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ON THE ENTIRE FUNCTION SHARING
ONE VALUE CM WITH K-TH DERIVATIVES

ZONG-XUAN CHEN AND KwaNG HO SHON

ABSTRACT. In this paper, we investigate some properties of the
entire function of the hyper order less than % sharing one value CM
with its k-th derivative.

1. Introduction and results

Let f and g be two non-constant meromorphic functions, and let a
be a finite value in the complex plane. We say that f and g share the
value a CM (IM) provided that f —a and g — a have the same zeros
counting multiplicities (ignoring multiplicities). Nevanlinna [17] four
values theorem says that if two non-constant meromorphic functions f
and ¢ share four values CM, then f = ¢ or f is a Mobius transformation
of g. The condition “f and g share four values CM” has been weakened
to ~f and ¢ share two values CM and two values IM” by Gundersen [7,
8], as well as by Mues [15] and Wang [20]. But whether the condition can
be weakened to *f and g share three values IM and another value CM”
or not, is still an open question. In a special case, it was shown [18] that
if an entire function f share two finite values CM with its derivative,
then f = f’. This result has been generalized to sharing values IM by
Gundersen [6] and by Mues-Steinmetz [16] independently.

How is the relation between f with f’ if an entire function f share
one finite value CM with its derivative f’? In [3], R. Briick raised the
following.

CONJECTURE. Let f be a nonconstant entire function such that the
hyper order o9(f) < oc and oo(f) isn’t a positive integer. If f and f’
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share the finite value ¢ CM, then
f'—a
F=a ¢

where ¢ is a nonzero constant. Where the notation o2(f) denotes the

hyper-order (see [22]), of f(z), it is defined by

oa(f) = mloglogT(’r, f).

T—00 logr

In this paper, we shall assume that the reader is familiar with the fun-
damental results and the standard notations of the Nevanlinna’s value
distribution theory of meromorphic functions (e.g. see [10, 11]). In
addition, we will use the notations A\(f) to denote the exponents of con-
vergence of the zero-sequence of the meromorphic function f(z),0(f) to
denote the order growth of f(z).

The conjecture for the case that a = 0 had been proved by Briick in
the following theorem.

THEOREM A [3]. Let f be a non-constant entire function such that
the hyper order o3(f) < oc and o2(f) isn’t a positive integer. If f and f’
share the finite value 0 CM, then f' = cf where c is a nonzero constant.

From differential equations
=1 - fl—=1 e
f—1 f—1
we see that when the hyper order go(f) of f is a positive integer or

infinite, the conjecture of Briick does not hold. For the case that the
zero-points of f are fewness, Briick obtain the following in [3].

THEOREM B. Let f be a nonconstant entire function. If f and f’
share a value 1 CM, and satisfy N(r,0, f') = S(r, f), then
f—l_c
f-1"

where ¢ is a nonzero constant.

For entire functions with finite order, Lianzhong Yang proved follow-
ing two theorems in [21].

THEOREM C. Let f be a nonconstant entire function with finite order.
If f and f' share a finite value a CM, then

f'—a
f—a

=cC
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where ¢ Is a nonzero constant.

THEOREM D. Let f be a nonconstant entire function with finite order.
If f and f®)(k > 1) share a finite value a # 0 CM, then

£ _ g
f—a

where ¢ Is a nonzero constant, k is a positive integer.

=c

In this paper. we investigate the case that an entire function is of
infinite order. and get the following theorems.

THEOREM 1. Let f(z) be a nonconstant entire function with the
hvper order oo(f) isn't a positive integer and o9(f) < oc. If f and
F®N(k is a positive integer) share the value 0 CM, then

B =cf
where ¢ is 4 nonzero constant.

ReEMARK. (i) The proof of Theorem 1 is completely different from
the proof of Theorem A.

(ii) For the problem that f and f*) share the value 0 CM, k = 1 and
k> 1 are very different. If f and f’ share the value 0 CM., then neither
f nor f doesu’t have zero. But. if f and f(k)(,l: > 1) share the value 0
CAL then both of f and f*) may have many zeros.

THEOREM 2. Let f(2) be a nonconstant entire function with oo(f) =
a < % If f and f*) share the finite value a CM, then

f) —q
e

where ¢ is a nonzero constant.

Il

REMARK. For a finite order entire function, the condition “a # 0” in
Theorem D is deleted by Theorems 1 and 2.

By Theorems 1 and 2. we can obtain the following corollaries.

COROLLARY 1. Let f be a nonconstant entire function with the hyper
order aa(f) isn't a positive integer and oo(f) < oc. If f and f®)(k is
a positive integer) share the value 0 CM, and there exists a point z
satisfving f)(z9) = f(z0) # 0. then f = f),

COROLLARY 2. Let f be a nonconstant entire function with the hyper
order ao(f) isn't a positive integer and oo f) < oc. If f and f®)(k is



88 Zong-Xuan Chen and Kwang Ho Shon

a positive integer) share the value 0 CM and a finite value b(# 0) IM ,
then f = f().

COROLLARY 3. Let f be a nonconstant entire function with the hyper
order oo(f) isn’t a positive integer and oo(f) < co. If f and f®)(k is a
positive integer) share the value 0 CM, and there exists a point zy and a
positive integer m satisfying f57™) (z0) = f0™(zg) # 0, then f = f.

COROLLARY 4. Let f be a nonconstant entire function with oo(f) <
%. If f and f*) share a finite value a CM, and there exists a point z

satisfying f*)(z9) = f(z0) # a, then f = f(¥).

COROLLARY 5. Let f be a nonconstant entire function with o2(f) <
%. If f and f*) share a finite value & CM and a finite value b(# a) IM ,

then f = f).

COROLLARY 6. Let f be a nonconstant entire function with os(f) <
%. If f and f®) share a finite value a CM, and there exist a point zg

and a positive integer m satisfying f1™)(z) = f™(25) # 0, then
=1,

2. Lemmas for the proofs of Theorems 1 and 2
The Hadamard theorem of entire functions of infinite order can be
found in [12].

LEMMA 1. Let f be a transcendental entire function of infinite order
and o9(f) = a < oo, then f can be represented in

(2.1) flz) =U(z)e" ),
where U and V are entire functions such that
M) =MU) =0(U), Xa(f) = 2(U) = 02(U),

o2(f) = max{oa(U),09(e")}.

where notation Az( f) denotes the hyper exponent of convergence of zeros
of entire function f by

loglog N (7, &
A2(f) = Tim ___(_L)

7—00 log r
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LeMMA 2 [4]. Let g(z) be an entire function of infinite order with
o2(g) = o, and let v(r) be the central index of g. Then
— logl
(2.2) i ogloev(n) _ v Z o

r—oo  logr

Using the similar proof as in the proof of Remark 1 of [5], we can
obtain the following Lemma 3.

LeniMA 3. Let f(z) be an entire function with o(f) = oo and
oa(f) = a < 4oc, let a set E C (1,00) have a finite logarithmic mea-
sure. Then there exists {zx = rpe%} such that |f(zx)| = M(r, f), Ok €
[0.27), limg .o O = 09 € [0,27), 7 & E, 7 — o0, if a > 0, then for
any given £(0 < ¢ < «). we have as ry, sufficiently large

(2.3) exp{ry ¢} <v(rg) < exp{r,‘j“};
if « = 0 then for any large M (> 0), we have as ry sufficiently large
(2.4) v(ry) > il

LEMMA 4. (see [14]) Let
Q(2) = bpz" +bp12" -+ b
where n Is a positive integer and b, = ope’* o, > 0,6, € [0,27). For
any given £(0 < € < w/(4n)), we introduce 2n open angles
n , yis O , 0

i ——+(29-1)— < ——4+(2j+1)——¢c(j = vy 2n—1).
S = (2= -te <0< n+( J+ )Zn e(j=0,1,...,2n-1)
Then there exists a positive number R = R(e) such that for |z| =r > R,

(2.5) Re{Q(2)} > an(l — €) sin(ne)r™
if z € S; where j Is even; while
(2.6) Re{Q(2)} < —an(1 — ¢) sin(ne)r™

if z € S5 where j is odd.

Now for any given 6 € [0,27), if § # —% +(2j — 1) & (j = 0,
2n — 1), then we take € sufficiently small, there is some S;, j € {0,
2n — 1} such that 6 € S;.

1,...
L...,

LeMMA 5 [1]. Let h(z) be an entire function with o(h) = o < 3, set
A(r) = inf log|h(z)|, B(r) = sup log|h(2)|.

|z|=7 lzl=r
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If o < <1, then

(2.7) log dens{r : A(r) > (cosma)B(r)} > 1~ g’
where the lower logarithmic density logdensH of subset H C (1, +00)
is defined by

log densH =l (| (un(6)/1de)/ los
r—oo J1
and the upper logarithmic density log densH of subset H C (1,4+00) is
defined by

logdensH = lim (/ (xr(t)/t)dt)/logr,
r—0oC 1
where x g (t) is the characteristic function of the set H.

LEMMA 6 [2]. Let h(z) be an entire function with the lower order
p=ph) <t andp<o=o(h). Ifp <6 <min(o, 1) and 6 < a < I,
then

(2.8) log dens{r : A(r) > (cosma)B(r) > r°} > C(0, 6, ),
where C(o, 4, «) Is a positive constant only dependent on 0,9, .

REMARK. By definitions of the logarithmic measure and the logarith-
mic density, we see that if the upper logarithmic density log densH > 0,
then the logarithmic measure ImH = +oc.

LEMMA 7 [9]. Let f be a transcendental meromorphic function, and
let a > 1 be a given constant. Then

(i) there exists a set E C [0,27) with linear measure zero and a
constant B > 0 that depends only on « and j = 1,...,k, such that if
o € [0,27)\E, then there is a constant R = R(ypg) > 1 so that for all z
satisfying arg z = ¢q and |z| = r > R, we have
29) 19, _ p Ten)

f(z) r

forall j =1,....k;

(ii) there exists a set E C (1, oc) with finite logarithmic measure and
a constant B > 0 that depends only on « and j = 1,...,k, such that
for all z satistying |z| = r ¢ [0,1]|J E. we have (2.9) holds.

(log® r)log T{ar. f))J

LEMMA 8 [11]. (Hadamard-Borel-Caratheodory) Let w(z) is a non-
constant entire function, A(r,w) = max,<,.{Re(w(z))}, then for 0 <
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r < R. we have

2.10 Mirouw) <
(2.10) (o) <

3. Proof of Theorem 1

Since f and f*) share the value 0 CM. by Lemma 1.we can write

M) _ o)

fle)
where Q(z) is an entire function. First we know f is a transcendental
since f and f%*) share the value 0 CM. We divide this into three cases
(Q is a constant. or polynomial. or transcendental) to prove.

Case (1): @ is a constant. Then Theorem 1 holds.

Case (2): Q is a polynomial with deg@ = n > 1. By Lemma 7, we
see that there exists a set £ C [0.27) with linear measure zero and a
constant B > 0 such that if § € [0.27)\E, then there is a constant
R = R(0) > 1 so that for all z satisfying argz = 6 and |z| =r > R, we
have

(3.1)

()

3.2) e

| < B(T(2r, f))**.

Let
Q(z) = €2 by 12" by >0, 8, € [0,27).

By Lemma 4. for any given €(0 < e < £-). there are 2n opened angles

7 T o T
Siv =242 -)—Fe<bh<— 24+ (2j+1)— —=.
J n +(2) >2n+ < n + 2+ )271, &

We take the ray argz =0y € S;\E.j(€ {0.1,....2n — 1}) is some even,
then

(3.3) Re{Q(z)} > an(1l —g)sin(ne)r" (|z| =)
holds for sufficiently large r. By (3.1)-(3.3), we obtain
(3.4) exp{a, (1 —¢)sin(ne)r™} < B(T(2r, f))?X.

From (3.4). we have

(3.5) o2(f) = n.
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On the other hand, from the Wiman-Valiron theory (see [11, 13, 19]),
there is a set £y C (1,00) having logarithmic measure ImE; < oo, we
choose z satisfying |z| = r ¢ [0,1]U E1 and |f(2)| = M(r, f), then we
have as r sufficiently large

f¥@)
f(z)

where v(r) is the central index of f. For any given e(> 0), as r sufficiently
large, we have

_ (uir)

(3.6) )F(L+o(1)),

+e

(3.7) 9| < e

Since ¢ is arbitrary, by (3.1), (3.6) and (3.7), we have

(3.8) oa(f) < n.
Hence by (3.5) and (3.8) we get
oa(f) =n

which contradict the condition that oo(f) isn’t a positive integer.

Case (3): Q(z) is transcendental. By Lemma 7, we know that there
exists a set Fy C (1, 00) with finite logarithmic measure, and a constant
B > 0, such that for all z satisfying |z| = r & [0, 1] | E2, we have

f®()
f(2)

We can choose z, satisfying |z.| =7 € (1, 00)\E2 and

A(r,Q) = Re(Q(z0)} = max(Re(Q(2))),

(3.9) l | < B(T(2r, f))*.

by Lemma 8, we have

(3.10) M(3,Q) < 4Re{Q(z)} + O(1).

By (3.1), (3.9) and (3.10), we obtain

(3.11) AMGQ) < RAQEY L 1060 < BT (2r, )],

From Q is transcendental, by (3.11), we get o2(f) = oo0. This contradict
the condition oo(f) # oo. Theorem 1 is thus proved.
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4. Proof of Theorem 2

Suppose f and f*) share the finite value a CM. If @ = 0 by Theorem

1. we see Theorem 2 holds. The case that f is of finite order and a # 0
had been proved by Liang Zhong Yang [21]. Now we suppose a # 0 and
o(f) = oc. By Lemma 1 we can write

(k) _
(4.1) 7 -a_ ae

f—a
where Q(z) is an entire function. Set F = g — 1, then F' is an entire
function,

1
(42) o(F) = 0(f) =0, 02(F) = n(f) =a < 5.
and F satisfies the linear differential equation
(4.3) F® _ Q@R =1,

Because of 0o(f) = a < % we know that for Q(z), there are three cases:
(1) Q(z) is a constant; (2) Q(z) is a polynomial with degree deg Q@ > 1;
(3) Q(z) is a transcendental entire function with order

Q) =B8<a< % o2(e?) = 7(Q) = B.

Now we split this into three cases to prove.

Case (1). Q(z) is a constant. Then Theorem 2 holds.

Case (2). Q(z) is a polynomial with deg@ = n > 1. We will get a
contradiction with oo(F) = 02(f) = a < %

From the Wiman-Valiron theory (see [11, 13, 19]), there is a set E3 C
(1, o¢) having logarithmic measure ImF3 < oc, we choose z satisfying
|z| = r & [0,1]U E3 and |F(z)| = M (r, F'), then we have

FR () w(r), o
F0) = ( . )¥(1 +0o(1)),

where v(r) is the central index of F. Substituting (4.4) into (4.3), we
obtain

(4.4)

)y _ ey 1
(4.5) ( . (1 +o0(1)) = %V 4+ Fl2),
Since o(F) = o(f) = o0, |F(2)] = M(r,F) and deg@ = n > 1, for
sufficiently large |z| = r and any given &1(> 0), by (4.5), we have

(4.6) )

+&
)k‘ S e’l‘n 1.
r
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Since ¢, is arbitrary, by (4.6) and Lemma 2, we have o2(F) < n.

By Lemma 3, there is a point range {z,;, = rme®™ } such that |F(zm)]
= M(rm, F),0m € [0,27),limy, o0 O = 0o € [0,27), 7 & E3UJ[0,1], 7
— 00, for any given ¢ satisfying that if o = 0, then

T
0 < 3e < mi ,—h
e < min{e; 4n}

if @ > 0, then

1 e
0 <3 <mi €1, = —Qa, — },
min{a, £, 5~ 471}
we see that if o > 0, then we have
(4.7) exp{r® ¢} < v(rm) < exp{rete};

if a = 0, then for any large M (> 1). we have as ry, sufficiently large
(4.8) v(rm) > rM,
Let
Q(z) = €0z 4 by 12" -+ by, an >0, 0, €[0,27).
By Lemma 4, there are 2n open angles for above &,
S; - —%+(2j—1)—2%+6<9<—%+(2j+1)%—6,
(1=0,1,...,2n - 1).

(4.9)

For the above ), there are three cases: (i) g € S; where j is odd; (ii)
6o € S; where j is even; (iii) fp = _0# +(2j —1)Z; for some j. We again
divide this into three cases.

Case (i): 6y € S; where j is odd. Since S; is an open set and
limyy, o0 O = O, there is a My > 0 such that 6, € S; when m > My,
by Lemma 4, we see that

(4.10), Re{Q(rme™)} < —dr?,
where d = a,(1 — €)sin(ne) > 0. For {2, = rne?m}, by (4.5) and
|F(zm)| = M (rm, F), we have

(4.11) (Amye1 4 o(1)) = 2Urme™ 4 o(1).

m

If o > 0, then by 3¢ < «, (4.7}, (4.10) and (4.11) , we have

(4.12)  exp{kry, °} < (V(T‘m))k(l +0(1)) < r,’% exp{—drn} + o(rfn).
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Henee (4.12) is a contradiction. If a = 0, then by (4.8). (4.10) and
(4.11). we have

V(Tm )

T'm

(1.13) A1) <

m

(L +0(1)) < exp{—drp} +o(1).

(4.13) is also a contradiction.

Case (ii): #y € S; where j is even. Since S; is an open set and
limyy, .~ 0, = 6o, there is Ay > 0 such that 8,, € S; when m > Aly. By
Lemma 4. we have

(4.14) Re{Q(rme® )} > dr™,

where d = a,(1 — 2)sin(ng) > 0. For {2z, = rme}. by (4.7), (4.11)
and (4.14). we have

(4.15)  exp{hkr®T} > (wrm))F(L + o(1)) > vk exp{dr} — o(r*).

m
(4.15) contradicts the condition o + ¢ < %
Case (iii): to = —%;4+(2j— 1)7- for some j € {0,1,...,2n—1}. Since
Re{a, e (ret®)"} = 0. there are two subcases: iii(a) there is some

s(n—12> s> 1) such that Re{bs(re’®)°} =0 (§=n—1,..... s+ 1) and
Re{bo(re®)*} £ 0 iii(b) Re{b,_1(rei®)"=1} = ... = Re{by(re?®)} =
0.

In subcase iii(a). if Re{bs(r¢’®)*} < 0, then when m is sufficiently
large.

(4.16) Re{by(rne®m) 4o b} < —dyrs, (dy > 0).
We use the notations dy . dne1.m, ..., dst1,m to denote the distances
that the points
i (. 10 m 0m - N i0m \5
(e’ (7171(110 )n\ bn—l(rmple )n 1» bs+1(7m()'?0 >s+1

go to the imaginary axis respectively. Since
R(‘{(l “(‘l'()n (7.(,7'9(,)71} — R(f{bn_l (Teie())n—l}
= = Refboa(re™)* 1} = 0

and

lim 6, = G,
m-—-oc

we see that a ray arg z = g is an asymptotic line of {r,,e}, ic., the
imaginary axis is an asymptotic line of

{oane @ (@)} b1 (rme™ ) 1Y, L b (PP )T

respectively. So. for j =n.n —1,...,8s4+ 1, when m — oc, we have

djm — 0.
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Therefore, when m is sufficiently large,

(4.17) —1 < Re{0, € (rppe® )"} = dp < 1,

(4.18)  —1 < Re{bj(rme®™y} =djm <1, j=n—1,...,s+1).

By (4.16), (4.17) and (4.18), we get that when m is sufficiently large,
. d

(4.19) Re{Q(rme’™)} < —?lrfn.

If Re{bs(re®)%} > 0, by the arguing similarly as above, we see that,
when m is sufficiently large,
; d

(4.20) Re{Q(rme®™)} > 3%;; (dy > 0).
By (4.19), (4.20) and the arguing similarly as in the proof of Cases (i)
and (ii), we can get a contradiction.

In subcase iii(b), we see that there is a M;(> 0) such that when m
is sufficiently large,

—M; < Re{Q(rme'™)} < My,

1 cifm
(4.21) 7 < leQ(rm )l < M1
By (4.7) (or (4.8)), (4.11) and (4.21), we have
(4.22)

1 m i0m
- exp{kri) —o(1) < (L1 o(1)) —o(1) < [0 < oM,
Tm m
or
(4.23) rEM=1_5(1) < (f(i”—))k(uou))—o(l) < [eRrme ™| < oMy
™m
But both (4.22) and (4.23) are contradictory.
Case (3): Q(z) is a transcendental entire function with o(Q) = 8 <
@ < 3. By the equation (4.3), we have

F F

As in the proof of Case (2), we choose z satisfying |z| = r € [0, 1] F4,
(E4 C (1,00) having finite logarithmic measure and |F(z)| = M(r, F),
by the Wiman-Valiron Theorem, we get

k
(4.24) Q) — E(_) 1

(4.25) Q) = (@)’f(l +0(1)) 4+ o(1),
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where v(r) is the central index of F'. Since F is of infinite order, we see

that v(r) > |z|* for any large M > 0. So that we can take a principal
branch of Log((@)k(l +0(1)) + 0(1)), and get

v(r
(4.26) Q(2) = log((“ (1 + o(1)) + 1)),

z
Hence we have

(4.27) 1Q(2)] < o8 |14 0(1) +o(1)] |+ 27 < klogv(r) +0(1).

By Lemma 2 and o2(F) = «, we have
loglog v(r) <atl
logr
for sufficiently large r. by (4.27), we get
(4.28) 1Q(2)] < kr*t +0(1).

But by Lemma 5(or 6), we know that there exists a set H C (1, 00) that
have a logarithmic measure ImH = 20, such that for all z satistying
|z2| = r € H, we have

(4.29) 1Q(2)] = M(r, Q)"

where ¢(0 < ¢ < 1) is a positive constant. Now for all z satisfying
|z| =r € H\E4 and |F(z)| = M(r, F), by (4.28) and (4.29), we get

: M(r, Q)
(4.30) — e Sk
Since Q(z) is transcendental, we see that

M(r, Q)°
ratl — 00,

which contradict (4.30). Theorem 2 is thus proved.
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