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Abstract— This paper investigates the fundamental energy
efficiency-spectral efficiency (EE-SE) relationship in a multiple-
input multiple-output (MIMO)- orthogonal frequency division
multiple access (OFDMA) broadcast channel (BC) with a prac-
tical power model considering the power consumption due to
the number of admitted users as well as the number of active
transmit antennas. However, with this power model, the EE-
SE trade-off optimization problem which jointly optimizes the
transmit covariance matrices whilst determining the optimal
admitted user set and active transmit antenna set is non-convex,
and hence it is extremely difficult to solve directly. As a result,
we propose an algorithm that decouples the multi-carrier EE
optimization problem to a set of single-carrier EE optimization
problems. For the single-carrier EE optimization problem, we
first investigate the EE-SE trade-off problem with fixed admitted
user set and transmit antenna set. Under this setup, we prove that
the EE-SE relationship is a quasiconcave function. Furthermore,
EE is proved to be either strictly decreasing with SE or first
strictly increasing and then strictly decreasing with SE. Based
on these findings, we propose a two-layer resource allocation
algorithm in order to tackle the comprehensive EE-SE trade-off
problem. Meanwhile, since admitting more users and activating
more transmit antennas can achieve higher sum-rate but at the
cost of larger transmit-independent power consumption, there
exists a trade-off between the sum-rate gain and the power
consumption. We therefore study the user and antenna selection
approach to further explore the optimal trade-off. Both the op-
timal exhaustive search and the Frobenius norm based dynamic
selection schemes are developed to further improve the achievable
EE. To further reduce the computational complexity, a strategy
that chooses a fixed admitted user set for all the subcarriers is
developed. Simulation results confirm the theoretical findings and
demonstrate that the proposed resource allocation algorithm can
efficiently approach the optimal EE-SE trade-off.

Index Terms— Green radio (GR), multiple-input multiple-
output (MIMO), energy efficiency (EE), spectral efficiency (SE).

I. INTRODUCTION

Over the past decades, significant efforts have been directed
towards improving the spectral efficiency (SE) of wireless
communication systems in order to support the massive in-
crease in network traffic demand. This trend makes SE to
be the main performance indicator for the design and opti-
mization of wireless systems, but at the same time constitutes
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to ever-rising network power consumption which has severe
implications in terms of both economic and ecological costs.
Green radio (GR) is a recent research direction dedicated
to devising novel solutions for tackling the overwhelming
capacity crunch in a sustainable and economically viable
way. Energy-efficiency (EE), which is an indication of the
delivered bits per-unit energy, is widely considered as a first-
order design constraint in GR research, and has attracted
much interest recently, e.g., single link optimization [1], multi-
antenna system [2]–[7], single cell scenario [8]–[12], multi-
cell deployment [13] and cognitive radio network [14], [15].

A prominent transmission technology for the next gener-
ation of cellular networks is multiuser (MU) multiple-input
multiple-output (MIMO). The information-theoretic capacity
limit of MIMO broadcast channels (BC) has been extensively
studied in the existing literature. In contrast to existing re-
search on SE of MIMO-BC which only considers transmit
power constraints, studying the EE of MIMO-BC requires
a comprehensive understanding of the power consumption
of downlink MU-MIMO systems. A random opportunistic
beamforming algorithm has been proposed in [16] to maximize
the EE in a broadcast channel. Authors in [17] provided some
general analytical tools and insights into optimizing the EE
at the BS through power control with elastic traffic. In [18],
the authors tackled the EE maximization problem in downlink
MIMO systems and extended their work in [19] where a novel
optimization approach with transmit covariance optimization
and antenna selection scheme is developed for improving the
EE in the context of MIMO-BC. In [20], a framework which
relies on dirty paper coding (DPC) for MIMO-BC to find the
globally optimal energy-efficient solution is proposed.

Joint optimization of EE and SE is not always practically
feasible and may even result in conflicts sometimes [21], [22].
Therefore, finding the optimal trade-off between EE and SE is
a problem well worth studying. The concept of EE-SE trade-
off has first been introduced in [23]; this work has inspired
numerous other research activities where the same analytical
approach was used to approximate the EE-SE trade-off of
correlated multi-antenna [24], multi-user [25] and coopera-
tive [26] communication systems in the low-SE regime. A
framework to integrate the connections between EE and SE
trade-offs has been proposed in [27]. In [28], EE-SE trade-off
considering circuit power was studied for energy-constrained
wireless multihop networks with a single source-destination
pair. Authors in [29] and [30] provided a tight approximation
of the EE-SE trade-off over single-input single-output (SISO)
Rayleigh frequency-flat fading channels and MIMO Rayleigh



fading channel respectively. The authors in [8] investigated
the EE-SE relationship in a single-cell downlink OFDMA
network and proved that the EE-SE relationship is a quasi-
concave function. Based on the findings, they developed a
low-complexity suboptimal resource allocation algorithm for
practical applications of the EE-SE trade-off. Furthermore,
a tight lower bound and a tight upper bound on the EE-
SE curve were introduced by Lagrange dual decomposition
(LDD) and continuous relaxation, respectively. In [31], the
tradeoff between EE and SE is further exploited by balancing
consumption power and occupied bandwidth using resource
efficiency for downlink cellular network.

A. Main Contributions

While it is evident that the study of this important joint-
metric (EE-SE) has gathered pace in recent years, its impact
on the MIMO-OFDMA BC has not been investigated. Fur-
thermore, user selection and antenna selection is a widely
discussed technology in spectral efficient MIMO systems, but
its impact on energy efficient MIMO systems is still an open
question. Unlike the EE optimization problem in existing
literature that maximizes EE through power control, the EE-
SE trade-off optimization problem requires the balancing of
EE and SE and results in efficient use of power as well as
bandwidth.

In this paper, we investigate the EE-SE trade-off problem
in multiuser MIMO-OFDMA BC. A practical power model
considering the power consumption due to the number of
admitted users as well as the number of active transmit
antennas is employed. In terms of SE maximization, admitting
all users is always optimal. However, this conclusion does not
hold under the energy efficient scenario. As more admitted
users achieve higher sum-rate at the cost of higher signal
processing power, there exists a trade-off between the power
consumption cost and the sum-rate gain. Moreover, more
active transmit antennas achieve higher sum-rate at the cost
of higher circuit power, and hence there also exists a trade-off
between the power consumption cost and the sum-rate gain. As
a result, user and antenna selection is necessary. However, with
this power model, the EE-SE trade-off optimization problem
which jointly optimize the transmit covariance matrices whilst
determining the optimal admitted user set and active transmit
antenna set is non-convex, and hence it is extremely difficult
to solve directly.

To tackle the multi-carrier EE-SE trade-off problem, we
propose an efficient algorithm to tackle the EE optimization
problem for MIMO-OFDMA system which is close to that of
the optimal value. The idea is to decouple the multi-carrier
optimization problem to a set of single-carrier optimization
problems, and we just need to solve the decoupled single-
carrier EE optimization problem and repeat for all the sub-
carriers in order to obtain the maximum system EE. For
the latter problem, we first investigate the EE-SE trade-off
problem with fixed admitted user set and transmit antennas
set. Under this setup, we prove that the EE-SE relationship
is a quasiconcave function. Furthermore, EE is proved to be
either strictly decreasing with SE or first strictly increasing and

then strictly decreasing with SE. Based on the quasiconcave
property, a two-layer resource allocation algorithm is then
proposed to solve EE-SE trade-off problem with fixed admitted
user set and transmit antennas set. In particular, an inner-layer
is used to find the maximum EE λ∗EE(λSE) for a given SE,
λSE , while an outer-layer is designed to find the optimal EE,
λoptEE , via a gradient based algorithm. With the proposed two-
layer solution for the EE-SE trade-off problem, we then study
the user and antenna selection approach to further explore
the optimal trade-off. A dynamic user and antenna selection
approach based on Frobenius norm method are developed.
Moreover, in contrast to the proposed dynamic solution where
admitted user set is considered for different subcarriers, a
selection strategy that chooses a fixed admitted user set for
all the subcarriers is developed to reduce the computational
complexity.

B. Organization and Notation

The remainder of this paper is organized as follows. The
system model and problem formulation is described in Section
II. In Section III, we study the fundamental EE-SE relation and
develop a resource allocation scheme based on fixed admitted
user set and transmit antennas set. In Section IV, we transform
the MIMO-BC problem to the dual MIMO-multiple access
channel (MAC) problem based on MAC-BC duality. In Section
V, a computationally efficient algorithm is proposed to solve
the dual MAC optimization problem. In Section VI, we further
study the user and antenna selection approach to explore the
optimal trade-off curve, both the optimal exhaustive search
and the Frobenius norm based dynamic selection schemes are
developed to further improve the EE. In Section VII, a low
computational complexity based on fixed selection strategy is
investigated. Simulation results are provided in Section VIII
and conclusions are drawn in Section IX.

The following notations are used in the paper. Bold upper
and lower case letters denote matrices and vectors, respec-
tively; (·)−1 denotes the matrix inversion, (·)T denotes the
matrix transpose, (·)H denote the matrix conjugate transpose,
INt×Nt

denotes an Nt × Nt identity matrix; E [·] denotes
the expectation operator; Tr(·) denotes the trace of a matrix,
[x]+ denotes max(x, 0); (·)b and (·)m denote the quantities
associated with a broadcast channel and a multiple access
channel, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model of a MIMO-
OFDMA BC and mathematically formulate the EE-SE trade-
off problem.

A. System Model

The system consists of a single base station (BS) with Ntot
transmit antennas and Ktot users (K ∈ {1, 2, . . . ,Ktot}) each
with Nr receive antennas. An OFDM transmission scheme
with M subcarriers (m = 1, 2, · · · ,M ) on W bandwidth is
employed and thus multiuser MIMO-OFDMA transmission
scheme is considered in this work. As the number of admitted



users in the network and the number of active transmit
antennas at the BS have a significant impact on the EE,
selecting the set of admitted users and active transmit antennas
is important. Moreover, the number of admitted users could be
varied through different subcarriers in order to further increase
the system’s EE, and hence we denote the selected user set
on subcarrier m as Km ∈ {1, . . . ,Ktot} with the number
of admitted user Km = |Km|. The superset K̄ is used to
denote the combined user sets for all subcarriers. On the other
hand, transmit antenna selection cannot be performed on a
per-subcarrier basis because different subcarriers might request
a different set of active antennas, resulting in more antennas
being activated for one OFDMA frame. Therefore, the transmit
antenna set, once selected, is fixed for all the subcarriers,
and is denoted as N ∈ {1, . . . , Ntot} with the number of
active antennas Nt = |N |. With the selected users on the mth

subcarrier and the selected antennas, we denote the channel
matrix from the BS to the kth user on the mth subcarrier
with Nt active antennas as Hm

k,N ∈ CNr×Nt . Channel state
information (CSI) is assumed to be perfectly known at the
corresponding transmitter and receivers. Note that the CSI
at the receivers (CSIR) can be obtained from the channel
estimation of the downlink pilots. CSI at transmitter (CSIT)
can be acquired through uplink feedback in frequency division
duplex (FDD) systems or via uplink channel estimation in time
division duplex (TDD) systems. The received signal from the
BS to the kth user on the mth subcarrier can be written as

ymk = Hm
k,N xmN + nmk , (1)

where nmk ∈ CNr×1 is the independent zero mean Gaussian
noise with each entry CN (0, σ2), xmNm

is the transmitted
signal on the downlink on the mth subcarrier. In addition,
xmN = xm1,N + xm2,N + . . .+ xmK,N where xmk,N ∈ CNt×1, is the
signal transmitted to the kth user on the mth subcarrier with
the selected user set (Km) and antenna set (N ), and xmk,N =

Wm
k,N smk,N where smk,N ∈ CNr×1 is the transmit signal

corresponding to the precoding matrix Wm
k,N ∈ CNt×Nr .

By employing DPC at the transmitter with antenna set N ,
and without loss of generality, an encoding order (1, · · · ,Km)
for the user set Km, i.e., the codeword of user 1 is encoded
first, the data rate Rbk,m for the kth user on the mth subcarrier
can be written as [32]

Rbk,m = W log
|INr×Nr

+ 1
σ2 Hm

k,N (
∑Km

i=k Qm,b
i,N )HmH

k,N |
|INr×Nr

+ 1
σ2 Hm

k,N (
∑Km

i=k+1 Qm,b
i,N )HmH

k,N |
.

(2)
where Qm,b

k,N = E(xmk,N xmHk,N ) is the corresponding transmit
covariance matrix, Qm,b

k,N � 0 i.e., Qm,b
k,N is a positive semidef-

inite matrix. Hence, the sum rate of the MIMO-OFDMA BC
is given by

CBC =

M∑
m=1

Km∑
k=1

Rbk,m.

On the other hand, the sum rate of the MIMO-OFDMA
MAC is given by

CMAC =

M∑
m=1

log |INt×Nt
+

1

σ2

Km∑
k=1

HmH
k,NQm

k,NHm
k,N |.

With regards to the power model, since the BSs are the pri-
mary power-hungry component in cellular networks, the users’
power consumption is not considered here. Advanced circuit
technology has made it possible for wireless transceivers
to consume different powers in different operational modes
such as sleep, idle, transmit and receive modes [22]. In the
transmit/active mode, besides the transmit power, the BS
power consumption also includes the consumption by signal
processing and active circuit blocks, such as analog-to-digital
converter, digital-to-analog converter, synthesizer, and mixer
[33]. From [33] and [34], the overall power consumption
model for downlink transmission at the BS is

P = ζPT + Psp + Pc (3)

where ζ and PT represent the reciprocal of drain efficiency
of power amplifier and transmit power at the BS, respectively.
Psp denotes the power consumption of signal processing at
BS, which depends on baseband processing including the
computation of the precoding matrix W [35]

Psp = WPsp1[dim(W)]β+1 +WPsp2 (4)

where the first term of (4) is proportional to the number
of active RF chains with order of β ≥ 0, and Psp1 is
the parameter related to the computation of the precoding
matrix W. The active RF-chain number is the same as the
dimension (number of columns) of the precoding matrix W.
The exponent β implies the overhead power consumption of
MU processing compared to single user (SU) processing. For
example, if β = 0 , there is no overhead for MU-MIMO
signal processing computation. If β > 0, MU-MIMO signal
processing computation consumes relatively higher power than
SU signal processing. The maximum of exponent β is assumed
to be no greater than two as the computational complexity for
l-dimensional MU-MIMO precoding, e.g., zero-forcing (ZF)
MU-MIMO precoding, is roughly O(l3), while that for SU
is O(l); therefore, 0 ≤ β ≤ 2 is a reasonable assumption.
Moreover, it was shown in [36] that GQRD-based DPC
scheme has a similar complexity as SVD-based design which
is roughly O(l3), and thus β is set to 2 in this work. In the
second term of (4), Psp2 is the signal processing related power
consumption per unit frequency at the baseband module, which
is independent of the number of active RF chains.

On the other hand, Pc denotes the circuit power consump-
tion which can be divided into static (fixed) and dynamic parts
that depend on the parameters of the active links. Here, the
transmission associated circuit power consumption is modeled
as a linear function of the number of active antennas and the
throughput

Pc = Ps + PantNt + γCBC (5)

where Ps is the static circuit power in transmit mode, PantNt
denotes the dynamic power consumption proportional to the
number of active transmit antennas, and γ is a constant
denoting the dynamic power consumption per unit data rate.
Hence, we model the overall power consumption as

P = ζPT + PantNt +WPsp1[dim(W)]3 +WPsp2

+γCBC + Ps (6)



which is dependent on the transmission power, number of
active antennas, number of admitted users, rate related power
consumption and static circuit power.

B. Problem Formulation
Conventional EE for downlink transmission is defined as the

total number of delivered bits per unit energy, where energy
consumption includes transmission energy consumption and
circuit energy consumption in active mode. In this paper we
consider the DPC that achieves the sum-rate capacity for
MIMO-OFDMA BC. It is important to note that there exists
a performance gap between the capacity and the actual rate
achieved by the cellular networks in practice due to practical
constraints such as acquiring of CSIT/CSIR, overhead of
pilots, practical coding and modulation schemes, practical
demodulation and decoding algorithms, etc. Nevertheless, the
sum rate capacity achieved by DPC under perfect CSIT/CSIR
is the information-theoretic upper bound for MIMO-OFDMA
BC, which helps to reveal the theoretical achievable limits,
and thus is employed in this paper.

It has been shown that the optimal EE is achieved by
transmitting with either full bandwidth with minimum transmit
power or full transmit power with minimum bandwidth [37].
However in MIMO-OFDMA, transmitting at full power with
minimum bandwidth (i.e., one subcarrier) is not feasible as it
requires a very high rate modulation scheme to approach the
achievable rate. As a result, activating all available subcarriers
in MIMO-OFDMA (i.e., full bandwidth are occupied) is the
optimal in terms of EE. With the selected users and transmit
antennas, EE in MIMO-OFDMA BC is defined as follows

λEE ,
CBC
P

=

∑M
m=1

∑Km

k=1R
b
k,m

P
. (7)

On the other hand, SE is defined as the total number of
delivered bits per unit bandwidth.

λSE ,
CBC
W

=

∑M
m=1

∑Km

k=1R
b
k,m

W
. (8)

Since our practical power model considers signal processing
power and circuit power, the number of admitted users and
active transmit antennas plays an important role in system’s
EE. Hence, we need to select the suitable users and transmit
antennas to exploit the trade-off between the power consump-
tion cost and the sum-rate gain. Furthermore, since the objec-
tive of this paper is to maximize EE of MIMO-OFDMA BC
whilst achieving a desirable SE, it is reasonable to impose a
minimum SE requirement for the optimization problem. Based
on the sum-rate expression in (3), the total power consumption
model in (6) and noting that PT =

∑M
m=1

∑Km

k=1 Tr(Qm,b
k,N ),

the optimization problem can be formulated as

max
K̄,N ,{Qm,b

k,N�0}

CBC(Hm
k,N ,Q

m,b
k,N )

P
(9)

s.t.
M∑
m=1

Km∑
k=1

Tr(Qm,b
k,N ) ≤ Pmax, (10)

CBC(Hm
k,N ,Q

m,b
k,N )

W
≥ λSE(min), (11)

where P = ζPT + PantNt + WPsp1[dim(W)]3 + WPsp2 +
γCBC + Ps, Pmax and λSE(min) are the maximum total
transmit power constraint at the BS and the minimum SE
requirement, respectively.

Since both the admitted user set K̄ and the active transmit
antenna set N , affect the EE in a comprehensive manner, i.e.,
K̄ and N are related to both channel matrices and the dynamic
power consumption, solving K̄ andN jointly with Qm,b

k,N for all
the subcarriers is not straightforward, and hence the solution
of the above problem is very hard due to the non-concavity
of the objective function.

Therefore, we propose an efficient suboptimal algorithm
to tackle the EE optimization problem for MIMO-OFDMA
system in (9)-(11) by decoupling the multi-carrier optimization
problem to a set of single-carrier optimization problems as
follows

max
Km,N ,{Qm,b

k,N�0}

CmBC(Hm
k,N ,Q

m,b
k,N )

P
(12)

s.t.
Km∑
k=1

Tr(Qm,b
k,N ) ≤ Pmmax, (13)

CmBC(Hm
k,N ,Q

m,b
k,N )

Wc
≥ λSE(min), (14)

where P = ζPT + PantNt + WcPsp1N
3
rK

3 + WcPsp2 +
γCBC+Ps, CmBC and Wc denote the sum rate on subcarrier m
achieved by DPC and the subcarrier’s bandwidth respectively,
Pmmax = Pmax

M represents the maximum power budget per
subcarrier, and Psp = WcPsp1N

3
rK

3 +WcPsp2 is the signal
processing power consumption at the BS. Consequently, we
just need to solve the decoupled single-carrier EE optimization
problem in (12)-(14) and repeat for all the subcarriers in order
to obtain the maximum system EE. Given that the multi-
carrier scenario is transformed into a single-carrier scenario,
the subcarrier index m is removed for the single carrier EE
optimization problem in (12)-(14), i.e., the admitted user set
is denoted as K with K = |K|, and the channel matrix and
covariance matrix as Hk and Qb

k respectively. Furthermore, for
any optimization problems, we can first optimize over some of
the variables and then over the remaining ones [38]. Therefore,
we will first study the fundamentals of EE-SE relationship per
subcarrier under a fixed admitted user set and transmit antenna
set, and develop a resource allocation scheme. Based on that,
we then introduce the user and antenna selection approach to
further explore the optimal trade-off.

III. FUNDAMENTALS OF EE-SE RELATIONSHIP

In this section, we will study the fundamental EE-SE
relationship (on a per subcarrier basis) with fixed admitted
user set and transmit antenna set. Hence the MIMO-OFDMA
BC has been transformed to MIMO-SC BC scenario in the
following sections. The optimization problem in (12)-(14) is
thus transformed to



max
Qb

k�0

CBC(H1, · · · ,HK ,Qb
1, · · · ,Q

b
K)

P
(15)

s.t.
K∑
k=1

Tr(Qb
k) ≤ Pmax, (16)

CBC(H1, · · · ,HK ,Qb
1, · · · ,Q

b
K)

Wc
≥ λSE(min). (17)

To solve the above optimization problem, motivated by the
EE-SE relationship in single antenna scenario [8], we first
demonstrate the quasiconcavity of EE in SE, and then develop
a two-layer resource allocation scheme based on the EE-SE
performance.
Theorem I. For any given SE, λSE ≥ λSE(min), achieved
with transmit covariance matrix Qbk,∀k ∈ K, that satis-
fies all constraints in (16)-(17), the maximum EE, λ∗EE =
max
Qb

k�0
λEE(λSE), is strictly quasiconcave in λSE .

Proof: see Appendix A.
Theorem II. In the SE region [λSE(min), λSE(max)], the EE,
λ∗EE(λSE)

(i) strictly decreases with λSE and is maximized at λSE =
λSE(min) if

dλ∗EE(λSE)

dλSE

∣∣∣∣
λSE=λSE(min)

≤ 0,

(ii) strictly increases with λSE and is maximized at λSE =
λSE(max) if

dλ∗EE(λSE)

dλSE

∣∣∣∣
λSE=λSE(min)

> 0

and
dλ∗EE(λSE)

dλSE

∣∣∣∣
λSE=λSE(max)

≥ 0, (18)

(iii) first strictly increases and then strictly decreases with
λSE and is maximized at λSE =

CBC(λopt
EE)

W if

dλ∗EE(λSE)

dλSE

∣∣∣∣
λSE=λSE(min)

> 0

and
dλ∗EE(λSE)

dλSE

∣∣∣∣
λSE=λSE(max)

< 0,

(iv) infeasible if

λSE(min) > λSE(max),

where λSE(max) is the maximum SE under all constraints in
(16)-(17) and CBC(λoptEE) is the throughput that corresponds
to the maximum EE under all constraints in (16)-(17).

Proof: see Appendix B.
Since there exists a unique global maximum for any qua-

siconcave function, Theorem I guarantees the existence and
uniqueness of the global maximum solution. Furthermore,
λEE(λSE) either strictly decreases or first increases and then
strictly decreases with λSE starting from λSE(min), which
is the minimum SE constraint. Theorem II further indicates
that the maximum point is always achieved at a finite SE.
Therefore, problem (15)-(17) can be decomposed into two
layers and solved iteratively through the following processes:

(i) Inner-layer: For a given SE, λSE , finds the maximum EE
λ∗EE(λSE).
(ii) Outer-layer: Finds the optimal EE, λoptEE , via a gradient-
based algorithm in accordance with Theorem II.
The key aspect of the proposed scheme lies in the inner-layer
algorithm which computes λ∗EE(λSE) and will be discussed in
detail as analysis proceeds. Note that although the optimization
procedure is performed based on the affine circuit power
model, a more general case in which the circuit power is
a convex function of throughput can be similarly proven
following the analysis of the linear case.

IV. EQUIVALENCE AND DUALITY

Evidently, the MIMO-BC sum rate maximization is a non-
convex optimization problem and is difficult to solve directly.
Authors in [32] showed that the capacity region of the MIMO
MAC with a total power constraint Pmax for all K transmitters
is the same as the dirty paper region of the dual MIMO BC
with power constraint Pmax. In other words, any rate vector
that is achievable in the dual MAC with power constraints
(P1, P2, · · · , PK) is in the dirty paper region of the BC with
power constraint

∑K
k=1 Pk. Conversely, any rate vector that

is in the dirty paper region of the BC is also in the dual
MIMO MAC region with the same total power constraint.
Furthermore, [39] showed the DPC achievable rate region in
the Gaussian MIMO BC is in fact the capacity region. Hence,
the dirty paper region of a MIMO BC channel with power
constraint Pmax is equal to the capacity region of the dual
MIMO MAC with total power constraint Pmax:

CDPC(Pmax,H) = CBC(Pmax,H) = CMAC(Pmax,HH).
(19)

By exploiting the MAC-BC duality theorem, the opti-
mization problem in (15)-(17) is equivalent to the following
problem

max
Qk�0

CMAC(HH
1 , · · · ,HH

K ,Q1, · · · ,QK)

ζ
∑K
k=1 Tr(Qk) + Pfix + γCMAC

(20)

s.t.
K∑
k=1

Tr(Qk) ≤ Pmax, (21)

CMAC(HH
1 , · · · ,HH

K ,Q1, · · · ,QK)

W
≥ λSE(min), (22)

where CMAC is the rate achieved by all users of the dual
MAC, and Qk is the transmit signal covariance matrix of the
kth user, Pfix = PantNt + WcPsp1N

3
rK

3 + WcPsp2 + Ps.
We now need to solve the inner layer to find the maximum
EE λ∗EE(λSE) based on a given SE. Hence, for a given
SE, i.e., any λSE in the SE region [λSE(min), λSE(max)], the
optimization problem in (20)-(22) can be expressed as

max
Qk�0

WλSE

ζ
∑K
k=1 Tr(Qk) + Pfix + γWλSE

(23)

s.t.
K∑
k=1

Tr(Qk) ≤ Pmax. (24)

Given λSE is fixed in this case, Qk, k = {1, 2, . . . ,K},
are the variables of interest for the optimization problem in



(23)-(24). As a result, we can solve the above maximization
problem using the following minimization method

min
Qk�0

K∑
k=1

Tr(Qk) (25)

s.t.
CMAC(HH

1 , · · · ,HH
K ,Q1, · · · ,QK)

W
= λSE ,(26)

where the capacity region of the dual MIMO-
MAC CMAC(HH

1 , · · · ,HH
K ,Q1, · · · ,QK) = W log

|INt×Nt + 1
σ2

∑K
k=1 HH

k QkHk|. We hereafter refer to
this minimization problem as the dual MAC optimization
problem. Since the objective function is convex given the
constraint is a convex set, the dual MAC optimization
problem is a convex problem and can be solved in an efficient
manner. Hence, the inner-layer of the proposed algorithm
has been transformed to solve the optimization problem in
(25)-(26) based on a given SE λSE . In the next section, we
will introduce a method to solve the dual MAC optimization
problem.

V. DUAL MAC OPTIMIZATION PROBLEM

In this section, we first propose an efficient algorithm
to solve the dual MAC optimization problem in (25)-(26),
and then we introduce the MAC-to-BC covariance matrix
mapping scheme to map the optimal solutions in the dual
MAC scenario to the BC scenario. Finally, a complete
solution to the EE-SE optimization problem in (15)-(17) is
introduced.

Defining f(Q1, · · · ,QK) = log |INt×Nt +
1
σ2

∑K
k=1 HH

k QkHk|, we rewrite the optimization problem in
(25)-(26) as

min
Qk�0

K∑
k=1

Tr(Qk) s.t. f(Q1, · · · ,QK) = λSE . (27)

Recall that the positive semi-definiteness of Qk is equivalent
to the non-negativeness of the eigenvalues of Qk [40], i.e.,
qk,j ≥ 0. Correspondingly, the Lagrangian function is written
as

L(Q1, · · · ,QK , η, δk,j) :=

K∑
k=1

Tr(Qk) (28)

+η[λSE − f(Q1, · · · ,QK)]−
K∑
k=1

M∑
j=1

δk,jqk,j , (29)

where η ≥ 0 and δk,j ≥ 0 are the Lagrangian multipliers
associated with the minimum SE constraint and the positive
eigenvalues constraints, respectively. According to the KKT
conditions of (27), we have

INr×Nr − η
∂f(Q1, · · · ,QK)

∂Qk

−
M∑
j=1

δk,j
∂qk,j
∂Qk

= 0, (30)

η(λSE − f [Q1, · · · ,QK ]) = 0, (31)
δk,jqk,j = 0. (32)

Note that it is not necessary to compute the actual value of
δk,j and ∂qk,j

∂Qk
, because if δk,j 6= 0, then qk,j = 0. Thus, the

semi-definite constraint results in qk,j = [qk,j ]
+. Without loss

of generality, we can assume δk,j = 0.
The dual objective function of (25) is

g(η) = min
Qk�0

L(Q1, · · · QK , η), (33)

and the dual problem is given by

max
η

g(η) s.t. η ≥ 0. (34)

In this work, we use an iterative method to obtain the
optimum Qk for the dual MAC problem. Qk is updated using
the gradient of (29) with respect to Qk as follows

∇Qk
L := INr×Nr

−η
∂f [Q1(n), · · · ,Qk−1(n),Qk(n− 1), · · · ,QK(n− 1)]

∂Qk(n− 1)
(35)

Qk(n) = [Qk(n− 1)− t∇Qk
L]+, (36)

where t is the step size, and the notation [A]+ is defined as
[A]+ :=

∑
i[qi]

+ viv
H
i , qi and vi are the ith eigenvalue and

the corresponding eigenvector of A respectively. The gradient
in (35) can be readily computed as

∂f(Q1, · · · ,QK)

∂Qk

= Hk(INt×Nt +
1

σ2

K∑
k=1

HH
k QkHk)−1HH

k .

(37)
Next, we need to determine the optimal value of η. Since

the Lagrangian function g(η) is convex over η, the optimal
η can be obtained via a one-dimensional search routine.
However, because g(η) is not necessarily differentiable,
the gradient algorithm cannot be applied. Alternatively,
the subgradient method can be used to find the optimal
solution. In each iterative step, η is updated according to the
subgradient direction.
Lemma I. The subgradient of g(η) is λSE −
log |INt×Nt

+ 1
σ2

∑K
k=1 HH

k QkHk|, where η > 0 and
Qk, k = 1, 2, · · · ,K, are the corresponding optimal
covariance matrices for a fixed η in (33).

Proof: see Appendix C.
Upon convergence of the transmit covariance matrix

Qk, we compare the current SE in dual MAC with λSE .
Lemma I indicates that the value of η should increase if
λSE > log |INt×Nt

+ 1
σ2

∑K
k=1 HH

k QkHk|, and decrease
otherwise. This process will continue until g(η) converges.
We are now ready to present the following algorithm, namely
the bisection based resource allocation algorithm, in order to
solve the dual MAC optimization problem in (25)-(26). The
algorithm is detailed in Table I.

A. A Complete Solution to the EE-SE trade-off Optimization
Problem with fixed admitted users and active transmit anten-
nas

We are now ready to present a complete algorithm to solve
the EE-SE optimization problem in (15)-(17). We initialize
SE as λSE(0), and find the maximum EE, λ∗EE(λSE), using
the proposed bisection based resource allocation algorithm.
We then update λSE based on Theorem III and utilize the



1) Initialize ηmin and ηmax;
2) REPEAT
3) η = (ηmin + ηmax)/2 ;
4) REPEAT, Initialize Q1(0), · · · ,QK(0), n = 1;
5) FOR k = 1, · · · ,K
6) Qk(n) = [Qk(n− 1)− t∇Qk

L]+,
7) END FOR;
8) n = n+ 1;
9) UNTIL QK for k = 1, · · · ,K converge, i.e.,

||∇Qk
L||2 ≤ ε for a small ε.

10) if λSE > log |INt×Nt
+ 1

σ2

∑K
k=1 HH

k QkHk|,
ηmin = η, elseif λSE < log |INt×Nt

+
1
σ2

∑K
k=1 HH

k QkHk|, ηmax = η;
11)UNTIL |ηmin − ηmax| ≤ ε.

TABLE I
BISECTION BASED RESOURCE ALLOCATION ALGORITHM

following searching scheme

λSE(n) =


λSE(n−1)

β
dλ∗EE(λSE)

dλSE

∣∣∣∣
λSE(n−1)

< 0

βλSE(n− 1) otherwise
.

(38)
where β > 1 is the searching step. Moreover, β needs to be
reduced when the gradient dλ∗EE(λSE)

dλSE
changes sign as in

β(n) =
β(n− 1)

2
, (39)

and (38) is repeated until convergence, i.e., |λSE(n + 1) −
λSE(n)| ≤ ρ or end with either λSE(min) or λSE(max),
where λSE(max) is the maximum SE under maximum power
constraint. Hence, we can obtain λSE(max) by solving the
following problem

max
Qk�0

CMAC(HH
1 , · · · ,HH

K ,Q1, · · · ,QK)

W
(40)

s.t.
K∑
k=1

Tr(Qk) ≤ Pmax. (41)

Since both the objective function and constraint are convex,
the problem above is convex and can be solved using a method
similar to that of the proposed bisection based resource allo-
cation algorithm. Correspondingly, the Lagrangian function is
written as

L̄(Q1, · · · ,QK , η̄, δ̄k,j) := f(Q1, · · · ,QK)

−η̄(

K∑
k=1

Tr(Qk)− Pmax) +

K∑
k=1

M∑
j=1

δ̄k,jqk,j , (42)

where η̄ ≥ 0 and δ̄k,j ≥ 0 are the Lagrangian multipliers
associated with power constraint and the positive eigenvalues
constraints, respectively. Thus, the dual objective function of
(40) is

ḡ(η̄) = max
Qk�0

L̄(Q1, · · · QK , η̄), (43)

and the dual problem is given by

min ḡ(η̄) s.t. η̄ ≥ 0. (44)

1) Initialize λSE(0) ∈ [λSE(min), λSE(max)], n = 1;
2) REPEAT
3) Find the maximum EE λ∗EE(λSE) using bisection

based resource allocation algorithm in Table I;
4) Update λSE(n) using (38);

n = n+ 1;
5) UNTIL |λSE(n+ 1)− λSE(n)| ≤ ρ;
6) Map the MAC covariance matrix to BC covariance

matrix using the approach in [32].

TABLE II
THE COMPLETE SOLUTION TO THE EE-SE OPTIMIZATION PROBLEM

Next, Qk is updated using the gradient of (42) with respect to
Qk as follows

∇Qk
L̄ := −η̄INr×Nr

+

∂f [Q1(n), · · · ,Qk−1(n),Qk(n− 1), · · · ,QK(n− 1)]

∂Qk(n− 1)
(45)

Qk(n) = [Qk(n− 1) + t∇Qk
L]+, (46)

where the gradient in (45) is (37). We then use the similar
subgradient method we propose in Lemma I to determine
the optimal value of η̄. Hence, the upper bound λSE(max) is
found. Note that the EE-SE optimization problem in (15)-
(17) is infeasible if λSE(min) > λSE(max). Finally, we map
the optimal MAC covariance matrix to BC covariance matrix
using the approach in [32]. The complete solution to the EE-
SE optimization problem is summarized in Table II.

B. Data rate balancing

Suppose the achievable rate region for the problem in (40)-
(41) is r ∈ C(H, Pmax). The technique investigated so far
aims to maximize the sum rate of MIMO-BC (or minimize
the total transmit power of MIMO-BC). To ensure fairness
among users, a better criterion is to maximize the data rate
while balancing the rate achieved for each user as [41]

max
r,ν

ν s.t. r = νρ, r ∈ C(H, Pmax). (47)

Here, maximization is performed over the choice of the
scalar ν and the rate vector r = [R1 · · ·RK ]T , which is
constrained to belong to the capacity region denoted by
C(H, Pmax) and to lie on the straight line defined by ρ and
the origin. For example if ρ = 1K , all users attain the same
data rate. For other values of ρ, the data rate is maximized
while dividing the total rate to users according to the ratio
defined by the vector ρ. This dual problem was shown as a
weighted sum rate optimization of the following form [41]

min
µ

max
r

K∑
k=1

µk
Rk
ρk

s.t.

K∑
k=1

µk = 1 (48)

where µk are the Lagrangian coefficients for the kth con-
straints in (47), and ρk is the kth element of ρ. Hence, for an
initial setting of µk, max

∑K
k=1(µk

ρk
)Rk can be solved using

the method described earlier, and µk can be updated using a
subgradient method as in [41], i.e. µ(d)

k = µ
(d−1)
k − t(Rk −



RK), where t is a small positive step size. With the updated
µ

(d)
k , the weighted sum rate problem is solved again and
µ

(d+1)
k is computed. This is repeated until convergence. The

resulting algorithm will maximize the data rate for MIMO-BC
while ensuring data rate balancing across users.

VI. USER AND ANTENNA SELECTION STRATEGY

In this section, we further study the user and antenna
selection approach to explore the optimal EE-SE trade-off.
With DPC, admitting all users is always optimal in terms of
SE maximization, but not for EE optimization. This is because
although admitting more users will achieve a higher sum-
rate, it comes at a cost of higher signal processing power
consumption. On the other hand, more active transmit antennas
also achieve a higher sum-rate but at the cost of higher
circuit power consumption. Therefore, there exists a trade-off
between the power consumption cost and the sum-rate gain.
As a result, user and antenna selection is necessary.

The optimal user and antenna selection approach is by
exhaustive search. Based on the decoupled single-carrier prob-
lem, we need to perform the two-layer resource allocation
algorithm proposed in Section V, and then chooses the optimal
admitted user set and transmit antenna set after comparing the
EE as follows

{Kopt,N opt} = arg max
K⊆{1,··· ,Ktot},N⊆{1,··· ,Ntot}

λEE(K,N ).

(49)
Therefore, the computational complexity is extremely high
for the optimal solution, especially when there exists large
number of users or antennas at the BS. In order to reduce the
computational complexity, we investigate the property of these
two trade-offs and propose a suboptimal low complexity user
and antenna selection strategy. The main idea is to decouple
the user and antenna selection into a two-layer selection
approach.

Let us first investigate the transmit antenna selection strat-
egy in MIMO-OFDMA, which cannot be conducted in a
per-subcarrier manner. It is because different antennas would
be selected for different subcarriers, resulting in all antennas
being activated. Moreover, when a set of antennas is selected,
it should be used for all the subcarriers as it will achieve a
higher rate at no additional circuit power consumption. Hence,
transmit antenna selection will have to be performed for all
subcarriers together. User selection can then be conducted for
each subcarrier with the selected antenna set.

Although antenna selection should not be done in a per
subcarrier manner, the selection criterion obtained from the
single-carrier case can be generalized for the multi-carrier
scenario. Considering the full set of users and a given number
of active transmit antenna Nt, we can approximate the EE
as (50) in the next page, and hence (50) is equivalent to
optimizing the following

max
Nt=|N |

|
Ktot∑
k=1

HH
k,NHk,N |. (51)

However, calculating the matrix determinant requires a
large number of computation, especially when large number

of antennas is available. Therefore, we further reduce the
complexity using the Frobenius norm of the channel instead of
the determinant. Although the channel Frobenius norm cannot
characterize the capacity accurately, it is related to the capacity
as it indicates the overall energy of the channel [42]. Thus, the
selection criterion for the multi-carrier case can be generalized
to

sort1≤n≤Ntot ||hn||2F (52)

where hn is the nth column of the matrix H̃ which represents
the channel quality of the nth transmit antenna at BS, and
H̃ is defined as H̃ = [H1H

K,N H2H
K,N · · · HMH

K,N ]H , Hm
K,N is

the channel matrix on the mth subcarrier with all the users
are admitted |K| = Ktot. After sorting the antennas using
Frobenius norm, the active transmit antenna set is selected
from the first Nt antennas (first Nt columns). Therefore, we
choose the transmit antenna set based on the average value
through all the subcarriers in the system.

With the transmit antenna set N selected, the users can now
be chosen for each subcarrier. For a given number of admitted
users K, we can have the approximation for EE as (53) in the
next page. Hence (53) is equivalent to optimizing the following

max
K=|K|

|
K∑
k=1

HH
k,NHk,N |. (54)

Again, we can sort the user using the Frobenius norm approach
similar to the transmit antenna selection scheme

sort1≤k≤Ktot
||Hk,N ||2F (55)

and the admitted users are selected from the first K users of the
sorted list. We then only need to perform the proposed resource
allocation algorithm in Section V to maximize EE, and repeat
the process for all the subcarriers. This process is continued
until all the transmit antenna number has been investigated.
The complete solution to the EE-SE trade-off problem for
MIMO-OFDMA BC system with user and antenna selection
is summarized in Table III.

VII. LOW COMPLEXITY FIXED SELECTION APPROACH

The previous section presents a dynamic solution where
admitted user set is considered for different subcarriers in
order to maximize the system’s EE. However, it requires higher
computational complexity when there exists a large amount of
subcarriers. To reduce the computational complexity, a strategy
that selects a fixed admitted user set for all subcarriers is
proposed. As shown in [41], a MIMO-OFDMA system with
frequency selective channels can be viewed as a MIMO non-
frequency selective system using a block diagonal matrix form
as H̄k,N = diag[H1

k,N H2
k,N · · ·HM

k,N ]. Using this model, the
received signal can be written as

y = HWs + n = Hx + n, (56)

where H = [H̄T
1,N H̄T

2,N · · · H̄
T
K,N ]T , y =

[yT1,N yT2,N · · · yTK,N ]T with yk,N = [y1T
k,N y2T

k,N · · · yMT
k,N ]T ,

W is the overall precoding matrix at the BS which
is defined as W = [W̄T

1,N W̄T
2,N · · · W̄

T
K,N ]T with

W̄k,N = diag[W1
k,N W2

k,N · · ·WM
k,N ], and s is the signal



max
Nt=|N |

max
Qm

k,N�0

W log |INt×Nt + 1
σ2

∑Ktot

k=1 HH
k,NQm

k,NHk,N |
ζPT + PantNt +WcPsp1N3

rK
3
tot +WcPsp2 + γCBC + Ps

≥ max
Nt=|N |

max
P

W log |INt×Nt + P
KtotNtσ2

∑Ktot

k=1 HH
k,NHk,N |

ζPT + PantNt +WcPsp1N3
rK

3
tot +WcPsp2 + γCBC + Ps

(uniform power allocation)

≥ max
Nt=|N |

max
P

W log | P
KtotNtσ2

∑Ktot

k=1 HH
k,NHk,N |

ζPT + PantNt +WcPsp1N3
rK

3
tot +WcPsp2 + γCBC + Ps

(high SNR regime) (50)

max
K=|K|

max
Qm

k,N�0

W log |INt×Nt
+ 1

σ2

∑K
k=1 HH

k,NQm
k,NHk,N |

ζPT + PantNt +WcPsp1N3
rK

3 +WcPsp2 + γCBC + Ps

≥ max
K=|K|

max
P

W log |INt×Nt
+ P

KNtσ2

∑K
k=1 HH

k,NHk,N |
ζPT + PantNt +WcPsp1N3

rK
3 +WcPsp2 + γCBC + Ps

(uniform power allocation)

≥ max
K=|K|

max
P

W log | P
KNtσ2

∑K
k=1 HH

k,NHk,N |
ζPT + PantNt +WcPsp1N3

rK
3 +WcPsp2 + γCBC + Ps

(high SNR regime). (53)

1) Initialization: sort the antennas using (52)
based on the case that all users in the network
are admitted |K| = Ktot;

2) For Nt = 1 : Ntot
3) Find the best Nt antennas based on

Frobenius norm method;
4) For subcarrier m = 1 : M
5) For K = 1 : Ktot

6) Find the best K users based on Frobenius
norm method (55);

7) Calculate the optimal EE using the proposed
resource allocation scheme in Section V,
denoted as λoptEE(K,Nt,m);

8) End For
9) Compare all the EE in the buffer and select the set

of users on subcarrier m that maximizes the EE.
10) End For
11) End For
12) Compare all the EE in the buffer and select the set of

transmit antenna that maximizes the EE.

TABLE III
THE COMPLETE SOLUTION TO THE EE-SE TRADE-OFF PROBLEM WITH

USER AND ANTENNA SELECTION

corresponding to the precoding matrix W defined as
s = [sT1,N sT2,N · · · sTK,N ]T with sk,N = [s1T

k,N s2T
k,N · · · sMT

k,N ]T .
The precoded transmit signal is x = [xT1,N xT2,N · · · xTK,N ]T

with xk,N = [x1T
k,N x2T

k,N · · · xMT
k,N ]T , and the noise is

n = [nT1 nT2 · · · nTK ]T with nk = [n1T
k n2T

k · · · nMT
k ]T .

By employing DPC with MIMO-OFDMA at the
transmitter with antenna set N , it was shown in [41]
that the optimal covariance matrices for the sum rate
maximization problem have a block diagonal structure
matching the structure of their respective channels H̄k,N

as Q̄b
k,N = E(xk,N xHk,N ) = diag[Q1,b

k · · ·Q
M,b
k ], where

Q̄b
k,N � 0. Without loss of generality, an encoding order

(1, · · · ,K) for the user set K, the data rate Rbk for the kth

user can be written as [32]

Rbk = W log
|INr×Nr

+ 1
σ2 H̄k,N (

∑K
i=k Q̄b

i,N )H̄H
k,N |

|INr×Nr + 1
σ2 H̄k,N (

∑K
i=k+1 Q̄b

i,N )H̄H
k,N |

.

(57)
Moreover, the signal processing power consumption at the

BS is written as

Psp = WPsp1[dim(W)]β+1 +WPsp2

= WPsp1N
3
rM

3K3 +WPsp2. (58)

Hence, with the selected users (K) and antennas (N ), the
optimization problem can be formulated as

max
K,N ,{Q̄b

k,N�0}

CBC(H̄k,N , Q̄
b
k,N )

P
(59)

s.t.
K∑
k=1

Tr(Q̄b
k,N ) ≤ Pmax, (60)

CBC(H̄k,N , Q̄
b
k,N )

W
≥ λSE(min). (61)

where P = ζPT +PantMNt +WPsp1N
3
rM

3K3 +WPsp2 +
γCBC +Ps. This optimization problem has the same structure
as the optimization problem in (9)-(11), and hence the resource
allocation algorithm proposed in Section V and transmit
antenna selection approach in Section VI can be applied here.
However, since we employ a fixed user selection strategy
through all subcarriers, users selection criterion in (55) should
be modified as follows

sort1≤k≤Ktot
||H̄k,N ||2F (62)

As we only need to perform the proposed resource allocation
algorithm in Section V once (for all the subcarriers), the
computational complexity for the fixed user selection scheme
is much lower compared to the proposed dynamic strategy.

In Table IV, the computational complexities of the afore-



mentioned decoupled algorithm and fixed selection approach
are listed for comparison. The complexity of DPC are based
on QR decomposition in [36]. We calculate the computational
complexity based on the number of floating points [42]. As
can be seen from Table IV, the proposed fixed selection
approach has a lower computational complexity compared to
the proposed decoupled approach.

Algorithm Complexity

Decoupled algorithm O( 1
β2

1
ρ2M

2K3
totN

4
totNr)

Fixed selection approach O( 1
β2

1
ρ2 2MK3

totN
4
totNr)

TABLE IV
COMPLEXITY COMPARISON FOR THE PROPOSED ALGORITHMS

VIII. SIMULATION RESULTS

Maximum power, Pmax 46 dBm

Dynamic power consump-
tion per unit data rate, γ

1 W/Mbps

Drain efficiency of power
amplifier, ζ

38%

Circuit power per RF
chains, Pant

7.5 W

Power consumed by com-
puting the precoding ma-
trix, Psp1, Psp2

0.94 µW/Hz, 0.54 µW/Hz

Static circuit power, Ps 20 W

TABLE V
LIST OF SIMULATION PARAMETERS

In this section, we present simulation results to verify
the theoretical findings and analyze the effectiveness of the
proposed approaches. In our simulation, the total number
of subcarriers is M = 1024 while the bandwidth for each
subcarrier Wc is 15 KHz, the noise power is -174 dBm/Hz, the
pathloss is 128.1+37.6 log10 d with distance d (in kilometers)
[43], and the radius of the cell is set to 500 m. The power
related parameters in the simulation are similar to those in
[34] and are listed in Table V. These system parameters are
merely chosen to demonstrate the EE-SE relationship as an
example and can easily be modified to any other values to
assess different scenarios.

In the first simulation, we evaluate the relationship between
EE and SE of MIMO-BC (per subcarrier). We fix the number
of admitted users to K = 3, and the number of antennas
at BS and each user to Nt = 4 and Nr = 2 respectively.
To investigate the EE-SE relationship, no maximum transmit
power constraint or specific minimum SE requirement is
imposed to investigate the performance limit. From Fig. 1, the
EE-SE relationship is quasiconcave; this quasiconcavity is the
foundation of the proposed two layer approach. It also infers
that the proposed bisection based resource allocation algorithm
approach can serve as an optimal inner layer algorithm that
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Fig. 1. EE-SE relationship (λ∗EE -versus-λSE ) with fixed admitted users
and active transmit antennas, where K = 3, Nt = 4 and Nr = 2.
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Fig. 2. Comparison of the achievable EE obtained by the proposed two-layer
scheme for different minimum SE requirements (λoptEE -versus-λSE(min)),
where K = 3, Nt = 4 and Nr = 2.

leads to the optimal EE-SE performance. We then evaluate
the EE-SE relation with different minimum SE requirement
and present the optimal and average EE in Fig. 2. It can
be observed from Fig. 2 that the optimal EE is the same up
to a certain minimum SE requirement, but drops afterwards.
This can be explained using the quasiconcavity of EE-SE
relationship from Fig. 1. When the minimum SE requirement
is low, the required transmit power is also low. Therefore, the
most energy efficient design is to operate at a higher transmit
power in order to achieve the optimal EE. This is why the
optimal EE is constant for low minimum SE requirements.
However when the minimum SE requirement is high, the
optimal operation is to simply fulfil that SE requirement as
in this case the higher the SE, the lower the EE. Finally, the
performance of the proposed decoupled approach is compared
to the optimal EE in Fig. 3. It can be observed that the
proposed decoupled algorithm approaches the optimal EE
when the number of subcarriers increases. Hence, although the
decoupled approach is suboptimal, it approaches the optimal
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Fig. 3. The performance of the proposed decoupled algorithm in terms of
EE.
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Fig. 4. Comparison of the achievable EE for different number of users in
the network, where Nt = 8 and Nr = 2.

one with a lower complexity.
In the next simulation, we evaluate the achievable EE

under different number of users in the proposed MIMO-
OFDMA system. To show the impact of user selection, we
fix the number of active antennas at BS and each user to
Nt = 8 and Nr = 2 respectively, and compare the EE
achieved by the proposed norm-based user selection scheme
with the optimal full-search-based approach and the scheme
without user selection. As shown in Fig. 4, the EE achieved
by the proposed norm-based user selection and the optimal
full-search-based schemes are both monotonically increasing
as a function of the total number of users Ktot in the system.
The performance gain comes from the user selection diversity
of DPC as the probability of choosing the admitted users with
better channel conditions increases when the total number of
users increases. This is in stark contrast to the case without
user selection strategy, where the EE first increases then
decreases with increasing number of users in the system. The
best EE performance in this simulation scenario is achieved
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Fig. 5. Comparison of the achievable EE for different number of antennas
at the BS, where K = 3 and Nr = 2.

when there exists Ktot = 5 users. Since the spatial dimensions
for DPC is min(Nr×Ktot, Nt) [44], the maximum multiplex-
ing gain under these simulation parameters is eight, which
also indicates the maximum number of users achieving the
maximum spatial dimensions is Ktot = 4. Nonetheless, there
exists multiuser diversity in BC scenario; in other words, the
sum rate capacity will still increase marginally if the number
of admitted users is increased beyond 4. On the other hand,
as shown in (7), the power consumption increases with K3.
Hence when the number of users is further increased, the
increase in power consumption will outgrow the gain in sum-
rate from multiuser diversity. This explains why the optimal
number of user is 5 in this scenario. Also the advantage of
having user selection is clearly demonstrated. It must also
be noted that the proposed norm-based selection suffers only
minor degradation from the high complexity optimal approach.

The achievable EE under different number of transmit
antennas at the BS has also been evaluated. Similarly, to show
the impact of antenna selection in terms of EE, we fix the
number of admitted users in the network to K = 3 and each
employ Nr = 2 receive antennas. Based on these parameter,
we compare the EE achieved by the proposed norm-based
scheme with the optimal full-search-based approach and the
scheme without antenna selection. Fig. 5 shows that the EE
achieved by the proposed norm-based and the optimal full-
search-based schemes are both monotonically increasing as a
function of the total number of antenna Ntot at the BS. In this
case, the EE gain comes from the spatial diversity through
antenna selection. Again, the practicability of the proposed
norm-based approach is demonstrated as its EE performance is
close to the high complexity optimal approach. However, the
scheme without antenna selection has a significantly worse
performance where the EE first increases then decreases
with increasing number of antennas at the BS. The best EE
performance is achieved when there are Ntot = 6 antennas.
This can also be explained using the spatial dimensions of
DPC. Since there are three users with two receive antennas
each, the maximum spatial dimensions is six. Although further
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Fig. 6. Performance evaluation of the achievable EE obtained by the proposed
norm-based user and antenna selection scheme, where Ktot = 8, Ntot = 10
and Nr = 2.

increasing the number of antennas can achieve more spatial
diversity gain, the power consumption is increased more and
hence EE decreases after Ntot = 6.

Finally, we evaluate the performance of the proposed
combined norm-based user and antenna selection algorithm
for the MIMO-OFDMA system on different channel to noise
ratios (CNRs). To show the EE gain of the proposed scheme,
we compare with the scheme in [19] which maximizes the EE
in MIMO-BC scenario. To ensure fair comparison, we set the
same parameters for the scheme in [19]. We also compare with
the scheme without any user and antenna selection. Hence, this
scheme is always employing all transmit antennas and admit-
ting all users in the network, and thus achieves the highest
SE. Moreover, to show the EE degradation of the proposed
combined norm-based user and antenna selection approach,
we compare the result with a full-search-based solution, which
needs to check all the possible combination of admitted users
and active transmit antennas. In other words, this full-search-
based solution is the upper bound of the achievable EE in
the system. As shown in Fig. 6, the EE achieved by both the
proposed dynamic and fixed norm-based selection approach
outperform the EE achieved in [19], and the dynamic approach
is very close to the optimal full-search-based solution, but
with a lower complexity. On the other hand, the EE achieved
by the proposed fixed allocation scheme is lower than the
proposed dynamic allocation approach but with even lower
complexity. Finally, as expected, the scheme without user and
antenna selection has the worst performance in terms of EE
even though it maximizes the SE.

IX. CONCLUSIONS

In this paper, we investigated the fundamental EE-SE rela-
tionship in a MIMO-OFDMA BC scenario. A practical power
model which is related to the number of admitted users as
well as the number of active transmit antennas is considered.
By separating the multi-carrier EE optimization problem to

a set of single carrier EE optimization problems, a two-
layer resource allocation algorithm has been developed based
on the quasiconcavity of EE-SE relationship. Accordingly,
a novel inner-layer algorithm was proposed and solved by
applying the principle of MAC-BC duality. The algorithm in
its dual form is implemented using the sub-gradient method
and bisection searching scheme. To further explore the EE-
SE trade-off, we then study the user and antenna selection
approach where a dynamic user and antenna selection ap-
proach based on Frobenius norm method is developed. To
further reduce the computational complexity, in contrast to
the proposed dynamic solution where the admitted user set
is selected for each subcarrier, a user selection strategy that
is fixed for all subcarriers is developed. Simulation results
show that the EE achieved by both the proposed dynamic and
fixed norm-based selection approach outperform an existing
work [19]. Moreover, the dynamic approach performs very
close to the optimal full-search-based solution at a lower
complexity. With even lower complexity, the EE achieved
by the proposed fixed allocation scheme is lower than the
proposed dynamic allocation approach but better than the
one without selection. The proposed approaches can therefore
improve the EE performance of MIMO-OFDMA BC.

APPENDIX A
PROOF OF THEOREM I

Proof: In order to prove the quasiconcavity of λEE(λSE), we
first introduce the definition of a quasiconcave function. A
function f : Rn − R is called quasiconvex if its domain and
all its sublevel sets

Sθ = {x ∈ domf |f(x) ≤ θ}, θ ∈ R (63)

for θ ∈ R, are convex [40]. A function is quasiconcave if
−f is quasiconvex, i.e., every superlevel set {x|f(x) ≥ θ} is
convex. Hence, we denote the superlevel sets of λ∗EE(λSE) as

Sβ = {λSE ≥ λSE(min)|λ∗EE(λSE) ≥ β}. (64)

According to [40], λ∗EE(λSE) is strictly quasiconcave in λSE
if Sβ is strictly convex for any real number β. When β < 0,
no points exist on the counter λ∗EE(λSE) = θ. When β ≥
0, we rewrite λEE as λEE = WλSE

ζPT +Ps+γCBC
, and hence Sβ

is equivalent to βζPT (λSE) + βPs + (βγW − 1)λSE ≤ 0.
Recall the optimization problem in (15)-(17), we can rewrite
this optimization problem as follows

λSE(PT ) = min
χ≥0

max
Qm

k

f(Qm
1 , · · · ,Q

m
K)

− χ[

K∑
k=1

Tr(Qm
k )− PT ]

≤ max
Qm

k

f(Qm
1 , · · · ,Q

m
K)− χ̄[

K∑
k=1

Tr(Qm
k )− PT ]

= max
Qm

k

f(Qm
1 , · · · ,Q

m
K)− χ̄[

K∑
k=1

Tr(Qm
k )− P̄T ]

+ χ̄[PT − P̄T ]



= λSE(P̄T ) + χ̄[PT − P̄T ]. (65)

λSE(P̄T )+χ̄[PT−P̄T ] is an upper bound to λSE(PT ) depends
on the subgradient χ̄ at the point P̄T , and hence λSE(PT ) is a
concave function and monotonically increases in PT , we here
denote λSE(PT ) as a concave function h. Let X = h(x) ∈ S,
Y = h(y) ∈ S, thus we have

h(δx+ (1− δ)y) ≥ δh(x) + (1− δ)h(y) (66)

where δ ∈ {0, 1}. h−1 is also strictly increasing on S from
inverse of strictly monotone function. Thus, we have

δh−1(X) + (1− δ)h−1(Y ) = δx+ (1− δ)y

≥ h−1(δX + (1− δ)Y ). (67)

Hence, h−1 is a convex function and PT (λSE) is a convex
function in λSE . Consequently, Sβ is convex and λ∗EE(λSE)
is strictly quasiconcave in λSE . This completes the proof of
Theorem I. �

APPENDIX B

PROOF OF THEOREM II

Proof: In order to prove Theorem II, we analyze the limit of
λ∗EE(λSE) as follows

lim
λSE→∞

λ∗EE(λSE) = lim
λSE→∞

max
Qb

k�0

WλSE
ζP ∗T (λSE) + Ps + γWλSE

= lim
λSE→∞

o(P ∗T (λSE))

P ∗T (λSE)

= 0 (68)

Hence, with strict concavity of λ∗EE(λSE) which is proved
in Appendix B, starting from λSE = λSE(min), λ∗EE(λSE) ei-

ther strictly decreases with λSE if dλ∗EE(λSE)
dλSE

∣∣∣∣
λSE=λSE(min)

≤

0, or first strictly increases and then strictly decreases with

λSE if dλ∗EE(λSE)
dλSE

∣∣∣∣
λSE=λSE(min)

> 0. And the maximum EE

in the SE region [λSE(min), λSE(max)] is straightforward as
indicated in Theorem II. This completes the proof. �

APPENDIX C

PROOF OF LEMMA I

Proof: Let ν be the subgradient of g(η̌). For a given η̌ > 0, the
subgradient ν of g(η̌) satisfies g(η̂) ≤ g(η̌) + ν(η̂− η̌), where
η̂ is any feasible value. Let Q̂k, {k = 1, · · · ,K}, denote the
optimal covariance matrices in (33) for η = η̂, and Q̌k, {k =
1, · · · ,K}, denote the optimal covariance matrices in (33) for
η = η̌. We express g(η̂) as

g(η̂) = min
Qk�0

K∑
k=1

tr(Qk) + η̂[λSE − f(Q1, · · · ,QK)]

=

K∑
k=1

tr(Q̂k) + η̂[λSE − f(Q̂1, · · · , Q̂K)]

≤
K∑
k=1

tr(Q̌k) + η̂[λSE − f(Q̌1, · · · , Q̌K)]

=

K∑
k=1

tr(Q̌k) + η̌[λSE − f(Q̌1, · · · , Q̌K)]

−η̌[λSE − f(Q̌1, · · · , Q̌K)]

+η̂[λSE − f(Q̌1, · · · , Q̌K)]

= g(η̌) + (η̂ − η̌)[λSE − f(Q̌1, · · · , Q̌K)]. (69)

Hence the subgradient of g(η̌) is ν := λSE−f(Q̌1, · · · , Q̌K).
This concludes the proof. �
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