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ON THE ENDOMORPHISM SEMIGROUP (AND
CATEGORY) OF BOUNDED LATTICES

G. GRATZER AND J. SICHLER

Recently, a large number of papers have been published
on the representations of a semigroup with identity (i.e., a
monoid) as the endomorphism semigroup of algebras and re-
lational systems of various kinds. For instance Z. Hedrlίn
and J. Lambek showed that every monoid can be represented
as the endomorphism semigroup of a semigroup.

Conspicuously missing from the list of algebras for which
theorems of this type can be proved are lattices. The reason
for this is that any constant map is a lattice endomorphism,
and therefore endomorphism semigroups of lattices are very
special. For partially ordered sets one can eliminate constant
maps as endomorphisms by considering only those maps φ
that satisfy x < y implies xφ < yφ (Z. Hedrlίn and R. H.
McDowell); however, this would not be a very natural condi-
tion to impose on lattice endomorphisms.

The approach of this paper1 is to consider bounded lattices
only, that is, lattices with smallest element 0 and largest
element 1, and as endomorphisms to admit only those lattice
endomorphisms that preserve 0 and 1 (i.e., keep 0 and 1 fixed;
this amounts to considering 0 and 1 as nullary operations).
Such endomorphisms are usually called {0, l}-endomorphisms
but they are called simply endomorphisms in this paper.

The first result is that every monoid is isomorphic to the
monoid of all endomorphisms of a bounded lattice.

One can also consider lattices with complementation
<L; Λ, V, '>, where ' is a complementation, that is, for every
ae L, a A a' — 0 and a v a' = 1. For such algebras an

endomorphism is a lattice endomorphism φ that preserves ',
that is, (aφ)f = a'ψ for all aeL. Every lattice with comple-
mentation is bounded, and any such endomorphism preserves
0 and 1.

The second result is that every monoid is isomorphic
to the endomorphism semigroup of a lattice with comple-
mentation.

Both these results are consequences of much stronger
theorems proved in this paper.

The proofs use some nontrivial graph theoretic and lattice
theoretic results. For the reader's convenience, these are described
in detail in §§ 2 and 3. Bounded lattices are dealt with in § 4, and
lattices with complementation in § 5. Some further results and

1 An alternative approach is investigated in [11].
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open problems complete the discussion in § 6.

2* Graphs* A graph <X; R) consists of a set X and a set R
of two-element subsets of X. (This is the definition of an unoriented
graph; we do not need oriented graphs.) The elements of X are
called vertices, and the elements of R are called edges. A compatible
mapping φ from the graph <(X; ϋΓ> into the graph <( Y; S> is a map
of X into Y satisfying: {α, 6} e R implies {aφ, bφ\ e S.

We shall denote by G the following category of graphs:
The objects of G are graphs <X; R) satisfying conditions (1)

and (2):
(1) for every x e X there is a seven element subset {x0, x19 , x6}

of X such that x = x0, and {x0, a J, {&„ #2}, , {#5, α?β}, {a?β, #0} G R;
in other words, every vertex lies on a ĉ /cϋe of length seven.

(2) there is no cycle of length less than seven.
The morphisms of G are all the compatible maps.
Our constructions are based on the following result, which follows

easily from the papers [7] and [8] of Z. Hedrlίn and A. Pultr:

THEOREM 1. Every category of algebras is isomorphic to a full
subcategory of G.

In more detail, this states the following. Let K be a class of
algebras of a fixed type (see, e.g., [2]), and let K also denote the
category whose objects are the algebras in K and the morphisms
are all homomorphisms. A functor F.K—+G assigns to every
algebra S I G X a graph F{%) and to every homomorphism φ of 31
into S3 (21, 35 e K) a compatible map F{φ) 'of F{%) into F(33) [such
that if φψ = a, then F{φ)F(ψ) = F(a). A functor F is called a
full embedding if F is one-to-one on objects, one-to-one on mor-
phisms, and, in addition, it is full, that is, every morphism ψ: F($H) -+
F(%S) in G is of the form F(φ) for some homomorphism φ of §1 into S3.

Using these concepts Theorem 1 can be restated as follows:
There exists a full embedding of K into G for every category K of
algebras.

Since every monoid M can be represented as the endomorphism
semigroup of some algebra (see, e.g., [2]; the algebra can be con-
structed on the set M by defining as operations left multiplications
by elements of M), Theorem 1 contains as a special case the state-
ment that every monoid can be represented as the semigroup of all
compatible maps of a graph <(X; Ry into itself, where <X; R) satifies
(1) and (2).

3. Lattices* We denote by L the category of all bounded
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lattices with 0 and 1 preserving homomorphisms as morphisms.
Let n be a cardinal. We identify cardinals with initial ordinals.
A lattice with xx-complementations is an algebra

<L; Λ, V, 0, 1, c0, cu , cr, •>, Ύ < n ,

where <X; Λ, V, 0, Γ> is a bounded lattice and for each 7 < π , aeL,
cr(a) is a complement of α. We shall denote by Ln the category
whose objects are lattices with n complementations satisfying condi-
tions (3)-(5):

(3) Ci(Ci(a)) — a for all aeL i <n (d is an involution);
(4) Ci(Cj(a)) = Cj(Ci(a)) for all aeL, i,j<n (the d commute);
( 5 ) for aeL, a Φ 0, 1, and i, j < n, i Φ j , Ci(a) Φ Cj(a).

The morphisms of Ln are lattice homomorphisms φ preserving all
d, i < π (that is, Ci(aφ) = Ci(a)φ).

For a bounded lattice L set

C(L) = {{α, 6} I {a, 6} S L, α Λ 6 = 0, α V b = 1} ,

that is, C(L) is the set of complemented pairs of L. The lattice L
is said to have incomparable complements if

{α, 6}, {α, c} G C(L) and 6 ^ c imply that b = c .

The lattice theoretic result we need is the following theorem of
C. C. Chen and G. Gratzer [1]:

THEOREM 2. Let M be a bounded lattice with incomparable
complements, and let A be a set disjoint with M. Let (A (J (M— {0, 1});C)>
be a graph satisfying the following condition:

(6) {α, 6}, {α, c}eC, b, ce M, and b ^ c imply that b = c, and
{α, b} eC, a e M implies that be A.

Let L be the bounded lattice freely generated by M\jA, and denote
by Θ[C] the smallest congruence relation on L satisfying

( 7 ) {α, b} e C implies that aΛb = 0 (Θ[C\) and aVb = 1(Θ[C]).
Let M(A, C) = LjΘ[C], and identify aeMU A with the congruence
class containing it. Then

(8) M is a {0, l}-sublattice of M(A, C);
(9) A^M(A,C);
(10) AΓ\M= 0 in M(A, C);
(11) M(A, C) is generated by Al) M;
(12) M(A, C) has incomparable complements)
(13) C(M(A, C)) = C(M) U C.

4* Full embedding of G into L* In this section we construct
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the functor M which is the required full embedding. First we define
M on the objects.

Let ζX; Ry be a graph in G. We apply Theorem 2 in the
following way: let M = {0, 1}, A = X, and C = 22. Then L is the
free bounded lattice L(X) generated by X. M(X, R) has the follow-
ing properties by Theorem 2:

(14) lSl(I,fi);
(15) X generates M(Xf R);
(16) C(M(X, R)) = RU {{0,1}}.

We define M on <X; 22> to be M(X, R). Let π(X, R) denote the
natural homomorphism of L{X) onto7M(X, R) (with Θ[R] as induced
congruence relation).

To define M on morphisms, let φ\ X~-+ Y be a compatible map
from <X, Ry into <F; S> in 6?. Then φ has a natural extension to
a homomorphism L(φ) of L(X) into L(F) (see the diagram). Let Θ

L(X)-

*(X,R)\

M(X, R) -

UΨ)

\n{Y,

+ M(Y,

S)

S)

be the congruence relation induced by L(φ)π(Y, S) (that is, for
α, b 6 L(X), α Ξ 6(0) is equivalent to aL(φ)π(Y, S) = &L(«p)ττ(Γ, S)). If
{α, 6} G R, then (since <p is compatible) {aφ, bφ) e S, hence aL(φ)π(Y, S)
is a complement of bL{φ)π{Y, S). Thus Θ is a congruence relation
under which a A b = 0(0) and α V & Ξ= 1(0) for any {α, 6} 6 .B. By the
definition of 0[i?] we conclude that Θ[R] S 0. Hence by the Second
Isomorphism Theorem (see e.g. [2, Th. 11.4]) there is a unique
homomorphism M(φ) such that L(φ)π(Y, S) = π(X, R)M(φ). We
define ikf(<p) to be the value of M at φ.

It is easy to check that M is a functor from G into L, and M
is one-to-one on objects. Since X ξΞ: M(X, R), and M(φ) restricted to
X is φ, we get that M is one-to-one on morphisms.

To prove that M is full, let ψ be a homomorphism of M(X, R)
into ikf(F, S). Take x e X ; we wish to show that xψeY. Recall
that by (1) and (16) there exist xQ = x, xlf •••, x^e X such that
{x0, x,}, {x19 x2}y , {x5, x6} e C(M(X, R)). Therefore,

{x*Ψ, %ifh , &ef, ^of} e C(Λf(Γ, S)) .

By (16) this is possible only if sc0^, , xΛψ e YD {0,1}; so xQψ e FU {0,1}.
We claim that xoψ e Y. Indeed, otherwise xoψ e {0,1}, say xQψ = 0.
Then xγψ = 1 (as the only complement of 0 is 1), x^r — 0, xzψ = 1,
x4ψ = 0, α?5^ = 1, xfjr = 0, xoφ = 1, a contradiction. Thus ψ restricted
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to X maps X into Y; let φ denote this map. Then φ is a com-
patible map between ζX\ Ry and (Y\ S> and M(φ) = ψ follows
from (15).

Combining this with Theorem 1 we have

THEOREM 3. Every category of algebras can be fully embedded
into the category L of bounded lattices. In particular, every monoid is
isomorphic to the endomorphism semigroup of some bounded lattice.

5* Full embedding of G into Ln* We want to construct the
functor Nn which fully embeds G into Ln. To outline the idea of
the proof let us take the case tt = 1 (this eliminates the necessity to
consider condition (4)). Let (X; Ry be a graph in 6?, then MQ =
M(X, R) has the same endomorphism semigroup as <̂ X; Ry. We
define for every aeM0, a Φ 0, 1 a new element c(α), and apply
Theorem 2 with M = M09 A = {c(a) | a e MOf a Φ 0,1}, and

C — {{α, c(a)} I a e Mo, a Φ 0, 1} .

Then we define c on Mι = M(A, C) as follows: c(0) = 1, c(ΐ) = 0, for
αeMo, a Φ 0, 1, c(α) is the new element, c(c(α)) = α, and c(α) is not
defined for any other element. Then we define Aλ = {c(a) \ ae Mlf

c{a) is not defined} to get M29 and so on. N^X, R) will be JJ (Mi \ i<ω).
The endomorphisms will work out all right because the elements of
X are still distinguished by being on seven cycles of complementary
elements.

Now we proceed with a formal construction of the functor Nn.
Recall that tt is identified with the initial ordinal of cardinality

n, hence n is a set of ordinals. Let En denote the set of all finite
subsets of tt. For a>be En let a + b denote the symmetric difference.
We define a graph <£7

n; ZΓ>, where {a, b} e Dn if and only if | α + δ | = 1.
Finally, for α e n we define the function εa: En—> En by

χ U {a} if a £ x

x — {a} if α e x .

Let us make a few observations about the εα:

(17) eβ(eβ(α0) = x for all x e En;
(18) εa(εb(x)) = eb(εa(x)) for all xeEn, a Φ b;
(19) εa(x) Φ εb(x) for all x e En, a Φ b;
(20) if x = {al9 , α j , then εβl(eβ,(. (eβn(^) •)) = x;
(21) all cycles in (En; D^ are of even length.

All these are obvious; to prove (21) observe that | εa(x) \ = | x \ ± 1.
For <X; i2> in G set MQ = M(X, R) as defined in § 4. We define

a graph «MQ - {0,1}) x En; Cx> by
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CΊ = {{<α, βχ>, <α, e2» \ a e Mo - {0,1}, ex, e2 e En, {eί9 e2] e DJ .

Identifying aeMQ — {0,1} with <α, 0 > we can apply Theorem 2 to
Mo, (Af0 — {0,1}) x (En — {0}), and CΊ; to see that we only have to
check (6) for CΊ: if b,ceM, {α, 6}, {α, c} e CΊ, and 6 ;> c, then 6 =
<ί>, 0>, c = <c, 0>, α = <δ, βi> = <c, βx>, hence 6 = c. Thus by
Theorem 2 we get the lattice Mx = L(X)/Θ[Cι],

For all a en we define ca on a part of Mt:
(22) cα«δ, β » - <δ, eβ(β)>,

(23) cβ(0) = 1, cβ(l) = 0.
Observe that ca(ca(x)) = αj by (17), ca(c6(a;)) = c6((?β(aj)) by (18). Also,
cβ(aj) is a complement of ^ because j e + eβ(β) | = 1, hence

finally, by (13), C(MX) = C(M) U Cx. Note that ca is defined exactly
on MQ U CΊ. Let Mx be M1 with all the cα, α € n as partial unary
operations.

Now assume that Mo, Mly •• ,Mi,Mi have already been defined
and Mi has no comparable complements. Let At be the subset of Mt

consisting of all noncomplemented elements of Mt. Then we form
the set (Mi — -4<) U (A{ x £/n); by identifying ae A with <α, 0>, Mi
is a subset of this set. Define C ί + 1 = (Kα, ex>, <(α, e2)>} | α e -A<, {βx, β2} e Dn}.
Again we apply Theorem 2 to Mi9 (A* — {0}) x J^n, and C i + 1, getting
the lattice Mi+ι. We define cα(αetι) as a partial unary operation
on Mi+1 as follows: for the complemented elements of Mt we have
already defined ca; if x e Mi9 but x is not complemented, then x e At and
we set ca(x) — ζx, {α})>; in general ca(ζx, β» = <cc, εβ(e)>. This defines
cα for all complemented elements of Mi+1. Let M ί + 1 denote the Mi+ι

with all the cα.
Finally, we set

Observe that Mω—\J (Mi \ i < ω) is an algebra defined on the bounded
lattice Mω = U (Mi \i < ω). Since the domain of ca in Mi+1 included
Mi, ca is fully defined on Mω. Thus Mω is a bounded lattice with π
complementations. It is clear from (17)-(19) that in fact (3)-(5) are
satisfied, that is, Mω is in Ln.

The next task is to construct Nn on morphisms. To facilitate
this we need a special case of a result of [4], which we shall give
as a corollary to Theorem 2:

COROLLARY TO THEOREM 2. Let M, A, C, and also Ml9 Al9 CΊ
satisfy the condition of Theorem 2. Let φ be a map of Ml) A into
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Mι U ΛL such that Mφ g Λίi, 9? is α homomorphism of M into Mlf

and {α, 6} e C implies that {aφ, bφ] e Cx. Then there exists a unique
extension of φ to a homomorphism φ of M(A, C) into M(AU CΊ).

Now let φ: X—> Y be a compatible map of ζX\ i?> into <F; S>,
and let Mo, M^ be the sequence of lattices with complementations
constructed from <(X; iϋ> and Po, Pu ••• the sequence for <(F;S>.
We shall construct mappings φ{: Mi—> P{. In §4 we constructed a
homomorphism φ0: Mo —• Po extending 9?. We extend £>0 to

Mo U ((Λf0 - {0, 1}) x (En - {0}))

as follows:

β> if bφ0 Φ 0, 1;

if bφ0 = 0 and | e | is even, or bφ0 = 1 and | e | is odd;

if bφ0 = 1 and | β | is even, or bφQ = 0 and | e | is odd .

Clearly, <?0 maps Mo U ((Mo - {0, 1}) x (En - {0})) into

Po U ((Po - {0, 1}) x (En - {0}))

and it satisfies the requirements of the Corollary to Theorem 2, hence
it can be extended to a homomorphism φ1 of M1 into P1# It is also
clear, that for all xeM19 ca(x)φ1 = ca{xφ^), provided ca(x) is defined.
Hence φι is a homomorphism of M1 into P^ Thus applying the
Corollary to Theorem 2 we get all the φif and φ = [J (<Pi\i < (o) is
defined to be Nn(φ). This completes the definition of Nn.

To show that Nn is a functor one can use a direct computation
or employ an argument similar to the one we used for M. Namely,
one can represent Nn{ζX) iZ» as a quotient structure F(X, R)/Θ[R],
where F(X, R) is the free m-complemented lattice generated by
M(X, R) and Θ[R] is the smallest congruence relation forced by (3)
and (4). (Note that (5) will be satisfied by F(X, R)/θ[R].) Then
we get Nn(φ) by a diagram similar to the one in §4 which implies
that Nn is a functor.

Nn is one-to-one on objects and maps since X generates Nn((X; iζ>).
It remains to show that Nn is full. Let 9 be a homomorphism of
Nn(ζX; lζ>) into iVn(<(Y; S » just as in §4 it is enough to show that
Xφ £ Y. Every xe X lies on a cycle of complementary pairs of
length seven. Hence xφ lies on a quotient of a cycle of length
seven, which is either a cycle of length seven, and in this case
xφeY by (21), or the quotient contains a cycle of length 3 or 5,
contradicting (2) and (21).

Combining the full embedding Nn with the one given in Theorem
1 we conclude
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THEOREM 4. Let n be a cardinal. Any category of algebras is
isomorphic to a full subcategory of Ln. Consequently, every monoid
is isomorphic to the endormorphism semigroup of a lattice with xt
complementations.

6. Concluding remarks* Utilizing the fact that | M(X, R) \ =
I X\ provided that | X\ is infinite, and that | Nn(X, R) | = | X\ provided
that I X| ^n + ŷ 0 we can combine Theorems 3 and 4 with the results
of [9] to get the number of nonisomorphic objects in L and Ln with
a given endomorphism semigroup.

THEOREM 5. Let S be a monoid with p elements and let m be
an infinite cardinal with m^p. Then there are exactly 2m pairwise
nonisomorphic bounded lattices (and bounded lattices with n com-
plementation satisfying (3)-(5), provided that n ^ m) of cardinality
m whose endomorphism semigroup is isomorphic to S.

Note that Theorem 5 includes the statement that S can be
represented as an endormorphism semigroup of arbitrarily large
bounded lattices.

The method of this paper is not applicable, however, to get
results on the endomorphism semigroups of lattices of finite length.
Indeed, ikf(X, R) and Nn(X, R) are of infinite length unless <X; R>
is very close to the complete graph. A new method to deal with
this problem is proposed in [10] which yields, for instance, that
every group is isomorphic to the endormorphism semigroup of a
lattice of finite length (which also happens to be complemented).

Note that the functors M and Nn take onto maps to onto maps,
but almost none of the one-to-one maps are carried into one-to-one
maps.

PROBLEM 1. Characterize the endomorphism semigroups of
lattices of finite length.

PROBLEM 2. For what categories K of algebras does there exist
a full embedding of K into L and Ln which takes one-to-one maps
into one-to-one maps. Could such full embeddings be constructed
that take onto maps to onto maps?

PROBLEM 3. Characterize the endomorphism semigroups of com-
plemented lattices.

PROBLEM 4. Find classes of monoids for which the conclusion
of Theorem 5 holds under the assumption p < m ^ 2P?
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