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Abstract

The graphics processing unit (GPU) has emerged as
a computational accelerator that dramatically reduces
the time to discovery in high-end computing (HEC).
However, while today’s state-of-the-art GPU can easily
reduce the execution time of a parallel code by many
orders of magnitude, it arguably comes at the expense
of significant power and energy consumption. For ex-
ample, the NVIDIA GTX 280 video card is rated at
236 watts, which is as much as the rest of a compute
node, thus requiring a 500-W power supply. As a
consequence, the GPU has been viewed as a “non-
green” computing solution.

This paper seeks to characterize, and perhaps de-
bunk, the notion of a “power-hungry GPU” via an
empirical study of the performance, power, and en-
ergy characteristics of GPUs for scientific computing.
Specifically, we take an important biological code that
runs in a traditional CPU environment and transform
and map it to a hybrid CPU+GPU environment. The
end result is that our hybrid CPU+GPU environment,
hereafter referred to simply as GPU environment, de-
livers an energy-delay product that is multiple orders of
magnitude better than a traditional CPU environment,
whether unicore or multicore.

1. Introduction

GPGPU, short for general-purpose computation on
graphics processing units, has already demonstrated its
ability to accelerate the execution of scientific appli-
cations, e.g., [8], [10], [12], [14], [18], [19]. These
accelerated applications benefit from the GPU’s mas-

sively parallel, multi-threaded multiprocessor design,
combined with an appropriate data-parallel mapping of
an application to it.

The emergence of more general-purpose program-
ming environments, such as Brook+ [1] and CUDA [2],
has made it easier to implement large-scale applica-
tions on GPUs. The CUDA programming model from
NVIDIA was created for developing applications on
NVIDIA’s GPU cards, such as the GeForce 8 series.
Similarly, Brook+ supports stream processing on the
AMD/ATi GPU cards. For the purposes of this paper,
we use CUDA atop an NVIDIA GTX 280 video card
for our scientific computation.

GPGPU research has focused predominantly on ac-
celerating scientific applications. This paper not only
accelerates scientific applications via GPU computing,
but it also does so in the context of characterizing
the power and energy consumption of the GPU. To
date, there has been little reseach done in evaluating
the energy consumption and energy efficiency of GPUs
for general-purpose computing. Furthermore, even less
research has been conducted on the optimization of
GPU energy consumption and energy efficiency. This
paper serves as a first step in this direction.

As a starting point, we begin with a well-known
biological code that calculates the electrostatic proper-
ties of molecules in order to aid in understanding the
mechanism behind their function. Specifically, we use
a software code called GEM [6], [7], [16] to compute
the electrostatic potential map of macromolecules in a
water solution. In addition to the provided serial version
of GEM, we implement two additional versions — a
multithreaded CPU version and a hybrid CPU+GPU
version, which we refer to hereafter as the GPU version
as the computation runs nearly exclusively on the GPU
— and evaluate their performance, energy consump-



tion, and energy efficiency. The GPU version of GEM
performs the best in all three aspects, i.e., performance,
energy consumption, energy efficiency. Moreover, we
explore the design space of running GEM on the GPU
and analyze its variation with respect to performance,
energy consumption, and energy efficiency.

The contributions of this paper are as follows:
• An evaluation of the performance, energy con-

sumption, and energy efficiency of general-
purpose computations on an NVIDIA GPU.

• An exploration of the GPU design space, i.e.,
threads, blocks, and kernel launches, using CUDA
and its subsequent impact on performance, energy
consumption, and energy efficiency.

• A comparison of the performance, energy con-
sumption, and energy efficiency of our GPU im-
plementation versus a multithreaded CPU version
and the original serial CPU version.

2. Background

Here we present some background material in order
to put our work in perspective, specifically the GEM
software [7] and the NVIDIA CUDA programming
model [2].

2.1. GEM Software

GEM calculates the electrostatic potential generated
by charges inside a molecule. The utility of the electro-
static potential to gain understanding of the function of
proteins and nucleic acids has long been established [5],
[9]. Electrostatic effects in turn may be critical in un-
derstanding the function of viruses and other structures
integral to the advancement of medical science and
biology.

Traditionally, methods based on numerical solutions
of the Poisson-Boltzman (PB) equation have been used
to calculate the potential. Though this method is the
most accurate among practical approaches, it is often
associated with high algorithmic complexity and high
computational costs, especially for large structures [4].
To address this problem, Gordon et al. [6] proposed
an analytical approximation of the Poisson equations.
In [7], which is the continuation of [6], the authors
proposed a more efficient algorithm that served as the
basis for GEM. In short, GEM is a tool for computing,
extracting, visualizing, and outputting the electrostatic
potential around macromolecules. In addition, GEM
supports reading and writing potential field files in the
format of the MEAD package, mapping electrostatic

potential to the molecular surface, presenting image
output in Targa file format (TGA) format, and providing
a graphical user interface [7].

2.2. CUDA on Graphics Processors

GPUs are dedicated graphics devices that have been
used to accelerate the computer graphics rendering for
many years. Recently, it has evolved into a device that
can be dual-purposed into one that can also support
scientific computing across a range of data-parallel
applications with the promise of tremendous speed-up.

The GPU version of GEM is implemented using
the Compute Unified Device Architecture (CUDA) on
the NVIDIA GTX 280 GPU, whose execution units
are CUDA-capable and organized into multiprocessors
with each one of them contains 8 scalar cores. In
CUDA, the multiprocessor architecture is called SIMT
(Single Instruction, Multiple Thread), which is effec-
tively SIMD (Single Instruction, Multiple Data).

Figure 1. Overview of the NVIDIA Com-
pute Unified Device Architecture (From the
NVIDIA CUDA Programming Guide [2])

The CUDA programming model is an extension to
the C programming language, which makes it easy
for programmers to offload computationally intensive
computations to the GPU to take the advantage of its
computational power. A kernel in CUDA is a global
function that can be executed in the GPU device
and called by the host (CPU). Logically, threads are
grouped into blocks and thread blocks are grouped
into grids. Because a GPU device contains multiple
multiprocessors, multiple blocks and threads can be
triggered and executed in parallel on the device. The
ID of each thread can be calculated uniquely from



the indexes of the block and the grid it belongs to.
With respect to data sharing, each thread has data
for its own usage, and threads within a block can
share data amongst each other, thus allowing for data
synchronization within a block. But GPGPU-supported
data synchronization across different blocks in a grid
currently does not exist.

When a kernel is launched, threads in the same
block will execute on the same multiprocessor. Thus,
if there are too many threads in a block to fit inside the
resources of a single multiprocessor, the kernel launch
fails. Similarly, multiple blocks are grouped into a grid,
but different blocks in a grid may or may not execute in
parallel, depending on the number of multiprocessors
on the GPU, the amount of shared memory they use,
and the number of registers per multiprocessor.

In addition, groups of 32 threads, i.e., warps, execute
the same instruction as each other. Optimal perfor-
mance is achieved when all threads within the warp are
performing the same instruction. The reason for this
is that when divergence occurs within a warp, every
thread needs to execute every instruction within both
branches, taking up to double the time per branch.

An execution kernel can access memory in a number
of ways. One is via the on-chip memory; each multi-
processor contains a set of 32-bit registers along with
a shared memory region which is quickly accessible
by any core on the multiprocessor, but hidden from
other multiprocessors. There is also off-chip memory
that contains both local memory and global memory.
Compared to on-chip memory, the read latency of the
off-chip memory is much higher, but its size is much
larger. Besides the above two types, a multiprocessor
contains two read-only caches, one for textures and
the other for constants, to improve memory access to
texture and constant memory, respectively.

3. Related Work

Initial research on GPU power and thermal behavior
can be traced back to Sheaffer et al. [17], who pro-
pose Qsilver — a simulation framework for graphics
architectures to explore a series of thermal management
techniques, e.g., dynamic voltage scaling, clock gating,
multiple clock domains, etc.

Ramani et al. [13] present a modular architectural
power estimation framework that helps GPU designers
with early power efficiency exploration. The paper also
demonstrates the utility of the framework by employing
the optimizations of bus encoding and repeater siz-
ing/spacing.

Takizawa et al. [20] propose a programming frame-
work called SPART, short for stream programming with
runtime auto-tuning, that dynamically selects the best
available processor for execution of a given task on a
hybrid computing system of CPU and GPU so as to
improve the energy efficiency.

Most recently, Rofouei et al. [15] present an ex-
perimental investigation on the power and energy cost
of GPU operations and a cost/performance comparison
versus a CPU-only system.

NVIDIA developed its power-management solution
for all NVIDIA graphics processing units called Power-
Mizer [11]. PowerMizer can effectively extend battery
life in laptops, and more generally, make more effective
use of electrical power. The counterpart of PowerMizer
for the ATi GPU card is PowerPlay [3].

4. Implementation

In this section, we present three implementations of
the GEM code: serial CPU, multithreaded CPU, and
GPU-based, respectively. The original GEM package
provides a serial CPU implementation, which we make
use of here. We implemented the multithread CPU and
GPU-based versions of the GEM code.

4.1. Serial GEM

As mentioned in Section 2, GEM is a tool for
computing, extracting, visualizing, and outputting the
electrostatic potential around macromolecules. For the
electrostatic potential of each macromolecule, the soft-
ware computes the potential at each of a set of points on
or around its surface by taking the summation of the po-
tential contributed by all atoms in the macromolecule.
In its most basic form, the GEM potential calculation
for each point and each atom is independent and has
nothing to do with other atoms or points. Therefore,
the calculation of all parts of a macromolecule can be
performed in parallel.

4.2. Multithreaded GEM

Because the implementation of the serial version
of GEM is embarrassingly parallel, it makes the im-
plementation of the multithreaded version and the
GPU version much easier. We use gprof to pro-
file the execution of GEM and find the function
calc_potential_single_step() (performing
the potential calculation) accounts for 99% of the



execution time. Consequently, we devote our efforts in
parallelizing this function.

We use Linux pthreads to implement the multi-
threaded GEM. Since the work of the potential cal-
culation function is data parallel, work can be divided
efficiently, and the workload can be balanced nearly
optimally. In essence, after the main process enters the
function of calculating potentials, it forks a number
of threads. Each thread is assigned a piece of work.
After all the threads finish their work, the main process
combines all the results. With respect to thread-to-
core mapping, we choose to schedule one thread per
processor core.

4.3. GPU GEM

When mapping the original GEM C code onto the
NVIDIA GPU using the CUDA programming model,
we made the following decisions based on the proper-
ties of CUDA.

Thread and Block Scheduling: Our most recent
version of an NVIDIA GPU is the GTX 280, which
has 30 multiprocessors, each of which has 8 cores
for a total of 240 cores. And as noted before, CUDA
groups threads into warps, where each warp contains
32 threads. Threads in the same block execute on the
same multiprocessor. Therefore, to make full use of
the GTX 280, multiple blocks should be used. In other
words, the block number per kernel launch should be
no less than 30 to get good performance. For number
of threads per block, according to [2], we can achieve
the best results when the number of threads per block
is a multiple of 64. Another factor that should be
considered is resource limitations of the multiprocessor.
Our experimental study demonstrated that 64 threads
per block achieves the best result.

Memory Usage: When the GPU is used for the
potential calculation, input data should be transferred
to the device memory before they can be used by
the multiprocessors. As described previously, different
types of memories are available on the GPU. One is
the global memory, and another is the texture memory.
The global memory has a large size, and it can better
support the case where large amounts of data need
to be copied between the host and the GPU device.
The disadvantage of the global memory is the read
latency. It is much higher than that of the texture
memory. However, for the texture memory, the array
size that is supported is limited. For example, a two-
dimensional CUDA array has a maximum width of
213 and a maximum height of 215. So, when texture
memory is used, the number of points in the input data

is constrained by this limitation. Also, when there are
multiple active warps on a multiprocessor, the CUDA
scheduler can overlap the reading latency of a warp by
making other warps do the computation. Because of
these two reasons and our experimental results, global
memory is used for mapping GEM onto the GPU.

Parameter Transfer: Parameters with the double
data type cannot be transferred to the GPU device
directly when the kernel function is called. Instead,
they are wrapped in a structure, and the function
cudaMemcpy() is used to copy those parameters
from the host to the device.

5. Experiment Setup

In this section, we describe the hardware and soft-
ware platform used in our experiments.

5.1. Hardware Platform

The hardware platform in our experiment includes a
computing server and a profiling computer and “Watts
Up? PRO ES” power meter. The computing server
is equipped with an Intel R©CoreTM2 Duo CPU with
2 MB of shared L2 cache, which has two processing
cores running at 2.2 GHz. The computing server has
2 GB of DDR2 SDRAM memory. The computing
server also contains a NVIDIA GTX 280 graphics card
with GT200 GPU, which has 30 multiprocessors and
240 GPU processing cores running at 1296 MHz. The
graphics card has 1024 MB of GDDR3 RAM with a
memory bandwidth of 141.7 GB per second. Further-
more, this GPU has 16,384 registers per multiprocessor
and can support 32 active warps and 1,024 active
threads. In addition, it supports for double-precision
floating point.

In our experiments, performance and energy of the
serial version and multithreaded version are measured
with GPU being taken out. Power and energy mea-
surements are performed by the power meter. Figure 2
shows how the computing server, profiling computer,
and power meter are interconnected. The power comes
from the wall outlet and feeds into the computing
server. Power and energy data are recorded by the
power meter, and the profiling computer is used to
fetch the data from power meter periodically. Energy
values are recorded into a log file immediately before
and after the execution of GEM code. The difference
is the energy consumed by the computing server when
running GEM code. The energy value we measure does
not include the energy consumed in the idle time before
program execution or after the computation completes.



5.2. Software Platform

We run 64-bit Ubuntu GNU/Linux 7.04 distribu-
tion (kernel 2.6.20-16) on the computing server. The
NVIDIA CUDA 2.0 toolkit and SDK are installed with
NVIDIA driver version 177.67 in the computing server.
We use the GEM software [6], [7] as our application
to study the behavior of performance, energy con-
sumption, and energy efficiency on the three different
implementations, as described in Section 4. We choose
a sizable nuclesome dataset (about 258,000 points)
for our workload. The performance is measured in
execution time, and the energy is measured in energy
consumed by the computing server in joules. The
energy efficiency is measured using the energy-delay
(ED) product in joule-seconds.

Figure 2. Setup of Experimental Testbed

6. Results

In this section, we show the performance, energy
consumption, and energy efficiency of all three im-
plementations of GEM by profiling the execution time
and power consumption of the computing server when
running GEM. We will show our analysis in Section 7.
Figure 3 shows the execution of serial version, mul-
tithreaded version, and GPU version of GEM. With
respect to the results for the GPU version of GEM,
shown in Figures 3, 4, and 5, we use a single kernel
launch with as many blocks as possible to run GEM. As
will be shown in Section 7, a single kernel launch with
as many blocks as possible has the best performance
over all other cases for a particular number of threads
per block. With respect to the number of threads per
block, 64 delivers the best performance.

Table 1. Energy delay product (megajoule-
seconds) of GEM. Smaller is better.

Serial Multi GPU
ED 409.1 127.1 0.5

We execute the different versions of GEM at dif-
ferent starting times so that they can be more easily
differentiated in the figure. Although the power con-
sumption of the GPU is much higher, the task finishes
much faster. Overall, the energy consumption of the
GPU version of GEM is significantly less than that of
the serial version and multithreaded version.

Figure 3. The Execution Time and Power
Consumption of the CPU and GPU

6.1. Performance Evaluation

We present here the performance, energy consump-
tion, and energy efficiency of GEM on the three imple-
mentations presented in Section 4.

Figure 4 shows the execution time of our three
versions of the GEM implementation. The performance
of GPU version of GEM is 46 times faster than the
serial version and 25 times faster than multithreaded
version. (Aside: With a single-precision GPU version
of GEM, the results are another order of magnitude
better than the results presented here.) Figure 5 shows
the energy consumption of the three versions of GEM
implementations. The energy consumption of the GPU
version is 17 times better than the serial CPU version
and 9 times better than the multithreaded CPU version.
Table 1 shows the energy delay product (ED) of all
three implementations. The energy efficiency of the
GPU version of GEM, as measured by the ED product,
is a whopping 763 times better than serial version and
237 times better than the multithreaded version.



Figure 4. Execution Time of GEM

Figure 5. Energy of GEM

6.2. Performance Optimization

In the previous section, we evaluated the GPU
version of GEM implemented using a single kernel
launch with all blocks. Developers can also choose to
use multiple kernel launches to implement GEM on the
NVIDIA GPU. This is because NVIDIA CUDA allows
developers to choose different numbers of blocks per
grid and different numbers of threads per block. We
believe that the choice of these two parameters will
affect the performance, energy consumption as well as
energy efficiency of the computing server. We want to
explore the design space of CUDA programming model
to discover the optimal solution for mapping data-
parallel scientific applications to the NVIDIA GPGPU.

Figure 6 shows the execution time of the GPU ver-
sion of GEM with various number of blocks and various
number of threads. Similarly, Figure 7 shows the energy
consumption, and Figure 8 shows the energy-delay
(ED) product. In all of the three figures, the horizontal
line right below each zigzag line represents the one
kernel launch implementation of GPU version of GEM
for that thread numbers. For example, in figure 6, the
horizontal line right below the 16 threads zigzag line
represents the execution time of one kernel launch of
GPU version of GEM implemented using 16 threads
per block.

Figure 6. Execution Time of GEM on the
GPU

Figure 7. Energy Consumption of GEM on
the GPU

7. Analysis

In this section, we confirm three overarching (self-
evident) principles from our experiments. These prin-
ciples can help with making decisions in choosing
efficient application-design strategies.

7.1. GPGPU for Data-Parallel Applica-
tions

Among the serial CPU, multithreaded CPU, and
GPU versions of GEM, the GPU implementation is
clearly the best choice in terms of performance, energy
consumption, and energy efficiency. Figure 4 and 5 and



Figure 8. Energy-Delay Product of GEM on
the GPU

Table 1 show that the performance, energy consumption
and energy delay product of GPU version of GEM
is much better than serial version and multithreaded
version.

7.2. (Obvious) Synchronous Behavior

From Figures 6, 7, and 8, we observe that the per-
formance, energy consumption, and energy efficiency
have similar curves over all execution point (number
of blocks and number of threads). The performance
behavior is sub-linear to the energy behavior, and
the performance and energy consumption are highly
synchronized. This observation is due to the fact that
the power consumption of GPU when running GEM
code does not vary much. Under this circumstance,
the energy consumption will be proportional to the
execution time. As a result, the energy-delay product
is proportional to the square of the execution time. In
short, the behavior of performance, energy consump-
tion, and energy efficiency are highly synchronized.

7.3. Optimal # of Kernel Launches

In Figure 6, we use a horizontal line to represent the
execution time of one kernel launch for 16 threads, 32
threads, and 64 threads, respectively. Each thread line
approaches the one kernel-launch line as the number
of blocks increases but stays above this horizontal line.
That is, as the number of block increases, the execution
time will shrink to this asymptotic limit. This limit is
the optimal execution point for executing GEM on the
GPU.

Table 2. Optimal Execution of GEM on GPU

16 threads 32 threads 64 threads
Time (seconds) 70.0 52.8 44.6
Energy (joules) 17,460 13,625 11,996
ED (joule-sec) 1,221,426 719,068 535,392

As shown in Table 2, the execution times of the “one
kernel launch” case of GEM for 16 threads per block,
32 threads per block, and 64 threads per block are 70.0
seconds, 52.8 seconds and 44.6 seconds, respectively.
These numbers are less than any other test case with
multiple kernel launches.

Table 2 shows the energy consumption of the one
kernel launch version of GEM for 16 threads per
block, 32 threads per block, and 64 threads per block
are 17,460 joules, 13,625 joules, and 11,996 joules,
respectively.

With respect to the energy-delay product, Figure 8
shows that one kernel launch has the optimal energy-
delay product value for each number of threads. As
shown in Table 2, the optimal energy-delay products are
1,221,426 joule-seconds for 16 threads, 719,068 joule-
seconds for 32 threads, and 535,392 joule-seconds for
64 threads.

8. Conclusion and Future Work

This paper presents our evaluation and analysis of
the efficiency of GPU computing for data-parallel sci-
entific applications. Starting with a biomolecular code
that calculates electrostatic properties in a data-parallel
manner (i.e., GEM), we evaluate our different imple-
mentations of GEM across three metrics: performance,
energy consumption, and energy efficiency.

In the future, we will continue this work by investi-
gating the effects of memory layout (global, constant,
texture) on GPU performance and efficiency. In addi-
tion, we will delve further into potential techniques for
proactively reducing power and conserving energy on
the GPU.
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