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ON THE EMPIRICAL BAYES APPROACH TO
MULTIPLE DECISION PROBLEMS!

By J. VAN RYZIN AND V. SUSARLA
University of Wisconsin, Madison

In the empirical Bayes approach to multiple decision problems, we ob-
tain theorems and lemmas which can be used to obtain asymptotic opti-
mality and rate results in any multiple decision empirical Bayes problem.
Applications of these results to a classification problem, a monotone
multiple decision, and a selection problem are given. Inaddition, a special
lemma unique to the monotone multiple decision problem gives improved
(exact) rate results in that case.

1. Introduction and summary. With 7(G) denoting the minimum Bayes risk
in a decision problem, Robbins ([7] and [8]) proposed sequences of decision rules,
based on data from n independent repetitions of the same decision problem,
whose (n + 1)st stage risk converges to r(G) asn — oo. Such sequences of rules
are called empirical Bayes rules. This paper presents a general empirical Bayes
theory for multiple decision problems including rate results (not in [8]) and ap-
plies it to two important multiple decision problems: (i) a classification problem,
and (ii) a monotone multiple decision problem. For a general discussion of
multiple decision problems, we refer the reader to Chapter 6 of Ferguson [2].

In Section 2 we discuss the empirical Bayes multiple decision problem and
give general rate results. Lemma 1 is a multiple decision generalization for any
loss function of the useful Johns-Van Ryzin inequality (Lemma 1 of [5]and [6])
for the 2-decision problem. Section 3 applies these results to a classification
problem. Lemma 3 in Section 4 provides a strengthening of the above generali-
zation in the case of a monotone multiple decision problem which allows the exact
generalizations of all the rate results of [5] and [6].

2. Some general results in the empirical Bayes multiple decision problem.
Consider the following multiple decision problem. Let X be an observable ran-
dom variable with values in a measurable space (y, 8) upon which is defined a
o-finite measure p. On (y, B) is defined a family ..” = {P,| 2 € Q} of probability
measures dominated by #and indexed by the parameter 4. Let f,(x) = (dP,/d)(x)
be the p-density of X when the parameter has value 2. Assume that the statistician
is interested in an action space 4 = {a,, - - -, a,} consisting of a finite number
of distinct actions. Associated with the problem is a specified loss function
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L(2,a) 2 0 on Q X 4. Finally, let A be an Q-valued (unobservable) random
variable which has a priori distribution G on Q. The statistician chooses a deci-
sion rule #(x) = (¢#(0]x), - - -, t(k| x)), where #(j | x) = Pr {taking actiona; | X = x}
and whose Bayes risk with respect to the a priori distribution G is

() (G, 1) = Zioo § 1100 L(A, a)f(x) dG(2)] dp(x) -

This risk is minimized by taking 1(j|x) = t,(j|x), j =0, - - -, k, where t,(j | x)
is the indicator function of the set

) S; = {x|j = min {I| Ay(a,, x) = min, Ag(a,, x)}}
with
(3) Ag(aj, x) = § (L(4, a;) — L(4, ay))f(x) dG(2) .

The rule 74(x) = (2,(0] x), - - -, tg(k | x)) defined above is thus a Bayes rule relative
to G, whose risk is

(4) HG) = r(G, t;) = min, r(G, ) .

Following Robbins ([7] and [8]), we seek empirical Bayes procedures not know-
ing G, which do almost as well as 1, in the (n ++ 1)st problem as the number, n,
of problems increases. Specifically, let (X;, A,), (X,, A,), - - -, be a sequence of
mutually independent pairs of random variables where each A, is distributed as
G on Q and X, has conditional density f; given A, = 2. The empirical Bayes
approach attempts to construct a decision procedure concerning A, ., (unobserv-
able) at stage n + 1 based on X;, ---, X,,,, the data available at stage n + 1.

The (A, ---, A,) remain unobservable. Therefore, we consider decision rules
of the form
() (%) = (£a(0] %), - -+, tu(k | X)) 5
L(J1X) = 6. %5+ 05 X5 X)
j=0, ...,k subject to X k_ 1,(j|x) = | a.e. p (for fixed x,, - - -, x,), and take

action a; with probability #,(j| X,,,) at stage n + 1. The risk at stage n + 1 is
given by
(6) "G, 1) = Zio E§ t(JI 0V L(4; @;)fa(x) dG(2)] dpx(x)

where E denotes expectation with respect to the n independent random variables
X, + -+, X, each with common p-density

(7) folx) = § fi(x) dG(2) .
Since the Bayes procedure 7,(x) achieves the minimum Bayes risk r(G) relative
to G, we have r(G, t,) = r(G), n = 1,2, .... Thus, the nonnegative difference

r(G, t,) — r(G) is used as a measure of optimality of the sequence of procedures
{t.} and we say:

DErINITION 1 (Robbins [8]). The sequence of procedures {z,} is said to be
asymptotically optimal (a.0.) relative to G if 7(G, t,) — r(G) = o(1) as n — co.
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DEerINITION 2. The sequence of procedures {z,} is said to be asymptotically
optimal of order a, relative to G if r(G,1,) — r(G) = O(a,) as n— oo, where
lim,_  «a, = 0.

In the remainder of the paper, we shall construct sequences of empirical Bayes
rules for certain multiple decision problems. We shall do this by giving functions
A; (%) = A (X, -, X,; x) such that ate. (p)x,

(8) A; (x) —p Aglay; x) as n— oo,

where —>;, denotes convergence in probability with respect to the sequence of
random variables {X,}. The procedure #,(x) = (£,(0]x), -+, t,(k|x)) is then
defined by taking r,(j|x) as the indicator function of the set

) S; = {x|j = min {I|A, (x) = min, 4, ,(x)}} .

The following results are for general {z,(x)} of decision procedures.

We state the following lemma which generalizes Lemmas 1 of [5] and [6] to
any general loss function. (Lemma 3 gives the exact generalization for the linear
loss function similar to that in [5] and [6].)

Lemma 1. Ler {t,(x)} = {(t.(0]| x), - - -, t,(k| X))} where t,(j| x) is the indicator
function of the set S; in (9). Then,
(10)  0=r(G, 1) —r(G)
= o §s, Zimeo (Bo(@ms %) — Bo(ay, x)) Pr{d, (x) < 4, .(¥)} dp(x)
(11) < oo §sy Zimeo [Be(@ms %) — Bg(a, )| Pr{|4,,,,(x) — A, .(x)
— (Bs(@ms %) — Bo(ar, X)) Z |Ag(@n, X) — Dg(a,, X)[}dp(x)
and for any 6 > 0,

(12) (G, 1) = r(G) = Zlm=o {508, [Ba(@m> X) — Bg(ay, X)['°E[|4,, 4(x)
— B a(x) — (Bs(@p, X) — Bg(a; X))"] dp(x) -

Proor. By definition of ¢; and (4), we have r(G) = .7, {5, As(a,, X) dp(x) +
§§ L(4, a,)f(x) dG(2) du(x), Also from (3), (6) and the definition of 7,(x), we
}:ave rG,t,) = Yk § As(ay, x) Pr{S, .} du(x) + §§ L(2, a)f,(x) dG() dp(x), where
Siie = {(xXp o+ 5 x)|J = ming {[[A, (X, -+, x,, x) = ming A, (X, -, x,, X))}
Hence, combining these two equalities we have

(13) r(G, 1,) — r(G) = § Lo b, 0)[Pr {8} — Ig]1dp(x) ,

For x in S, the integrand of the rhs of (13) is 2% _, As(@p, %) Pr {S,..} — Ag(a,, x) =

b o (Bo(@mr X) — Ag(@, X)) Pr {8} < Doy (Ag(@s %) — Ag(ys X)) Pr{B, (x) <
A, ,(x)}, where the equality follows from the fact that S,,, - - -, $,,, is a partition
of y» and the inequality is implied by the inequalities Ay(a,,, X) = A (a,, x) for x
in §, and A, ,(x) < A, ,(x) on 8,,,. This completes the proof of the result (10).
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For x in S;, Ag(a,, x) = Ag(a,, x). Therefore, for x in S, and all m,
Pr {Am,n(x) - Al,’n(x) é 0}
S Pr{jd, .(x) — B,.(x) — (Ba(an, x) — Ag(a,, X))| = |As(@m, X) — Ag(ay, X)]} -

Applying this inequality to each summand of the rhs of (10) gives the result (11).
The result (12) follows upon applying a Markov inequality to the rhs of (11)
followed by grouping integrals of similar type. [J

We now give two general theorems on asymptotic optimality which are appli-
cable to an extensive variety of empirical Bayes multiple decision problems.
These two theorems are direct consequences of Lemma 1. Before proving these
theorems we mention the following result due to Robbins [8], an alternate proof
of which follows immediately from Lemma 1 by using (12), (16), and the bounded
convergence theorem.

THEOREM 1 (Robbins [8], Corollary 1). Let G be such that
(14) {L(Z, a,)dG(A) < oo, j=0, -,k

and let {t,(x)} = {(1,(0]x), - - -, t,(k|x)} be defined by (9) and satisfy(8). Then, the
sequence {t,} of empirical Bayes rules is a.o. relative to G.

THEOREM 2. Let hy(x,y), j =1, ---, k be k real-valued measurable functions on
X X x such that forj=1, ..., k

(15) E[h;(x, Y)] = § hi(x, p)fe(y) di(y) = Dola;, x)  ae. p
and let

(16)  Aya(x) = L S b, X)), =1, e ks Au(x)=0 ae p.
n

Assume (14) holds and that for I, j = 0, - - ., k and some ¢ in (0, 2),
(17) § [8g(a;, X)['~?0,%(x) dpx(x) < oo,
where o(x) = Var {h;(x, Y)}. Then the sequence of empirical Bayes rules defined
by (9) with A; (x) as in (16) is a.0. of order n=** relative to G.
Proor. This result is a consequence of (11) and the series of inequalities
EApn(x) = Bu(x) = (Bo(@ns X) — Ag(a,, x)I’]
< max {1, 2273E{[|A,, (%) — Ag(a,, X)|°] + E|A, (x) — Dg(a,, X)|°]}
< max {1, 271){0,/(x) + 0, (x)} 0
If it is not possible to obtain unbiased estimates of A,(a;, x) as in (15) and (16),

then the following theorem whose proof is similar to that of Theorem 1 will be
found useful.

THEOREM 3. Let {h; (x, y)},j =1, -+, k, be k real-valued sequences of measur-
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able functions on y X y and let
1 .
(18) By = - Diahialn, X) s j=1onks B =0 ae .

Assume (14) holds and for 1,j = 0, - - -, k and some ¢ in (0, 2) that
(19)  § |Bg(a, x)'7%0 (x) dpp(x) = cga,,  01a(x) = Var (b;,(x, Y))
and )
(20) § [Ag(a;, X720} (%) dp(x) = ¢5'an’ s
bya(x) = |Eh;u(x, Y) — Bg(as X)| -

Then the sequence of rules defined by (9) with A; ,(x) as in (18) is a.o. of order
a, = max {n~"a,, a,'}.

It is now clear from the above theorems that to construct empirical Bayes
rules we need merely find the functions 4;(x, y) or the sequences of functions
{h; +(x, y)} in Theorems 1 and 2. If we can then verify the conditions (8) and
(14) we obtain asymptotic optimality via Lemma 1. If we can further verify
(16) in Theorem 1 or (19) and (20) in Theorem 2, we then have a result on the
rate of convergence to optimality. We shall do this in Sections 3 and 4 to illust-
rate the use of these general theorems in a classification problem and a monotone
multiple decision problem. Of course, other applications are possible.

3. A classification problem. Consider now the following classification prob-
lem. Let {f,(x), -- -, fi(x)} be a set of k 4 1 known p-densities, @ = {0, - - -, k}
(the parameter space of class labels)and 4 = {a,, - - -, a,} the action space wherein
action a; represents classifying the observed random variable X as coming from
the distribution with density f; (that is, saying A = j). Furthermore, let
0< L(i,a;)=1,; < o0, i,j=0, .-, k be the loss for misclassification of X as
coming from f; when in fact X came from f,.

In the empirical Bayes setting we are confronted with a sequence of such
classification problems and wish to decide about A,,, (unobserved) based on
previous observations X, ---, X, and the current observation X, which is to
be classified. To solve the empirical Bayes problem we must estimate (see (3))
forj=1, ...,k '

(21 Ag(a;, x) = Zico (Li; — Lo)fi(¥)9:

where for i =0, .-, k, g, =Pr{A =i}>=0, >}k¥.,,9, = 1. Note that G =
(9o> - - +» gx) is the unknown a priori distribution on Q = {0, - - -, k}. To estimate
(21) we construct the function 4,(x, y) of Theorem 1 as follows. Assume there
exist functions &,(y) (see discussion below), such that fori,j =0, ..., k

(22) E&(Y) = &0 de(y) =1 if i=]

=0 if i+#j.
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Then define in Theorem 2 for j =1, ---, k

(23) hy(x, y) = 2¥o (1; — Lo)fu(x)&:(y)
and
(24) Aj,n(x) = ':l_ 2t hj(x’ Xi) = f:o (lij - lio)fi(x)éi s

where &, = n=' YI7_, £,(X,). We can now state

v

THEOREM 4. In the classification problem, the sequence of empirical Bayes rules
{t.(x)} defined by (9), (23) and (24) is a.0. relative to any G = (go, - - -, g) if (22)

holds, and isa.o. of order n=* relative to any G = (g, - -+, g,) if fori,j=0,..., k
(22) holds and
(25) E&(Y) = § &2 fiy) dy) < oo

We note that asymptotic optimality for this problem was first shown by Robbins
([8], Section 7), but the rate result is new.

REMARKS. A set of appropriate functions &;(y) always exist and are easily
constructable if {f,, - - -, f;} is a linearly independent set of functions in L,(z).
In matrix notation, the functions are constructed by §*(y) = B~'f(y) where
E() = (s -2 85O 1) = (fuy) -+ fuly)) (* denotes transpose),
B-' is the inverse of a (k + 1) x (k + 1) matrix B whose (i, j)th element is
by = § fu(¥)fs(x)du(x), i,j =0, - - -, k, and (22) follows from the easily verified
fact that §*(y) is an unbiased estimator g. Observe that the £;* functions so de-
fined are the dual basis for the algebraic conjugate of the linear subspace of L,(z)
spanned by {f;, - - -, f,}, as discussed in Van Ryzin ([11], Section 3) or Robbins
([8], Section 7). However, the above matrix form is not discussed specifically
in either reference. Finally, the invertibility of B follows from the linear
independence of the set {f;, - - -, fi,} in Ly(z). (See, e.g., Taylor [9], Theorem
1.61-B.)

Hudimoto ([3], Section 6) has given another method for estimating g = (g,, - - -,
g,)": his method (in our notation) is to take &'(y) = (§,/(»), - - -, &' () = A7'F(y),
where F(y) = (Fy(p), - -+, Fi(y))’s F, the distribution function associated with
the density f;, i = 0, - -+, k and A4 the (k + 1) X (k + 1) matrix whose (i, j)th
element a,; = § Fy(x)dF(x), i,j =0, ---, k which we assume to be invertible
(see Lemma 2 below). Again, condition (22) follows by the unbiasedness of
§'(y). For matrix conditions for invertibility of 4 for k =1,2,3 (r =2,3,4
in his paper) see Hudimoto ([3], Sections 2 and 6). However, he gave no general
necessary and sufficient condition for invertibility as is given in the following
lemma. Let P/ be the unique (up to equivalence) Lebesgue-Stieltjes measure
corresponding to F;, i =0, ---, kand p = }f, P/

LEMMA 2. The matrix A = (a;;) = (\ F(x) dF;(x)) is invertible if and only if
(Fy - -+, F,) are linearly independent in L,(;!").
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Proor. The proof is a direct consequence of the following set of equivalent
statements.

FoaF(x) =0 a.e. g
= Nfoaa; =0 for j=0,..-,k
=Aa=0, a=(a, - ---,a,), 0=k+ 1 fold zero vector. ]

Note that from Lemma 2 and the theorem of Yakowitz and Spragins [14], we
see that the invertibility of 4, the determinant condition of Teicher [10], identi-
fiability of g and linear independence of (F,, - - -, F,) are all equivalent statements.

In passing, we also observe that by selecting the functions £,(Y) such that
max; |§,(y)| is bounded a.e. y, one can use the methods of Hudimoto ([3], Sec-
tion 7) to show that for any ¢ > 0 and any a priori distribution (g, - - -, g,) on
Q = {0, ..., k}, there exist positive constants ¢, and c, such that

(26) P{r(G, t,) — r(G) = ¢} < cie7;
where r(G, t,) = >3F ;o 1,;9; § t.(j| X)fi(x) du(x) (see (1)) is the conditional risk

1,5=0
of misclassification in the (n 4 1)st problem given X, - - -, X, using the empirical
Bayes rule #,(X,,,) at stage n + 1(t,(x) defined by (9), (23) and (24)). Thus (26)
says that the probability given the past n observations of the excess risk at stage
n + 1, using the empirical Bayes rule with unknown prior over the optimal risk
with known prior, being arbitrarily small approaches zero at an exponential rate
as n, the number of problems, increases. Finally, it is always possible to select
the &; such that max; |§;(Y)| is essentially bounded by taking the &; as the &,/

functions above or as the &;* functions above with x = Y P,.

4. A monotone multiple decision problem. Consider the empirical Bayes
multiple decision problem whose component problem is given as follows: Let
Q= (—OO, OO), ¥ =R, & = Borel ¢-field in R, and — 0 = A< < <L
Ay < A, = oo be known. Let action a; correspond to deciding “the value of
A = 2 is in the interval [2;_;, 4;], j=0, ---, k.” As a loss function, we take
L(4, a;) such that for j =0, ---, k — 1,

L(4, a;,) — L(, a;) = c(4; — 2)
27 L(2,a) =0 if 2Z 4,
=¢c sz=1 (4 — A1) if Zj—l <2 /zj
where ¢ (> 0) is a known constant. For k = 1, this reduces to the loss function
considered by Johns [4] which is commonly used for empirical Bayes two-action
problems. Without loss of generality we take ¢ = 1 in what follows. Since
L(4, a;.,) — L(4, a;) = or < 0 according as 2 < 4; or 2 > ;, the decision prob-
lem is monotone (see, e.g., Ferguson [2], Definition 1, page 285). Assume that

E[|A]] < oo so that the optimal Bayes risk r(G) is finite.
Define, for j =0, ..., k,

(28) (%) = s; = I[lj_lf(1)<g(1)§ljf(x)] ’
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where

(29) fx) = § fulx)dG(2)  and  g(x) = § Afy(x) dG(2) .

To define {t,(x)} in a natural way, let &, be an estimate (based on X, - - -, X,) of
(30) a(x) = 4,f(x) — g(x) = Ag(a;,,, X) — Dg(a, x)

such that &,(x) is nondecreasing in i with —a&_,(x) = @,(x) = 0. Using &,
(f=—1,.--,k),let,forj=0, ..., k,

(31) L(Jj %) = §; = I[er_1<:><0§&j(x>] :
Lemma 3. Let {t,(x)} = {(t.(0]x), - - -, t,(k | x))} be defined by (31), where &(x)
is increasing in i. Then
(32)  0=rG,1,) —1(G) = i §s, {Zno ()] Pr{d,(x) = 0}
+ 2z |an(x)] Pr{@,,(x) < 0}} dp(x)
and for 6 > 0,
(33)  0=r(G,1,) = r(G) = 2ot § [an()[ T E[|e,(x) — @, (x)|"] dp(x) -
Proor. By (4), (6), (28) and (31), we have
(34) G, 1) —r(G) = Tise § r(){Pr{@,,(x) <0 = &)} — Iy} dpu(x) ,
where 7,(x) = { L(4, a,)f;,(x) dG(4). For x in S, the integrand in (34) is

m=0 Tm(X) Pr{@,_,(x) <0 = @&,(x)} — 1,(x)
= Znto Im()(Pr {@n(x) = 0} — Pr{a,_,(x) = 0})
+ Do Tn()(Pr {&,_,(x) < 0} — Pr{a, < 0})
— ()P {a@,(x) <0} + Pr{a, ,(x) = 0}).

Rearranging this last expression according to terms involving Pr {&,(x) < 0} and
Pr {&,(x) = 0}and then recognizing thaty,, _,(x) — 7,(x) = —a,,_,(x) > 00or <0
according as m < [ or m = [ for x in S, the result follows.

The second result follows from the first result by using an argument similar
to that given in Lemma 1. ]

REMARKS. Lemma 3 is a strengthened version of Lemma 1 for the monotone
multiple decision problem in the following sense: inequality (10) of Lemma I
becomes an exact equality in (32). Moreover, (12) involves all the possible
differences |Ay(a,,, X) — A(a;, x)| whereas (33) involves only terms of the type
|As(a,, x) — Ag(a,_,, x)|. Also, note that the expression for the difference
r(G,t,) — r(G) is an exact expression like (10) of [5] which is a main step of [5]
for getting the exact rate results therein. Since Lemma 3 corresponds exactly
to Lemma 1 and (10) of [5], it is obvious that all the rate results like O(n=1-9),
e > 0 of [5]and [6] (including even the exact rate result O(n~") in the geometric
and Poisson cases) can be carried over to the case of (k + 1) (= 3) actions with
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the obvious modifications in their statements and their proofs under certain
moment conditions on the class of prior distributions.

5. Another brief example. The results of Section 2 can be applied (see [13],
for example) when the component problem is a selection problem as described
in Deely [1]. In a component selection problem, based on independent (observ-
able) X, ..., X, random variables distributed as le, ""flk respectively, the
decision problem is to select that index j for which 4; = max; 4, when the loss
function .is given by L((4,, ---, 4,), a;) = max, 2, — 4; where (4, ---, 4,) ~ G
and a; is the action deciding that 4, = max; 4,. Using the results of Section 2,
it can be shown that one can obtain empirical Bayes procedures (when the com-
ponent problem is a selection problem) which are a.o. O(n~t) either when f; =
AB(Ah(u), u =0,1,2, ... wrt counting measure ¢ on {0, 1,2, ---} or when
fi = e **B(A)h(u)l;, >, Wrt Lebesgue measure p on (R, =#) under some reasonable
conditions on G and H. Deely [1] was the first to consider empirical Bayes selec-
tion problems using the loss L given above; and considered the two situations:
(i) G(4y, - -+, &) = T1k-1 Gi(4;) where G, are of a known parametric form, and
(ii) a nonparametric case. The nonparametric case was studied and extended
by Van Ryzin [12].

In conclusion, we point out that Theorems 1, 2 and 3 are most useful since
they are applicable not only in the three examples pointed out here, but also in
any multiple decision empirical Bayes problem.
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