an i.i.d. (contrary to the simple belief), then there is a chance that this initially wrong
belief may turn out to be validated by the coordination dynamics of traders. To test whether
Dt is a sunspot-like signal in our model, a Granger causality test was applied to the vector
time series{Dt, rt } based on our simulated time series shown in Fig. 1.

There are several different ways to conduct the Granger causality test, some tests require
an arbitrary choice of filtering processes, and others require an arbitrary choice of lags. In
this paper, two versions of the Granger casuality test were applied. One is from the software
EView 3.1, which requires an arbitrary choice of lags, and the other is the statistic developed
by Kau (1997), which does not require these arbitrary choices.12

12 Kao’s test is detailed in Chen and Yeh (2000, p. 26).
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Fig. 5. (a) Depth of complexity (slow learning 1), (b) node of complexity (slow learning 1), (c) depth of complexity
(slow learning 2), and (d) node of complexity (slow learning 2).
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Table 4 shows the test result of the two statistics mentioned above. The null hypothesis is
thatDt fails to Granger causert . From either theP -value or the critical value, we can see
that, in all series, both tests consistently reject the null of no causality. Therefore,Dt indeed
can help forecastrt . Since by our experimental design,Dt does not contain the information
of future returns, what happened in our simulation is a typical case of mutually supportive
expectations that makeDt eventually contain the information of future returns. We believe
that sunspot-like signals exist in still other forms which together drive traders further away
from simple beliefs.

7. Concluding remarks

By following some standard or modern econometric procedures, this paper examines
the aggregate behavior of time series generated by an agent-based artificial stock market.
The tests show that some series examined cannot reject a version of the efficient market
hypothesis or a version of the rational expectations hypothesis. Thus, we illustrate, to a cer-
tain extent, how agent-based models are capable of replicating some well known economic
behavior empirically.

However, the properties shown as aggregate results can be quite different from what
we observe from the individual behavior. In this paper, the aggregate result of the efficient
market can be generated from a collection of interacting traders, most of whom do not believe
in the martingale hypothesis (the efficient market hypothesis). Moreover, the aggregate result
of the rational expectations can be generated from a collection of boundedly rational agents
who behave as if they were never sure about the true model and were continuously searching
for a better forecasting model. As a result, the aggregate results are not anticipated from
simple scaling-up of the individuals, which is what one may call emergent properties in the
literature.

We would like to make a few final remarks about the work done in this study. Firstly,
this paper can be read as an extension of the research line stressing that macroeconomic
behavior is not a simple scaling-up of microeconomic behavior, e.g. Kirman (1992). More
specifically, it is closely related to the agent-based computational model, populated by
Epstein and Axtell (1996). This type of model allows us to trace a bottom-up path which
is infeasible for conventional models built upon the device of the representative agent, and
hence provides an ideal tool to show more precisely how microeconomic behavior can be
quite different from macroeconomic behavior. Demonstrating the possibility of this kind
of inconsistency is important because it places restrictions on inferring individual behavior
from aggregate results. Such restrictions can be critical to policy issues such as decisions to
launch a national annuity program based upon a test for the permanent income hypothesis.

Secondly, in terms of agent-based modeling of artificial stock markets, this paper can
also be related to the Santa Fe Artificial Stock Market (Arthur et al., 1997). While at this
moment this field is too young to define a unified or standard framework, there are still
interesting comparisons to be made. First, like the SFI approach, this paper can generate
rich varieties of market dynamics. We believe that these types of models offer a promising
direction to enrich current studies on microstructure and anomalies. Second, both papers
show that the key to understanding the rich dynamics of markets is the mechanism which
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allows a population of traders to learn or adapt over time. There are lots of parameters which
can result in effectively different mechanisms, and it is still in an early stage to evaluate
their potential impact.

But, there are also differences between the SFI approach and our approach. The main
difference lies in the specific evolutionary computation (EC) technique employed. For them,
it is genetic algorithms; for us, it is genetic programming. As Chen and Yeh (1996) asserted,
genetic programming can be viewed as a more general way to do the job which used to be
done by GAs. However, GP also has its problem when applied to modeling agents’ learning.
As we have shown in this paper, GP provides us with a large search space and has a great
potential to generate sunspot-like signals which can compete with simple beliefs in any
finite number of data points through mutually reinforcing dynamics. While we consider
this specific design relevant to the emergent properties studied in this paper, to what extent
are they empirically relevant is an issue to be pursued in the future.
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