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Introduction.

A ring will always mean a commutative ring with u n it. L e t R  be a  noe-

th e rian  r in g , M  a  finitely generated R-module and N  a  submodule of M .  We
denote by Min R (M ) the set of all minimal elements in  SuppR (M ) .  In the case
where M  i s  o f finite dimension, w e  put Assh R (M) = 1p E AssR(M) I dim Rip =
dim MI and Um (N )=-(1Q where Q  runs through all the primary components of
N  in M  such that dim M/Q =dim M IN . Let T  be an  R-module and a an ideal
of R .  E R (T ) denotes the injective envelope of T  and H ( T )  i s  th e i - th  local
cohomology module of T  with respect to a. A semi-local ring means a  noetherian

ring with a  finite number of maximal ideals and a local ring is a semi-local ring
with unique maximal ideal. We denote by ^  the Jacobson radical ad ic  comple-
tion over a semi-local ring. For a ring R , Q(R ) denotes the total quotient ring
of R  and we define dimR  0  to be —00 and height R  to be +00.

First we recall the definition of the canonical module.

Definition 0.1 ([6, Definition 5.6]). L et R  b e  a n  n-dimensional local ring
w ith  maximal ideal u. A n  R-module C is called the canon ica l module of R  if
COE re HomR(H(R), ER(Rilt)).

When R  is complete, the canonical module C of R  exists and is the module
which represents th e  functor Hom R  ( JR (  ), ER (R /n )) , that i s ,  HomR  (1/It(M),

ER (121n))--_HomR (M, C) (functorial) for an y  R-module M  ( [6 , Satz 5.2]). For
elementary properties of the canonical module, w e refer the reader to [5, § 6],

[6, 5 und 6 V ortrdge] and [2, § 1]. I f  R  is a  homomorphic image of a Gorens-

te in  ring, R  has the canonical module C and it is w ell know n that C I,  i s  the
canonical module of R ,  fo r every p in SuppR  (C) ([6 , K orollar 5 .25]). On the
other hand, as was shown by O gom a [7 , §  6], there exists a  lo ca l r in g  with
canonical module and non-Gorenstein formal fibre, hence not a  homomorphic

image of a Gorenstein ring. But the following fact holds in  general and our
consideration largely depends on it.
Acknowledgement. Both authors were partially supported by Grant-in-Aid fo r  Co-opera-
tive Research.
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Theorem 0.2 ([2, Corollary 4.3]). L et R  be a local ring with canonical module

C and let p be in  Supp R  (C). Then C, is the canonical module of Rp.

Here we state th e  definitions of the  cond ition  (S 2 )  and a quasi-Gorenstein

ring , which are im portant in our research.

.Definition 0.3. L e t R  be a noetherian ring, M a finitely generated R-module

and  t  an  integer. W e say that M  is (SO if  depth m i n  {t, dim Mo l  for every
I? in Supp R  (M).

Definition 0.4 (Platte and Storch). A  local ring is said to be quasi-Gorenstein

if it has a free canonical module. A noetherian ring R  is called a  quasi-Gorenstein

ring i f  R p  is  a quasi-Gorenstein local ring for every prim e ideal p.

A  local ring is quasi-Gorenstein i f  a n d  only i f  s o  is  t h e  completion. A
noetherian  ring  R  i s  quasi-Gorenstein if  a n d  only if  R p is a quasi-Gorenstein

local ring for every maximal ideal n  by [2 , Corollary 2.411. A  noetherian  ring

is a G orenstein ring if and only if  it is a quasi-Gorenstein Cohen-Macaulay ring.

Throughout the  paper, A  denotes a  d-dimensional lo ca l r in g  with maximal

ideal in and canonical module K .  We put H =End A  (K ) and  le t h  be the  natural
map from A  to H.

In  the  previous paper [2 ] , th e  following properties o f H  were shown :

(0 .5 .1 ) H  is a  finite (S2) o v e r-r in g  o f A /U A (0) contained i n  Q(A /U A (0)).

([2, Theorem 3.2])

(0.5.2) dim A  Coker (h) - d — 2. ([2 , Proof o f Theorem 4.2 ])

The m ain  purpose o f this paper is to show that H  is characterized by the

above properties (Theorem 1.6). In  section 1, first we show  that the  map h  is
a n  isomorphism if  and  only i f  A  is (SO using Theorem 0.2, and then we prove
Theorem 1.6, by which we can consider H  as the unique (S 2)-fication of A  in  a

c e rta in  se n se . A s  a  corollary, we have  a  remark o n  th e  ex is ten ce  o f  th e  can-
onical m odule (Corollary 1.8). I n  connection with this, it was recently found
out that A  is a hom om orphic im age of a Gorenstein ring if A  is  an equidimen-

sional local ring of dim ension 2 or I-14,(A) is o f finite length for i *  d .  Now we
assum e U A (0)= 0  and  pu t c=A : H .  L et T  be the c-transform  of A , i. e ., T =

{ x eQ(A )Ix ctgA  for some t} . Then we sh o w  that T H  a s  A-algebras. In

section 2 we show that H is a Cohen-M acaulay ring if and only if  K  is a  Cohen-
Macaulay m odule and, as a corollary, that A  is  Cohen-M acaulay if and only if
A  is  (SO and  K  is Cohen-Macaulay (a result of Schenzel). In section 3 we con-
sider t h e  ideal gA =Im (K O A  Hom A  (K, A)—> A). T h e  ideal g A  is closely related
to Gorensteinness in  the  case  where A  is  Cohen-Macaulay ([6, 6 Vortrag]) and

in  general related to quasi-Gorensteinness, that is , A  is  quasi-Gorenstein if and

only if g A = A  (P roposition  3 .3 ). T he  proofs o f  results in  sec tio n  3  essentially
depend on  Theorem 0 .2 . We also show that the quasi-Gorensteinness of H implies
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gA=c i f  UA (0)=0 and the converse does not ho ld . In  the  appendix we give a
generalization o f [6, Satz 6.14] and [2, Proposition 4.1]. Let B  be a  faithfully
flat local A-algebra. Then we prove that K OA B  is the canonical module of B

if and only if  BlmB is  Gorenstein under the condition th a t B lm B  is Cohen-
Macaulay. This result is related to the existence problem of the canonical module

for certain local rings.

1. A  characterization o f  H.

We begin with the  following

Lemma 1.1 ([7, Lemma 4.1 ]). A ssume th at depth A p _>: min {2, dim A d  for

every p in  SuppA  (K ) .  Then Ass (A)-=Assh (A ), that is , U A (0)=0.

Pro o f . Here we give a  proof using Theorem 0.2. We proceed by induction

on d .  If d 2 ,  then A  is Cohen-Macaulay and the assertion is obvious. Let

d > 2 and let (0)=q 1  • •• nil, be a  primary decomposition of the zero ideal in  A
such that dim Alq i = d  if and only if (1 s t). W e  p u t a= qi n • rlq , and

••• ng t . Note that a=U A (0)=annA  (K ) (cf. [2, ( L C ) .  Let p be a  non-
maximal prime ideal in  SuppA  (K ) .  Then UA(0)=O by the induction hypothesis
because K is th e  canonical module of A . S in c e  UA0 (0)=(UA(0))p by [2, (1.9)],
we have p l b. Suppose that s < t .  Then a±b i s  a n  ni-primary ideal. S in c e
depth A a n d  depth A/a A/b1 , w e  h av e  depth A/a+b>0 from the exact

sequence 0 —+ Al a A/b—> A / a + b  0 . T h is  i s  a contradiction. Hence we
have s=t, that is , a=0. q. e. d.

Proposition 1.2 (cf. [1, Proposition 2] and [7, Proposition 4.2]). The follow-

ing are equivalent:

(a) The m ap h  is an isomorphism.

(b) Â  is (SO.

(b') For every q in  SuppA (k ) ,  depth min {2, dim AO .
(c) A  is  (S2).
(c') For every p in  SuppA (K ), depth A min {2, dim A } .

P ro o f . (a) (b) and (a) (c) follow from [2, (1.10)]. ( b )  ( b ' )  and (c) ( c ' )
are obvious, and (b') (c') is well known. Hence it is sufficient to prove (c') *  (a).
We proceed by induction on d. I f  d then A  is Cohen-Macaulay and the

assertion is known (cf. [6, 6 Vortrag]). Let d > 2 .  By the induction hypothesis
and Theorem 0.2, Coker (hp )=0 for every non-maximal prime ideal p. By Lemma
1.1, we have Ker (h)=ann A  (K)-=UA (0)=0. Since depth A2, depth  and

Coker (h) is of finite length, we have Coker (h )= 0 . Hence h  is an isomorphism.

q. e. d.

Corollary 1.3. Assume Min (A)=Assh (A ). Then the (S2 )-locus {pESpec (A)1 A0

is (S2 )}  is open in  Spec (A).

Remark 1.4. The following are equivalent :
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(a) A  is (S2).

(b) 111(K) E A (Alm).

(c )  There is a  finitely generated A-module M  such that H ( M ) - E A (Alm).

Pro o f . We may assume that A  is complete by virtue of Proposition 1.2.
(a) (b )  S in c e  A -.-H---HomA  (K, K)--'Hom A (H (K ) , EA(Alm)) (cf. [6 , Satz

5.2]), we have H„c!(K),- -'E A (A/m).
(b )* (c ) : Trivial.

(c) (a) : Since Hom A  (M, K) -=Hom A (lig(M ), E A (Alm)) . - Hom A (E A (A lm),

E A (A lm )):A  and K  is (S 2 ), we have the assertion. q. e. d.

Remark 1 .5 .  Let M  be a  finitely generated (S2 ) A-module such that IM(M)

-:- - E A (A lm ) and MinA (M)=Assh A  (M ) .  T h e n  M K .  I n  this case  A  is (S2).
(This gives another proof of the case (I) of [2, Theorem 4.2]).

Pro o f . By [2, Proposition 4.4], we have M--'HomA  (HomA (M , K ), K ). Hence
w e have MK because Hom A  (M, A .  (Note that HomA (N, K)-.-L- A if and

only if  H„(!(N) E A  (A/m) for a  finitely generated A-module N). q. e. d.

Now we state and prove our main result.

Theorem 1.6. Let R  be an A -algebra with structure homomorphism f. Then

the following are equivalent:

(a) R H  as A-algebras.

(b) R  satisfies the following conditions
(i) R  is (S 2)  and f initely generated as an A-module,
(ii) For every maximal ideal n of R , dim R n =d , and
(iii) dimA  Coker (f ) d -2  and dimA  Ker ( f  d -1 .

Pro o f . By virtue o f [2, Theorem 3.2], it is sufficient to prove (b) (a).
First we see Ker (f)-=UA(0). By [6, Satz 5.12] and the condition (ii), HomA (R, K)n

is the canonical module of R n for every maximal ideal n of R .  Since R n is (S2),

we have Ass (R„)=Assh(R„) by Lemma 1.1. Let q be in  Ass (R) and n a maximal

ideal containing q. Then we have dim R n IqR „-=d and dim Rlq-=.- d .  Hence we
h av e  qnAEAssh ( A ) .  L e t s  be an element of A \  U  p. Then f (s )  is not

peAssh (A)
a zero divisor in  R .  Hence we have UA (0)g_Ker ( f )  because sUA (0)=0 for some
s  in  A \  U  p. By the condition (iii), w e have Ker (f)„=0 fo r  every p in„EAssh (A)
Assh (A ) . Hence we have UA(0 )= K e r ( f ) .  We may assume UA (0)=0 because K
is the canonical m odule of A/UA  (0) a n d  H=EndAwA (0)(K ) (cf. [2, (1.8)]). We
put L=Hom A  (R, K ) .  Note that L „ is th e  canonical m odule of R „ fo r  every
maximal ideal n of R . Since dimA  R IA d  —2, HomA (R/A, K)=0 and ExtÀ(R/A, K)

=0 by [2, (1.10)]. Hence we have an isomorphism L =Hom A (R, K) HomA (A , K)

K  from the exact sequence 0—*A—R —> 0. From this isomorphism, we
obtain an  A-algebra isomorphism from H to EndA  (L ) .  Because H is commutative,

so is End A  (L ) and therefore End A  (L)=End R  (L ) .  Since R  is (S,), R ( L )
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b y  Proposition 1.2. Hence we have R H a s  A -algebras. Finally w e note that,

if  R  Q(A /UA (0)), the condition (ii) holds (cf. [2 , Proof of Theorem  3.2(2)] ).
q. e. d.

A s a corollary to the  above proof, we have the following corollary which is

an  essential part of the proof o f [2 , Theorem 4.2].

Corollary 1 .7 .  L et B  be a local ring and assum e th at  th e re  is  a  ring  R

satisfy ing the following conditions:

(  i )  R  is a f inite over-ring of B ,

(ii) For every maximal ideal n of  R , dim R u =dim B,

(iii) R  has the canonical m odule T , i.e ., T „ is  the  canonical m odule of  R n

f o r every maximal ideal n of  R , and

(iv) dimB  R IB d im  B -2 .

Then T , as a B -m odule, is the canonical m odule of  B . Furthermore if  R  is (S,),

then U B (0)=0 and R - --'End B (T ) as B-algebras.

From  the above results, w e have  the  following corollaries concerning the

existence of the canonical module.

Corollary 1 .8 .  L e t  B  b e  a  local ring of  dim ension n. Then the following

are equivalent :

(a) B  has the canonical module.

(b) There is a f inite B -algebra R  w ith structure homomorphism g such that

(i) R  is (S ,), dimB  Ker (g) - 72- 1  and dimB  Coker ( g )  n — 2,
(ii) For every maximal ideal n o f  R , dim R n =n , and

(iii) R  is a homomorphie image of an n-dimensional quasi-Gorenstein ring.

(c) There is a f inite over-ring R  of  B IU B (0) satisfying

(i) dimB  Coker (B—>R)_n —2,

(ii) For every maximal ideal n of  R , dim R n =n, and

(iii) R  is a homomorphic image of an n-dimensional quasi-Gorenstein ring.

Pro o f . (a) (b) : L e t  L  b e  th e  canonical m odule of B  and R=EndB  (L).

T hen  R  satisfies ( i ) and (ii) (cf. [2 , Theorem 3.2]). B y  [2 , Theorem  3 .2  and

Theorem 2.11], Rix L, the idealization, is an n-dimensional quasi-Gorenstein ring,

hence R  also satisfies (iii).
(b) (c) : Obvious (cf. Proof of Theorem 1.6).
(c) (a) : R  satisfies the conditions in Corollary 1.7 with respect to B /U B (0)

(cf. [6, Satz 5.12]). Therefore B has the canonical module by virtue o f [2, (1.12)].
q. e. d.

Corollary 1 .9 .  L et B  be a local ring of  dim ension 2. T hen the following

are  equivalent:

(a) B  has the canonical module.

(b) There is a f inite B -algebra R  w ith structure homomorphism g such that

( i )  R  i s  a  Cohen-Macaulay ring w hich is a hom om orphie im age of  a
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Gorenstein ring,

(ii) For every maximal ideal n of  R , d i m  =2, and

(iii) dimB  Ker (g) 1 and Coker (g) is of  finite length.

As w as seen in  [2, Example 3.3], H  is not necessarily a  lo ca l r in g . With

this we remark the following proposition. The proof is not difficult, so we leave

it  to  the reader.

Proposition 1.10. L et n1, • •• , It, be the maximal ideals o f  H . T h en  It has a

decomposition Ê = 9  K i by indecomposable A -modules K 1 , ••• , K r  such that 1- ‘1„,--

Homa(K i , K i ) for i=1, ••• , r and Hom a(K i , K 5 )= 0  f o r  i # j .  I n  th is case

4 , f o r i=1 , « , r. In  p artic u lar, H  is a local ring  if  and  only i f  i t  is an in-

decomposable A-module.

Next we consider a relation between H  and ideal transforms.

Let R  be a ring and I  an ideal containing a non zero d iv iso r . F ro m  the
exact sequence 0 — 0 ,  w e  have the exact sequence 0 --q?--)-
HomE  (P, R)— )•ExtERIP, R)—>0. Taking the direct lim its , w e  have the exact
sequence ()--q?—ind lim Homn  (P, R)--*H1(R)—).0. For an ideal J  of R , w e  put

R (J)={ x E Q (R ) ix rg R  fo r som e t} , the J-transform o f R ,  w hich  is  an R-

subalgebra of Q (R ). R : Q ,R X  is naturally isom orphic to HomR  (P, R). Hence,

from the above argument, w e have the following

Lemma 1.11. T here is an exact sequence of R-modules 0—q?—>R(I)—>H1(R),

—00 and R (I) is an R-subalgebra of Q(R).

W e put c= { a  A laH gh(A )} . The ideal c is uniquely determined.

In the remainder of th is  section, w e assume tha t d 2  and UA (0)-=0.
Since K, is  the canonical module of A  for every prime ideal 13, A , i s  (S 2 )

if and only if c b y  Proposition 1.2.

Proposition 1.12. There is a unique intermediate ring R  between A  and Q(A)

such that R H as  A -algebras. In  this case R =A (c)=A : Q ( A ) c.

Pro o f . The existence of such a  rin g  i s  due t o  [2, Theorem 3.2]. Let R
be  a ring such  that A gR ÇQ(A ) and R  H  as A -algebras. W e must show R-=-

A(c)-=A: Q ( A ) c. If c=A , the assertion is  o b v io u s . Let c= A .  Since height

(w e assume UA  (0)=0), the re  is  a subsystem x , y  of parameters contained in c.
Because x , y  i s  a  K-regular sequence ([2, (1.10)]) ,  x ,  y  is also an R-regular
sequence. H ence w e have H (R )=0  and H ( R ) = 0 .  F ro m  the exact sequence

--q?—> Q(A)—> Q (A)/ R —>0, w e  have 11?(Q(A)1 R)= O. H ence  from  the exact
sequence 0  RIA—>Q(A)IA—>Q(A)IR—> 0, we have R IA  _H(R IA )=H(Q(A )1A )

=A (c)/A  and therefore R _A (c). On the other hand, w e have cR =cç A  because

c=A : A  R .  Hence we have R A : A ( c ) . q. e. d.
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Corollary 1 . 1 3 .  The following are equivalent:

(a) A(m) H  as A -algebras.

(b) For every non-maximal prime ideal p, depth 41„. min 12, dim A}.
( c )  c t r i t  fo r some t.

Pro o f . (a) ( b ) :  By Lemma 1.11, there is an exact sequence 0—>A—>H—>

H(A)—>O. S in c e  11(A )p=- 0 for every non-maximal prime ideal p and H  is (S2),
we have the assertion.

(b) (c) : Because p c for every non-maximal prime ideal p.
(c) (a) : If c# A , A (m)=A (c)_= H. If  c=A , A—A(c) H .  On the other hand

A (m )=A  because depth A_2. q. e. d.

Corollary 1 . 1 4 .  (1) I f  d =2 , then A (m)'- '11 as A-algebras.

(2) I f  H (A )  is of f inite length for i d, then A (m).- - 'H  as A-algebras.

Remark 1 .1 5 .  Assume that 11,,i,(A )=0  for 1 # 1 , d  a n d  II„V I )  i s  o f  finite
length. Then A (m)--H is just the Cohen-Macaulayfication of A  due to the second

author [3]. (cf. Example 2.4(3))

2 .  The Cohen-Macaulayness of H.

For a finitely generated A-module M of dimension d, we put Km =HomA (M, K).

Note that Km (DA A- 2.-- _-HomA (H,(M ), EA (A lm )) a n d  that in the case where A  is
complete Km  is  the module representing the functor HomA(Hi( — OA M), EA(A/m))

(cf. 16, Satz 5 .2 ] ) .  By the  same argument as in [ 1 ,  Proof o f  Lemma 1 ] ,  we
have the following

Lemma 2 . 1 .  L e t M  be  a  f initely  generated A-module of dimension d and
depth t.

(1) I f  M  is a Cohen-Macaulay module, then K m  i s  a l s o  a  Cohen-Macaulay

module.

(2) Assume that M  is not a Cohen-Macaulay module and put s=m ax

and In(M )#01.

(i) I f  depth2 HomA (M (M ), EA (A lm ))=0, then

{ d— s+1 i f  s>0 ,
depth Km =

d i f  s=0 .

(ii) I f  s =t  and depth2 HomA (H(M ), EA (A lni))=u, then

{ d— td-u+1 i f  u <t ,
depth K m =

d i f  u =t.

Proposition 2.2. H  is  a Cohen-Macaulay ring if and only i f  K  is a Cohen-

Macaulay module.

Pro o f . Since H=FlomA (K, K )  and K.- - .'HomA (H , K ), the assertion immedia-
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tely follows from Lemma 2.1(1). q. e. d.

Corollary 2.3 (Schenzel). A  is a Cohen-Macaulay rin g  if  an d  only  i f  A  is

(S2 )  and K  is a Cohen-Macaulay module.

Example 2 .4 .  ( 1 )  If d 2 ,  then H  is always Cohen-Macaulay.

(2) L et t, n be integers such that O t < n .  Then there is a  lo c a l r in g  B

w ith  Cohen-Macaulay canonical m odule L  such that depth B = t and dim B=n
([1, Theorem 1]) an d  EndB  (L ) is a Cohen-Macaulay ring.

(3) If H u (A )=0 fo r  1<i<d , then H  is a Cohen-Macaulay ring. (cf. Lemma
2.1 a n d  [1, Proof o f Lemma 1])

(4 ) I f  A  i s  a n  approximately Cohen-M acaulay ring, then H  i s  a  Cohen-
Macaulay r in g . (See [4]).

3.1_ The quasi-Gorensteinness and the ideal LI*

We begin with th e  following two facts which a r e  slight generalizations of

results in  [6 ] .  The proofs are parallel to those given in  [6] by virtue of Theorem
0.2, so we omit them.

(3.1) (c f. [6, Korollar 6.7]). Assume Ass (A)=Assh (A). T h e n  the following

are  equivalent:

(a) For every minimal prime ideal p, A„ is  a  Gorenstein ring.

(b) K  is a fractional ideal of A .

(c) K  is a f ractional ideal o f  A  containing a non zero divisor.

(3.2) (c f. [6, Korollar 7.29]). Assume that d 1 and Min (A)=Assh (A ). Then

the following are equivalent:

(a) K  is a reflexive A-module.

(b) A  is (SO and A„ is a  Gorenstein ring  f o r every prim e ideal 13 of  height

one.

L et Q A  be the  im age of the  natural map from KO A  HomA  (K, A) to A .  The

ideal (IA  is uniquely determined (cf. [6, p. 83]). By Theorem 0.2, we have (IA A,

= O A  for every 1.1 in  SuppA  (K).

Proposition 3 .3 .  A  is a  quasi-Gorenstein ring if  and only i f  gA = A . (cf. [6,
Korollar 6.20]).

Pro o f . It is sufficient to sh o w  th e  " if"  p a r t . Since gA =A , there is a surjec-
tion from K  to  A .  Hence A  is a  d irec t summand o f K .  Since K is  (SO (cf.
[2, (1.10)]), so is A  and  H-•-. A  by Proposition 1.2. Hence K  is  indecomposable
by Proposition 1.10 and  therefore K A .  q .  e .  d.

Corollary 3 .4 .  For a prim e ideal in  SuppA (K ), Ap  i s  a  quasi-Gorenstein
rin g  i f  and only  if Consequently, i f  Min (A)=Assh (A ), fp E Spec (A)1A,
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is quasi-Gorenstein} is open in  Spec (A).

Corollary 3.5. A  is  a Gorenstein ring if  and only if  K  is a Cohen-Macaulay

module and gA =A.

Corollary 3.6. Assume Ass (A)=Assh (A). T h e n  K  is  a  fractional ideal of

A  if  and only i f  height gA _1•

Corollary 3.7. A ssum e that d%1 and  Min (A )=  Assh (A). T h e n  K  i s  a

reflexive A-module if  and  only if  A  is (SO and height gA

In  the  remainder o f this section, we assume UA (0)=0.
Since K  is an H-module by th e  usual w ay, gA  is a lso  a n  ideal o f  H .  The

ideal c is just th e  conductor A : A  H, th e  largest common ideal. Hence we have

the  following inclusion

(3.8) gAgc.

Of course the equality gA =c does not hold in  general, fo r example, g A = c i f  A

is a  non-Gorenstein Cohen-Macaulay ring.

Proposition 3.9. I f  H  is a  quasi-Gorenstein ring, then gA =c.

Pro o f . Since HomA (K, A)-7-='HomA (H, we have gA =Im(KO A  HOMA(K, A)

—> A)=Im(HO A c--> A)=-c. q. e. d.

The converse to Proposition 3.9 does not hold.

Example 3.10. L e t k be a  f ie ld  a n d  le t  x, y  b e indeterminates. We put

B=k[xG, e, x 2 y , x5 31, x y2 , y3 11, n=the maximal ideal o f  B, R=kEx 8 , x2 y, x y2 , ys]
a n d  L=.(x 2 y, xy 2 )R .  T hen it is know n that R  i s  a  non-Gorenstein Cohen-
Macaulay ring of dimension 2 a n d  L  is th e  canonical module of R .  It is obvious
that R  is finitely generated a s  a  B-module a n d  B: B R=-n, especially dimB  R IB

= 0 .  Hence L = (x 2 y, x 5 y, xy 2 )B  is th e  canonical module of B and R  ( L )
by Corollary 1.7. It is easy to see gB=u because ylx and x`ily are in HomB (L, B).

Remark 3.11. It is easy to see that H  i s  a  reflexive A-module (e. g., by
induc tion  on  d  using Theorem 0.2). Hence we have that, if  height gA 2 and

HomA  (K, then H  is a  quasi-Gorenstein ring.

Appendix.

In  this appendix we give a  generalization o f  [6, Satz 6.141 a n d  [2, Proposi-
tion 4.1].

In  the  following le t  B  denote a  faithfully flat local A-algebra.

Theorem 4.1. The following are equivalent:

(a) BlmB is  a Gorenstein ring.
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( b )  K O A B  is the canonical of  B  and B/mB is a Cohen-Macaulay ring.

Pro o f . Suppose that B lm B  is a Cohen-M acaulay ring and let Y i , « ,
 y ,  be

a  system o f elements in the m axim al ideal o f B  which forms a maximal B/mB-

regular sequence (r=dim B lm B ). L et R =A [X I , •••, Xr](trt, x r ) with indeter-
m inates X 1 , ••• , X , over A  and  le t f  be t h e  natural A-algebra homomorphism
from R  to  B  such that f ( X ) =y i  f o r  i = 1 , • • • , r . Then it is known that the

map f  is a  flat local homomorphism by the local criterion o f  flatness. B y  [6,
Korollar 5.12], L-=-KOA R is the  canonical module of R .  L et n be the maximal

ideal o f  R .  Since L B = K O A  B  and B /n B B /(n l, Y i, ••• y,-)B is an artinian
ring, the assertion follows from [2 , Proposition 4.1]. q. e. d.

Corollary 4 .2 .  The following are equivalent:

(a) A  is a quasi-Gorenstein ring and B lm B  is a Gorenstein ring.

(b) B  is a quasi-Gorenstein ring and B lm B  is a Cohen-Macaulay ring.

Corollary 4 .3 .  Assume that B lm B  is a Gorenstein ring.

(1) I f  A  is (S 2 ), then B is also (S2).

(2) I f  M  is a f initely  generated (S 2 ) A -m odule of  dim ension d such that

Min A  (M)=Assh A  (M ), then  M O A  B  is  (S 2)  and dim B/q-=dim B  f o r every q in
Mine (M O A  B).

Pro o f . T he  asse rtion  (1 ) follows from Proposition 1 .2  a n d  Theorem 4.1,
an d  (2) from [2 , Proposition 4 .4 ] and Theorem 4.1. q. e. d.
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