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On the energy release rate and the J -integral for 3-D crack 
configurations 

H. G. deLORENZI 

General Electric Company, Corporate Research and Development, Schenectady, New York 12301, USA 

A B STRACT 
In this paper an analytical expression for the energy release rate has been derived and put in a form suitable 
for a numerical analysis of an arbitrary 3-D crack configuration. The virtual crack extension method can 
most conveniently be used for such a derivation. This method was originally developed from finite element 
considerations and the resulting expressions were, therefore, based on the finite element matrix formulation 

[1-5]. In this paper the derivation of the energy release rate leads to an expression which is independent of 
any specific numerical procedure. The formulation is valid for general fracture behavior including 
nonplanar fracture and shear lips and applies to elastic materials as well as materials following the 
deformation theory of plasticity. The body force effect is also included. For 3-D fracture problems it is of 
advantage to use both an average and a local form of the energy release rate and definitions for both forms 
are suggested. For certain restrictions on the crack geometry it is shown that the energy release rate 
reduces to the 3-D form of the J -integral. 

1. Introduction 

The calculation of the energy release rate by the virtual crack extension method was 
introduced independently by Hellen [l, 3] and Parks [2, 4, 5]. The method was 
developed from a purely numerical standpoint and was based on the calculation of the 
released energy when a crack in a finite element model was extended a small amount 
lia. Using finite element arguments Parks also showed that this formulation of the 
energy release rate was equal to the path independent J -integral when the 2-D 
constant strain triangles were used in the finite element model [2]. Both Parks and 
Hellen formulated the method for 3-D as well as 2-D problems [2, 3] and while [1-3] 
were derived for linear elastic material models, Parks later also extended the method 
to include nonlinear material behavior and large displacement formulations [4, 5]. 

Because of the finite element formulation of the virtual crack extension method, 
the resulting expressions were not analytical expressions for the energy release rate, 
but were based on the finite element matrix formulation. In this paper the virtual 
crack extension method will be used to derive the energy release rate for a general 
3-dimensional crack configuration not from a finite element, but from a continuum 
mechanics viewpoint. The material may be completely anisotropic and it is assumed 
to be hyperelastic so that the derivation will be valid for elastic materials as well as 
materials following the deformation theory of plasticity. The derivation is not restric­
ted to any particular mode of fracture, but applies to a general fracture behavior 
including nonplanar fracture with shear lips. The loading will, however, be restricted 
to be monotonic and for simplicity the crack faces are assumed to be traction free. 

The resulting analytical expression for the energy release rate is completely 
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general and not tied to a particular application like the finite element method. It is, 
however, also extremely efficient in finite element applications and has been used to 
calculate the energy release rate for general 3-D configurations with nonlinear material 
behavior [6]. For planar fracture with the crack extending in the plane of the crack it 
is shown that the expression for the energy release rate will reduce to the 3-
dimensional form of the J -integral.

2. Problem formulation 

The purpose of the present investigation is to calculate the energy released when a 
crack in a body is advanced a small increment Aa. Let, therefore, the deformation 
states before and after the crack increment be represented by two cracked bodies 
which are identical in outer shape, but have cracks of slightly different lengths. Let 
the crack front in each body be described by the 3-dimensional vectors aa(s) and ai(s) 
where the spatial variation of the crack front is described by the parameter s. We shall 
in the following refer to the two bodies as configuration I and configuration II, 
respectively, and shall measure all quantities in configuration I in the Cartesian 
coordinate system Xa and all quantities in configuration II in the Cartesian coordinate
system Y; (Fig. I). The Greek indices will in the following always be used for quantities
defined in the x-system and Latin indices for quantities defined in the y-system. For 
brevity the summation convention for repeated indices will be used throughout, i.e. 

(1) 

The two configurations are also subjected to the surface tractions Fa and ft; and the
body forces fa and f;, respectively.

We shall now assume the existence of a coordinate mapping that maps configura­
tion I into configuration II in such a way that the outer boundaries, the crack faces, 
and the crack front in configuration I are mapped into the outer boundary, the crack 
faces, and the crack front of configuration II. This mapping is assumed to be 
one-to-one, so that a specific point in each configuration corresponds to one and only 

CONFIGURATION I CONFIGURATION II 

Fa 

ta l, 
Y2 

X1 / 
Y1 

X3 Y3 

Figure I. Crack configuration before and after crack extension. 
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one point in the other configuration. It is also assumed that the mapping and the 
unique inverse mapping, which maps configuration II into configuration I, are 
sufficiently differentiable. 

It should be pointed out that these mappings are not physical deformations of 
configuration I into configuration II and vice versa, but purely coordinate mappings. 
The material points located at the crack front in configuration I will, therefore, not be 
located at the crack front in configuration II. The reason for introducing the mappings 
is solely to facilitate the comparison of the singular stress and strain fields in the two 
bodies. 

3. Relationship between the two crack configurations 

Since the crack in configuration II is slightly longer than in configuration I, we can for 
each point on the crack front set 

(2) 

where the crack extension, Aam is "small" compared to other dimensions of the body 
and 8;a is a "shifter" which shifts a vector quantity in the x-system into the y-system. 
It should be noted that it will not be necessary to make any restrictions on a" and Aaa 
nor to make any assumptions about straight crack fronts or fl.at fracture. The 
derivations will, therefore, be equally valid for shear fracture and for cracks growing 
off at an angle to the original crack plane. 

Since the difference in crack length between configuration I and II is small, we 
can make the restriction on the mapping from I to II that the point Xa is mapped into 
the point Yi according to 

(3) 

where Axa is a "small" quantity which is a function of the position xfl. By differentiat­
ing we get 

ayj = I). + 8· a AXa
ax13 •/3 1a ax13 (4) 

and by neglecting all higher order terms we obtain the Jacobian determinant for the 
transformation in Eqn. (3) 

det(J) = det 
(ayi ) = 1 

+ aAxa
ax13 axa (5) 

By multiplying (4) on both sides with axfl/ ayi(l)i• - 8i8(a Ax,/ ax8)) and utilizing the fact that 
(aydaxfl)(axfl/ayi) =/)ii we get the inverse expression

ax. = S
· _ I). a Ax.

ayj I• JB axs (6) 

We will now assume that the displacement in configuration II, Uj, can be related to 
the displacements in configuration I, Um by 

(7) 
where Aua is small compared to Ua. Again it should be noted that (7) does not give a
relationship between displacements of corresponding material points, but of points 
which have the same "relative" position to the crack tip. As stated in the previous 
section, we are dealing with coordinate mappings of points in the x-system into points 
in the y-system. A material point at Xa in configuration I will, therefore, not 
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correspond to the material point at Yi given by (3), but rather to the point given by 

(8) 

A comparison of (3) and (8) reveals that Yi = Yi - 8i"Ax"' and the displacement of the 
material point Yi, which corresponds to the material point x" in configuration I, is, 
therefore, given by 

U;(yj) = Ui(Yi - OjaAXa) = Uj(yj) -
a
a�

i I DjaAx" Yi atv1 (9) 

Using (7) and (6) we obtain by neglecting all higher order terms 

(10) 

where the increment in displacement for the corresponding material point, Au';, is 
given by 

A m A OUa A uU a  = uU" --�-1..1X13 uX13 ( 11) 

This expression is valid everywhere in the interior of configuration I and as the 
boundary is approached, except at the crack tip where au"/ 1Jx13 may become un­
bounded. 

Since we require the outer boundaries (excluding the crack faces) to be identical 
in configurations I and II, we see that Ax13 in (3) is equal to zero on these boundaries. 
The increment in physical displacement, Au';, is, therefore, equal to Au" on the outer 
boundary. 

4. Energy considerations 

Let configuration I be subjected to the body forces fi and the surface tractions g and
configuration II to the corresponding loadings fi and Fi. The crack faces are, however,
assumed to be traction free. The first law of thermodynamics states that the work 
performed on a body is equal to the increase in its internal energy, and if the two 
configurations are free from internal stresses in the undeformed states we get for each 
of them 

Is {f� Fa dua } ds +Iv {f� fa dua } dv = Iv W dv

J5 {f; g du; } ds +Iv {f1 f; dui } dv = Iv W dv 
(12) 

In the above equations W and W are the strain energy densities in configuration I and
II, respectively, u13 and ai the displacements, V and V the volumes of the bodies, and
S and S the surfaces. The outer shapes of I and II are, however, identical except for
the difference in crack length, and since there is no loading on the crack faces we can 
set S = S in the surface integration. Since the crack is a slit with no thickness the two
volumes are also identical, i.e. V = V. Subtracting the second of Eqn. (12) from the
first, now gives 

Is {f� Fa dua } ds - Is {f; F; dui } ds +Iv {f� fa dua } dv -Iv {f; f; du; } dv 

= t W dv - f v W dv (13) 
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It now seems appropriate to assume that neither the surface tractions nor the 
body force on a material point change much from configuration I to configuration II, 
and the forces in configuration II will, therefore, be expressed as 

F;(Yi) = S;"(F.,(xii) + AF.,(x13))

f;(Yi) = 8;.,(f .,(xii)+ Af .,(x13))
(14) 

where Yi = 8i13x13• Hence, both surface forces and body forces in configuration II are
expressed in terms of the forces on the same material points in configuration I plus 
the increments AF., and Af.,. 

If we look at the surface integral in (13), we get by help of (10) and (14) since 
S= S 

Is {f PF" du.,} ds - Is {fi fl du; } dv

= L {L�P F., du., - LBip<up+il.upl 8;.,(F., +AF.,) du; } ds 

= 
- L {f P AF., du.,} ds - Is F.,Au., ds (15) 

In this expression for the difference in the work done by the surface tractions on the 
two configurations, the second term denotes the work done by the surface forces 
when the displacements are increased by the amount Au., and the first term denotes 
the energy released by the surface forces when going from configuration I to 
configuration II. A schematic representation of the two terms is given in Fig. 2. It 
should be noted that Au" in the surface integral is equal to the difference in physical 
displacement between corresponding points on the two surfaces. Since the crack is 
longer in configuration II than in configuration I, the surface forces are in general 
larger in configuration I than in configuration II for equal displacements. AF., is, 
therefore, in general negative and the released energy positive. Hence, (15) states that 
the difference in the work done by the surface forces on the two configurations is 

Cl <( 
g 

u=u(F) 

u 
DISPLACEMENT 

Figure 2. Schematic representation of work done by surface forces due to crack advance. 
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equal to the released energy minus the work done in moving the surface forces the 
distance 6.ua. 

For the body force integrals in (13) we get similarly by help of (10) and (14) 

( 16) 

The second term in (16) is now the work done by the body forces when displaced the 
distance 6.u':: and the first term is the energy released by the body forces when going 
from configuration I to II. The physical displacement increment is given by (11) and is 
composed of the increments 6.ua and the term -(aua/ox13)6.X13. Since aua/0X13 may be 
unbounded at the crack front, the last integral in (16) should be interpreted in the 
sense that a small region of radius p around the crack front is excluded from the 
integration. The value of the integral is then taken as the limit value when p � 0. The 
integral will have a finite value when the term fa(oual ax13 )p2 approaches a finite value
as p � 0, hence the only requirement is that the value of aual ax13 at most is of the order 
1/p2 for p�o. 

The strains in configuration II at a point Yk are given by 

€· = l (au;+ EEL) I (17) 
IJ 2 ayj ay; at Yk 

By help of (7) and (6) we now get by neglecting all higher order terms

au; I = _j_ {5;a(Ua + 6.ua)} � = {jia{jj(3 ( aua + a 6.ua - dUa a !lxs) I (18) 
ayi at h ax13 ayi 0X13 ax13 axs axil at x, 

where Yk and x" are related through (3). The strains at Yk are then 

(19) 

where Eall is the strain tensor at the point x" in configuration I and 

6.e (3 = l (a6.ua + a6.u/l) _ l (aua a6.xs + � a6.xs ) 
a 

2 ax13 axa 2 axs axil axs axa 
(20) 

The shifters 8;a and {)ill again only serve to shift the tensor quantities in the 
parentheses from the x-system to the y-system and do not change their magnitudes. 
Since the strain energy density is solely a function of the magnitude of the strain we 
must have that W(5;a8uiea13)""" W(eall) and the strain energy density in configuration II 
can be written as 

(21) 

We will now restrict the material to be hyperelastic [7] and the stress-strain 
relationship can, therefore, be written 

aw 
<Iall = -­aeall 

(22)

Since the stress tensor 1s symmetric we obtain for the strain energy density in 
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configuration II 

- I (ailua aua ailxs)\ Wlat Yk == Wat x, +<Tall ax;;- dXs dX13 at x, 
(23) 

With this expression for the strains in configuration II we can now evaluate the 
integrals of the strain energy densities on the right-hand side of (13). Since the strain 
energy density at Yk in configuration II is given as a function of the strain energy 
density at the corresponding location, Xr, in configuration I, it simplifies the integration 
if one takes advantage of the mapping in (3) and evaluates both integrals in the 
x-system. This will map the singularities of the two crack fronts into each other and 
facilitate taking the difference between the strain energies. We then obtain with (5) 
and (23) and by neglecting all higher order terms 

Iv W dv - Iv W dv = Iv {W - W det(J)} dv

-J { ( iJ Ua _ WS ) iJ 6.xs _ iJ 6. Ua } d -
y <Tall dXs f3S dX13 <Tall dX13

V (24) 

where 81ls (both indices are Greek letters) denote Kronecker's delta. It should be 
noted that the body force integrals in (16) also could have been evaluated utilizing the 
mapping in (3). The results would have been the same, but the procedure would in that 
instance have led to a more cumbersome derivation. 

Substituting Eqns. (15), (16), and (24) into ( 13) we finally obtain 

G* = L Fa6.Ua ds + fv fa6.u':: dv

+ J {( aua _ WS ) a6.xs _ a6.ua } d <Tall iJ llS iJ <Tall iJ V v � � � 
where the energy released between configuration I and II, G*, is defined as 

(25) 

(26) 

The equilibrium equation for a small material volume, arralll axil+ fa = 0, together with 
the divergence theorem gives for the last term in (25) 

f <Tall 
iJ

iJ
6.u., 

dv = f <T.,llnll6.u., ds + f fa6.U., dvJv Xll Js Jv (27) 

where nil is the normal to the boundary. Again all the above integrals are evaluated by 
excluding a small region with radius p around the crack front and letting p � 0. The 
limiting values of the integral will exist is the stress and strain fieds are singular in 
such a way that rr.,llp and EallP remain bounded as p � 0. Since rr.,llnll is equal to the 
traction on the surface of the body we can finally by help of (27) and (11) write the 
expression for the released energy in the general 3-dimensional formulation 

G* _ J {( au., .. ,.., ) ailxs f au., A } d - v <Tall axa - l'YUllS axil 
- Q axil axil v (28) 

Again it should be noted that this formulation is valid for a general anisotropic 
material and that no assumptions have been made about the direction of the crack 
propagation. It will, therefore, also be valid for shear lips and cracks growing off at an 
angle to the original crack plane. 
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5. Mappings and definition of the energy release rate 

Until now we have not been concerned with the form of the mapping, (3), which maps 
configuration I into configuration II. There are, of course, infinitely many mappings 
which will give the same crack extension Aa. Of specific interest for finite element 
application is, however, a scheme where Ax., is constant over most of the body and 
only varies over a small region. This is the scheme that has been used by Hellen [ 1, 3] 
and Parks [2, 4, 5] and it will briefly be described here. For simplicity we will only deal
with a 2-D geometry, but the method is easily extended to 3-D configurations as well.
Consider the crack geometry shown in Fig. 3a. To map this configuration into a 
configuration which has a crack length a + Aa, the body is divided into the three 
regions I, II, and III. In a finite element model region II would typically be one layer 
of elements. Let now Ax., = 0 in region I, Ax" = Aa., in region III, and let Ax., vary 
from 0 to Aa" in region II. In the absence of body forces, the calculation of the 
released energy will only require the volume integration in (28) to be performed over
one layer of elements (region II). As a special case region III can be shrunk into 
one point - the crack tip - with the resulting division shown in Fig. 3b. In this case the 
volume integration has to be performed over a small volume around the crack tip, 
only. In the presence of body forces the body force term in (28) had to be integrated
both over region II and III for the mapping indicated in Fig. 3a, but only over the 
region II for the mapping shown in Fig. 3b. 

In the general 3-dimensional case certain assumptions have to be made about the 
magnitude of Aa along the crack front when calculating the released energy. In a test 
specimen a crack will grow all along the crack front and the energy release rate 
derived from the test will, therefore, represent some kind of average value. It seems 
appropriate to define the average value of the energy release rate by calculating the 
total energy released by a unit crack extension all along the crack front and divide it 
by the total length of the crack front. Referring to Fig. 4a the average energy release 
rate can then be defined as 

G* G* Gav= Aa ·I =A 

c 

a 

Figure 3. Typical modeling of crack advance. 

(29) 

b 
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VIRTUAL CRACK EXTENSION 

"
)<A 

CRACK FRONT CRACK FRONT 

a b 
Figure 4. Virtual crack extensions for definition of average and local energy release rate. 

where G* is the total energy released by the uniform crack extension Ila and A is the
area covered by the virtual crack extension. 

To define the local energy release rate, let us consider a crack extension which 
advances the crack locally at a given point on the crack front as sketched in Fig. 4b. If 
A is the area of the virtual crack extension we will define the effective crack width
as beff =A/Ila and the local energy release rate can then be defined as

G* G*Gtocal = Ila . beff =A 
where G* is the total energy released by the localized crack extension.

(30) 

In a typical finite element application the average energy release rate can then be 
found by advancing all node points on the crack front a distance Ila and dividing the 
total released energy by the area of the virtual crack extension. By advancing one 
node at a time and calculating the area of the virtual crack extension from the finite 
element interpolation functions, the local energy release rate can be calculated 
according to (30). 

6. The energy release rate and the J -integral 

If we adopt for a planar crack in 3-D space the mapping indicated by Fig. 3b and let
ax = Ila in region II, the crack will continue to propagate in the original crack plane.
If we denote the volumes of the two regions by V1 and Vn we get, since a ax/ax= 0 in
Vn, that the released energy is

(31) 
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Using the divergence theorem (31) can also be written 

G* = { T/13 ( O"a13 �Ua - W<'i13s ) dXs ds J s1 . X13 

f { dO"af3 dUa + o2Ua aw f OUa } A d f f dUa A d - - 0"13 -- --+ - 1.1X v- -1.1X V v1 dX13 oXs a axsaX13 oXll a axs s 
v11 

a axil l3 (32) 

where S1 is the surface of region I including the surface separating region I and II. In 
this expression the volume integral over region I is, however, identical to zero 
because of the equilibrium equation, (aO"alll axil)+ !a = 0, together with (22). Since na is
the normal to the surface and dxa, except on the boundary to region II, necessarily 
must be parallel to the surface it is seen that the last term, Wnlliixll, in the surface 
integral is zero everywhere on the outer boundary. Now let the surface traction be 
defined by ta = O"alln13 and let us assume that on the surface of region I, except on the 
boundary to region II, either ta = 0, i.e., there is no loading on this part of the surface, 
or that dxs = 0. This last condition is always fulfilled except where a crack intersects a 
free surface in which case the mapping schematically shown in Fig. 3b also will affect 
the outer surface. If one of these two conditions hold on the outer surface of region I 
the released energy can be written as 

(33) 

where C is the surface separating region I and II. It should, however, be noted that
(33) also is valid if certain symmetry conditions are fulfilled as, for example, under 
plane strain conditions. If the geometry of a plane strain problem is defined in the 
x, - x2 plane we will have .:ix3 = t, = t2 = 0 on symmetry plane, but since au3/ax1 = 
au3/ ax2 = 0 under plane strain conditions the outer surface integral will also vanish when 
applied to a slice of a body. 

If iia8 represents a unit crack extension and G* is evaluated per unit length of the
crack front, (33) can be considered the general 3-dimensional form of the J -integral. 
Since .:ixs = iia8 is constant in region II and, therefore, also on its boundary, the 
quantity can also be written as 

G* = lsdas

where 

(34) 

(35) 

In the absence of body forces the expression in (35) was derived for 2-D applications 
by Eshelby [8, 12) and Rice [9] and for 3-D applications by Knowles and Sternberg 
[ 10). The body force term of (35) was included by Sakata et al. [ 11) for the 2-D 
formulation. It is, however, seen that (35) by itself is only valid for the specialized 
case where the crack is lined up with a coordinate axis and if the crack continues to 
extend in the crack plane. 

If a numerical analysis is carried out by means of the finite element method, the 
volume integral formulation for calculating the released energy, (28), is much prefer­
red over the surface integral formulation Eqns. (34) and (35). The former is a natural 
extension of the volume integrals already carried out in a finite element analysis while 
the latter method gives rise to additional difficulties in defining the surface over which 
to integrate and in performing the actual surface integration. This is especially true 
when higher order finite elements are used. 
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7. Summary 

An analytical expression for the energy released by an arbitrary crack propagation in 
a general 3-D crack configuration has been derived from a continuum mechanics 
viewpoint. Previous expressions for the energy release rate by the virtual crack 
extension method were based on numerical considerations [1-5] and were, therefore, 
only valid for that specific numerical method. The expression presented in this 
paper has, however, general validity. When working in 3-D fracture mechanics it 
seems appropriate to give both an average and local definition of the energy release 
rate. These definitions are suggested in the paper. It is also shown that the general 3-D 
expression for the energy release rate under certain simplifying assumptions of the 
fracture behavior reduces to the 3-D form of the J -integral. 

The present expression for the energy release rate can be used effectively in finite 
element applications since it can take full advantage of the numerical integration 
schemes already available in a finite element program. An application of the method is 
given in [6] which describes elastic-plastic analyses of a standard and a side-grooved 
compact specimen. 
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