ON THE ENTIRE FUNCTION SHARING ONE VALUE CM WITH K-TH DERIVATIVES

ZONG-XUAN CHEN AND KWANG HO SHON

ABSTRACT. In this paper, we investigate some properties of the entire function of the hyper order less than $\frac{1}{2}$ sharing one value CM with its k-th derivative.

1. Introduction and results

Let f and g be two non-constant meromorphic functions, and let a be a finite value in the complex plane. We say that f and g share the value a CM (IM) provided that f-a and g-a have the same zeros counting multiplicities (ignoring multiplicities). Nevanlinna [17] four values theorem says that if two non-constant meromorphic functions f and g share four values CM, then $f \equiv g$ or f is a Möbius transformation of g. The condition "f and g share four values CM" has been weakened to "f and g share two values CM and two values IM" by Gundersen [7, 8], as well as by Mues [15] and Wang [20]. But whether the condition can be weakened to "f and g share three values IM and another value CM" or not, is still an open question. In a special case, it was shown [18] that if an entire function f share two finite values CM with its derivative, then $f \equiv f'$. This result has been generalized to sharing values IM by Gundersen [6] and by Mues-Steinmetz [16] independently.

How is the relation between f with f' if an entire function f share one finite value CM with its derivative f'? In [3], R. Brück raised the following.

Conjecture. Let f be a nonconstant entire function such that the hyper order $\sigma_2(f) < \infty$ and $\sigma_2(f)$ isn't a positive integer. If f and f'

Received August 8, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 30D35.

Key words and phrases: share the value, entire function, hyper order.

This work was supported by Korean Research Foundation Grant (KRF-2001-015-DP0015).

share the finite value a CM, then

$$\frac{f'-a}{f-a} = c$$

where c is a nonzero constant. Where the notation $\sigma_2(f)$ denotes the hyper-order (see [22]), of f(z), it is defined by

$$\sigma_2(f) = \overline{\lim_{r \to \infty}} \frac{\log \log T(r, f)}{\log r}.$$

In this paper, we shall assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory of meromorphic functions (e.g. see [10, 11]). In addition, we will use the notations $\lambda(f)$ to denote the exponents of convergence of the zero-sequence of the meromorphic function f(z), $\sigma(f)$ to denote the order growth of f(z).

The conjecture for the case that a=0 had been proved by Brück in the following theorem.

THEOREM A [3]. Let f be a non-constant entire function such that the hyper order $\sigma_2(f) < \infty$ and $\sigma_2(f)$ isn't a positive integer. If f and f' share the finite value 0 CM, then f' = cf where c is a nonzero constant.

From differential equations

$$\frac{f'-1}{f-1} = e^{z^n}, \ \frac{f'-1}{f-1} = e^{e^z},$$

we see that when the hyper order $\sigma_2(f)$ of f is a positive integer or infinite, the conjecture of Brück does not hold. For the case that the zero-points of f' are fewness, Brück obtain the following in [3].

THEOREM B. Let f be a nonconstant entire function. If f and f' share a value 1 CM, and satisfy N(r, 0, f') = S(r, f), then

$$\frac{f'-1}{f-1} = c$$

where c is a nonzero constant.

For entire functions with finite order, Lianzhong Yang proved following two theorems in [21].

Theorem C. Let f be a nonconstant entire function with finite order. If f and f' share a finite value a CM, then

$$\frac{f'-a}{f-a} = c$$

where c is a nonzero constant.

THEOREM D. Let f be a nonconstant entire function with finite order. If f and $f^{(k)}(k \ge 1)$ share a finite value $a \ne 0$ CM, then

$$\frac{f^{(k)} - a}{f - a} = c$$

where c is a nonzero constant, k is a positive integer.

In this paper, we investigate the case that an entire function is of infinite order, and get the following theorems.

THEOREM 1. Let f(z) be a nonconstant entire function with the hyper order $\sigma_2(f)$ isn't a positive integer and $\sigma_2(f) < \infty$. If f and $f^{(k)}(k)$ is a positive integer) share the value 0 CM, then

$$f^{(k)} \equiv cf$$

where c is a nonzero constant.

REMARK. (i) The proof of Theorem 1 is completely different from the proof of Theorem A.

(ii) For the problem that f and $f^{(k)}$ share the value 0 CM, k = 1 and k > 1 are very different. If f and f' share the value 0 CM, then neither f nor f' doesn't have zero. But, if f and $f^{(k)}(k > 1)$ share the value 0 CM, then both of f and $f^{(k)}$ may have many zeros.

THEOREM 2. Let f(z) be a nonconstant entire function with $\sigma_2(f) = \alpha < \frac{1}{2}$. If f and $f^{(k)}$ share the finite value a CM, then

$$\frac{f^{(k)} - a}{f - a} \equiv c$$

where c is a nonzero constant.

REMARK. For a finite order entire function, the condition " $a \neq 0$ " in Theorem D is deleted by Theorems 1 and 2.

By Theorems 1 and 2, we can obtain the following corollaries.

COROLLARY 1. Let f be a nonconstant entire function with the hyper order $\sigma_2(f)$ isn't a positive integer and $\sigma_2(f) < \infty$. If f and $f^{(k)}(k)$ is a positive integer) share the value 0 CM, and there exists a point z_0 satisfying $f^{(k)}(z_0) = f(z_0) \neq 0$, then $f \equiv f^{(k)}$.

COROLLARY 2. Let f be a nonconstant entire function with the hyper order $\sigma_2(f)$ isn't a positive integer and $\sigma_2(f) < \infty$. If f and $f^{(k)}(k)$ is

a positive integer) share the value 0 CM and a finite value $b(\neq 0)$ IM, then $f \equiv f^{(k)}$.

COROLLARY 3. Let f be a nonconstant entire function with the hyper order $\sigma_2(f)$ isn't a positive integer and $\sigma_2(f) < \infty$. If f and $f^{(k)}(k)$ is a positive integer) share the value 0 CM, and there exists a point z_0 and a positive integer m satisfying $f^{(k+m)}(z_0) = f^{(m)}(z_0) \neq 0$, then $f \equiv f^{(k)}$.

COROLLARY 4. Let f be a nonconstant entire function with $\sigma_2(f) < \frac{1}{2}$. If f and $f^{(k)}$ share a finite value a CM, and there exists a point z_0 satisfying $f^{(k)}(z_0) = f(z_0) \neq a$, then $f \equiv f^{(k)}$.

COROLLARY 5. Let f be a nonconstant entire function with $\sigma_2(f) < \frac{1}{2}$. If f and $f^{(k)}$ share a finite value a CM and a finite value $b \neq a$ IM, then $f \equiv f^{(k)}$.

COROLLARY 6. Let f be a nonconstant entire function with $\sigma_2(f) < \frac{1}{2}$. If f and $f^{(k)}$ share a finite value a CM, and there exist a point z_0 and a positive integer m satisfying $f^{(k+m)}(z_0) = f^{(m)}(z_0) \neq 0$, then $f \equiv f^{(k)}$.

2. Lemmas for the proofs of Theorems 1 and 2

The Hadamard theorem of entire functions of infinite order can be found in [12].

LEMMA 1. Let f be a transcendental entire function of infinite order and $\sigma_2(f) = \alpha < \infty$, then f can be represented in

$$(2.1) f(z) = U(z)e^{V(z)},$$

where U and V are entire functions such that

$$\lambda(f) = \lambda(U) = \sigma(U), \ \lambda_2(f) = \lambda_2(U) = \sigma_2(U),$$
$$\sigma_2(f) = \max\{\sigma_2(U), \sigma_2(e^V)\}.$$

where notation $\lambda_2(f)$ denotes the hyper exponent of convergence of zeros of entire function f by

$$\lambda_2(f) = \overline{\lim_{r \to \infty}} \frac{\log \log N(r, \frac{1}{f})}{\log r}.$$

LEMMA 2 [4]. Let g(z) be an entire function of infinite order with $\sigma_2(g) = \sigma$, and let $\nu(r)$ be the central index of g. Then

(2.2)
$$\overline{\lim}_{r \to \infty} \frac{\log \log \nu(r)}{\log r} = \sigma_2(g) = \sigma.$$

Using the similar proof as in the proof of Remark 1 of [5], we can obtain the following Lemma 3.

LEMMA 3. Let f(z) be an entire function with $\sigma(f) = \infty$ and $\sigma_2(f) = \alpha < +\infty$, let a set $E \subset (1, \infty)$ have a finite logarithmic measure. Then there exists $\{z_k = r_k e^{i\theta_k}\}$ such that $|f(z_k)| = M(r_k, f)$, $\theta_k \in [0, 2\pi)$, $\lim_{k \to \infty} \theta_k = \theta_0 \in [0, 2\pi)$, $r_k \notin E$, $r_k \to \infty$, if $\alpha > 0$, then for any given $\varepsilon(0 < \varepsilon < \alpha)$, we have as r_k sufficiently large

(2.3)
$$\exp\{r_k^{\alpha-\varepsilon}\} < \nu(r_k) < \exp\{r_k^{\alpha+\varepsilon}\};$$

if $\alpha = 0$ then for any large M(>0), we have as r_k sufficiently large

$$(2.4) \nu(r_k) > r_k^M.$$

Lemma 4. (see [14]) Let

$$Q(z) = b_n z^n + b_{n-1} z^{n-1} + \dots + b_0$$

where n is a positive integer and $b_n = \alpha_n e^{i\theta_n}$, $\alpha_n > 0$, $\theta_n \in [0, 2\pi)$. For any given $\varepsilon(0 < \varepsilon < \pi/(4n))$, we introduce 2n open angles

$$S_j: -\frac{\theta_n}{n} + (2j-1)\frac{\pi}{2n} + \varepsilon < \theta < -\frac{\theta_n}{n} + (2j+1)\frac{\pi}{2n} - \varepsilon \ (j=0,1,\ldots,2n-1).$$

Then there exists a positive number $R = R(\varepsilon)$ such that for |z| = r > R,

(2.5)
$$Re{Q(z)} > \alpha_n(1-\varepsilon)\sin(n\varepsilon)r^n$$

if $z \in S_j$ where j is even; while

(2.6)
$$Re{Q(z)} < -\alpha_n(1-\varepsilon)\sin(n\varepsilon)r^n$$

if $z \in S_j$ where j is odd.

Now for any given $\theta \in [0, 2\pi)$, if $\theta \neq -\frac{\theta_n}{n} + (2j-1)\frac{\pi}{2n}$ (j = 0, 1, ..., 2n-1), then we take ε sufficiently small, there is some $S_j, j \in \{0, 1, ..., 2n-1\}$ such that $\theta \in S_j$.

LEMMA 5 [1]. Let h(z) be an entire function with $\sigma(h) = \sigma < \frac{1}{2}$, set

$$A(r) = \inf_{|z|=r} \log |h(z)|, \ B(r) = \sup_{|z|=r} \log |h(z)|.$$

If $\sigma < \alpha < 1$, then

(2.7)
$$\underline{\log dens}\{r: A(r) > (\cos \pi \alpha)B(r)\} \ge 1 - \frac{\sigma}{\alpha},$$

where the lower logarithmic density $\underline{\log dens} H$ of subset $H \subset (1, +\infty)$ is defined by

$$\underline{\log dens}H = \underline{\lim_{r \to \infty}} \left(\int_{1}^{r} (\chi_{H}(t)/t) dt \right) / \log r,$$

and the upper logarithmic density $\overline{\log dens}H$ of subset $H\subset (1,+\infty)$ is defined by

$$\overline{\log dens}H = \overline{\lim}_{r \to \infty} \left(\int_{1}^{r} (\chi_{H}(t)/t) dt \right) / \log r,$$

where $\chi_H(t)$ is the characteristic function of the set H.

LEMMA 6 [2]. Let h(z) be an entire function with the lower order $\mu = \mu(h) < \frac{1}{2}$, and $\mu < \sigma = \sigma(h)$. If $\mu \le \delta < \min(\sigma, \frac{1}{2})$ and $\delta < \alpha < \frac{1}{2}$, then

(2.8)
$$\log dens\{r: A(r) > (\cos \pi \alpha)B(r) > r^{\delta}\} \ge C(\sigma, \delta, \alpha),$$

where $C(\sigma, \delta, \alpha)$ is a positive constant only dependent on σ, δ, α .

REMARK. By definitions of the logarithmic measure and the logarithmic density, we see that if the upper logarithmic density $\overline{\log dens}H > 0$, then the logarithmic measure $lmH = +\infty$.

LEMMA 7 [9]. Let f be a transcendental meromorphic function, and let $\alpha > 1$ be a given constant. Then

(i) there exists a set $E \subset [0,2\pi)$ with linear measure zero and a constant B>0 that depends only on α and $j=1,\ldots,k$, such that if $\varphi_0 \in [0,2\pi)\backslash E$, then there is a constant $R=R(\varphi_0)>1$ so that for all z satisfying $\arg z=\varphi_0$ and $|z|=r\geq R$, we have

$$(2.9) \qquad \left| \frac{f^{(j)}(z)}{f(z)} \right| \le B\left(\frac{T(\alpha r, f)}{r} (\log^{\alpha} r) \log T(\alpha r, f)\right)^{j}$$

for all $j = 1, \ldots, k$;

(ii) there exists a set $E \subset (1, \infty)$ with finite logarithmic measure and a constant B > 0 that depends only on α and $j = 1, \ldots, k$, such that for all z satisfying $|z| = r \notin [0, 1] \cup E$, we have (2.9) holds.

LEMMA 8 [11]. (Hadamard-Borel-Caratheodory) Let w(z) is a non-constant entire function, $A(r, w) = \max_{|z| < r} \{Re(w(z))\}$, then for $0 \le r$

r < R, we have

(2.10)
$$M(r,w) \le \frac{4r}{R-r} A(R,w) + \frac{R-3r}{R-r} |w(0)|.$$

3. Proof of Theorem 1

Since f and $f^{(k)}$ share the value 0 CM, by Lemma 1,we can write

(3.1)
$$\frac{f^{(k)}(z)}{f(z)} = e^{Q(z)}$$

where Q(z) is an entire function. First we know f is a transcendental since f and $f^{(k)}$ share the value 0 CM. We divide this into three cases (Q is a constant, or polynomial, or transcendental) to prove.

Case (1): Q is a constant. Then Theorem 1 holds.

Case (2): Q is a polynomial with $\deg Q = n \geq 1$. By Lemma 7, we see that there exists a set $E \subset [0,2\pi)$ with linear measure zero and a constant B>0 such that if $\theta\in [0,2\pi)\backslash E$, then there is a constant $R=R(\theta)>1$ so that for all z satisfying $\arg z=\theta$ and $|z|=r\geq R$, we have

(3.2)
$$|\frac{f^{(k)}(z)}{f(z)}| \le B(T(2r,f))^{2k}.$$

Let

$$Q(z) = \alpha_n e^{i\theta_n} z^n + b_{n-1} z^{n-1} + \dots + b_0, \ \alpha_n > 0, \ \theta_n \in [0, 2\pi).$$

By Lemma 4, for any given $\varepsilon(0 < \varepsilon < \frac{\pi}{4n})$, there are 2n opened angles

$$S_j: -\frac{\theta_n}{n} + (2j-1)\frac{\pi}{2n} + \varepsilon < \theta < -\frac{\theta_n}{n} + (2j+1)\frac{\pi}{2n} - \varepsilon.$$

 $(j=0,1,\ldots,2n-1).$

We take the ray $\arg z = \theta_0 \in S_j \setminus E, j \in \{0, 1, \dots, 2n - 1\}$ is some even, then

(3.3)
$$Re\{Q(z)\} > \alpha_n(1-\varepsilon)\sin(n\varepsilon)r^n (|z|=r)$$

holds for sufficiently large r. By (3.1)-(3.3), we obtain

(3.4)
$$\exp\{\alpha_n(1-\varepsilon)\sin(n\varepsilon)r^n\} \le B(T(2r,f))^{2k}.$$

From (3.4), we have

$$(3.5) \sigma_2(f) \ge n.$$

On the other hand, from the Wiman-Valiron theory (see [11, 13, 19]), there is a set $E_1 \subset (1, \infty)$ having logarithmic measure $lmE_1 < \infty$, we choose z satisfying $|z| = r \notin [0, 1] \bigcup E_1$ and |f(z)| = M(r, f), then we have as r sufficiently large

(3.6)
$$\frac{f^{(k)}(z)}{f(z)} = (\frac{\nu(r)}{z})^k (1 + o(1)),$$

where $\nu(r)$ is the central index of f. For any given $\varepsilon(>0)$, as r sufficiently large, we have

$$(3.7) |e^{Q(z)}| \le e^{r^{n+\varepsilon}}.$$

Since ε is arbitrary, by (3.1), (3.6) and (3.7), we have

$$(3.8) \sigma_2(f) \le n.$$

Hence by (3.5) and (3.8) we get

$$\sigma_2(f) = n$$

which contradict the condition that $\sigma_2(f)$ isn't a positive integer.

Case (3): Q(z) is transcendental. By Lemma 7, we know that there exists a set $E_2 \subset (1, \infty)$ with finite logarithmic measure, and a constant B > 0, such that for all z satisfying $|z| = r \notin [0, 1] \bigcup E_2$, we have

(3.9)
$$|\frac{f^{(k)}(z)}{f(z)}| \le B(T(2r, f))^{2k}.$$

We can choose z_r satisfying $|z_r| = r \in (1, \infty) \backslash E_2$ and

$$A(r,Q) = Re\{Q(z_r)\} = \max_{|z| \le r} \{Re(Q(z))\},$$

by Lemma 8, we have

(3.10)
$$M(\frac{r}{2}, Q) \le 4Re\{Q(z_r)\} + O(1).$$

By (3.1), (3.9) and (3.10), we obtain

(3.11)
$$e^{\frac{1}{4}M(\frac{r}{2},Q)} \le e^{Re\{Q(z_r)\}} = |e^{Q(z_r)}| \le B[T(2r,f)]^{2k}.$$

From Q is transcendental, by (3.11), we get $\sigma_2(f) = \infty$. This contradict the condition $\sigma_2(f) \neq \infty$. Theorem 1 is thus proved.

4. Proof of Theorem 2

Suppose f and $f^{(k)}$ share the finite value a CM. If a=0 by Theorem 1, we see Theorem 2 holds. The case that f is of finite order and $a \neq 0$ had been proved by Liang Zhong Yang [21]. Now we suppose $a \neq 0$ and $\sigma(f) = \infty$. By Lemma 1 we can write

(4.1)
$$\frac{f^{(k)} - a}{f - a} = e^{Q(z)}$$

where Q(z) is an entire function. Set $F = \frac{f}{a} - 1$, then F is an entire function,

(4.2)
$$\sigma(F) = \sigma(f) = \infty, \ \sigma_2(F) = \sigma_2(f) = \alpha < \frac{1}{2},$$

and F satisfies the linear differential equation

(4.3)
$$F^{(k)} - e^{Q(z)}F = 1.$$

Because of $\sigma_2(f) = \alpha < \frac{1}{2}$, we know that for Q(z), there are three cases:

(1) Q(z) is a constant; (2) Q(z) is a polynomial with degree deg $Q \ge 1$;

(3) Q(z) is a transcendental entire function with order

$$\sigma(Q) = \beta \le \alpha < \frac{1}{2}, \ \sigma_2(e^Q) = \sigma(Q) = \beta.$$

Now we split this into three cases to prove.

Case (1). Q(z) is a constant. Then Theorem 2 holds.

Case (2). Q(z) is a polynomial with deg $Q = n \ge 1$. We will get a contradiction with $\sigma_2(F) = \sigma_2(f) = \alpha < \frac{1}{2}$.

From the Wiman-Valiron theory (see [11, 13, 19]), there is a set $E_3 \subset (1, \infty)$ having logarithmic measure $lmE_3 < \infty$, we choose z satisfying $|z| = r \notin [0, 1] \cup E_3$ and |F(z)| = M(r, F), then we have

(4.4)
$$\frac{F^{(k)}(z)}{F(z)} = (\frac{\nu(r)}{z})^k (1 + o(1)),$$

where $\nu(r)$ is the central index of F. Substituting (4.4) into (4.3), we obtain

(4.5)
$$(\frac{\nu(r)}{z})^k (1 + o(1)) = e^{Q(z)} + \frac{1}{F(z)}.$$

Since $\sigma(F) = \sigma(f) = \infty$, |F(z)| = M(r, F) and $\deg Q = n \ge 1$, for sufficiently large |z| = r and any given $\varepsilon_1(>0)$, by (4.5), we have

$$(4.6) \qquad (\frac{\nu(r)}{r})^k \le e^{r^{n+\varepsilon_1}}.$$

Since ε_1 is arbitrary, by (4.6) and Lemma 2, we have $\sigma_2(F) \leq n$.

By Lemma 3, there is a point range $\{z_m = r_m e^{i\theta_m}\}$ such that $|F(z_m)| = M(r_m, F), \theta_m \in [0, 2\pi), \lim_{m \to \infty} \theta_m = \theta_0 \in [0, 2\pi), r_m \notin E_3 \bigcup [0, 1], r_m \to \infty$, for any given ε satisfying that if $\alpha = 0$, then

$$0 < 3\varepsilon < \min\{\varepsilon_1, \frac{\pi}{4n}\};$$

if $\alpha > 0$, then

$$0 < 3\varepsilon < \min\{\alpha, \varepsilon_1, \frac{1}{2} - \alpha, \frac{\pi}{4n}\},$$

we see that if $\alpha > 0$, then we have

(4.7)
$$\exp\{r_m^{\alpha-\varepsilon}\} < \nu(r_m) < \exp\{r_m^{\alpha+\varepsilon}\};$$

if $\alpha = 0$, then for any large M(>1), we have as r_m sufficiently large

$$(4.8) \nu(r_m) > r_m^M.$$

Let

$$Q(z) = \alpha_n e^{i\theta_n} z^n + b_{n-1} z^{n-1} + \dots + b_0, \ \alpha_n > 0, \ \theta_n \in [0, 2\pi).$$

By Lemma 4, there are 2n open angles for above ε ,

(4.9)
$$S_j: -\frac{\theta_n}{n} + (2j-1)\frac{\pi}{2n} + \varepsilon < \theta < -\frac{\theta_n}{n} + (2j+1)\frac{\pi}{2n} - \varepsilon,$$

$$(j = 0, 1, \dots, 2n-1).$$

For the above θ_0 , there are three cases: (i) $\theta_0 \in S_j$ where j is odd; (ii) $\theta_0 \in S_j$ where j is even; (iii) $\theta_0 = -\frac{\theta_n}{n} + (2j-1)\frac{\pi}{2n}$ for some j. We again divide this into three cases.

Case (i): $\theta_0 \in S_j$ where j is odd. Since S_j is an open set and $\lim_{m\to\infty}\theta_m=\theta_0$, there is a $M_0>0$ such that $\theta_m\in S_j$ when $m>M_0$, by Lemma 4, we see that

$$(4.10), Re\{Q(r_m e^{i\theta_m})\} < -dr_m^n$$

where $d = \alpha_n(1 - \varepsilon)\sin(n\varepsilon) > 0$. For $\{z_m = r_m e^{i\theta_m}\}$, by (4.5) and $|F(z_m)| = M(r_m, F)$, we have

(4.11)
$$(\frac{\nu(r_m)}{z_m})^k (1 + o(1)) = e^{Q(r_m e^{i\theta_m})} + o(1).$$

If $\alpha > 0$, then by $3\varepsilon < \alpha$, (4.7), (4.10) and (4.11) , we have

$$(4.12) \quad \exp\{kr_m^{\alpha-\varepsilon}\} < (\nu(r_m))^k (1 + o(1)) < r_m^k \exp\{-dr_m^n\} + o(r_m^k).$$

Hence (4.12) is a contradiction. If $\alpha = 0$, then by (4.8), (4.10) and (4.11), we have

(4.13)
$$r_m^{k(M-1)} < \left(\frac{\nu(r_m)}{r_m}\right)^k (1 + o(1)) < \exp\{-dr_m^n\} + o(1).$$

(4.13) is also a contradiction.

Case (ii): $\theta_0 \in S_j$ where j is even. Since S_j is an open set and $\lim_{m\to\infty}\theta_m=\theta_0$, there is $M_0>0$ such that $\theta_m\in S_j$ when $m>M_0$. By Lemma 4, we have

$$(4.14) Re\{Q(r_m e^{i\theta_m})\} > dr_m^n.$$

where $d = \alpha_n(1-\varepsilon)\sin(n\varepsilon) > 0$. For $\{z_m = r_m e^{i\theta_m}\}$, by (4.7), (4.11) and (4.14), we have

$$(4.15) \qquad \exp\{kr_m^{\alpha+\varepsilon}\} > (\nu(r_m))^k (1+o(1)) > r_m^k \exp\{dr_m^n\} - o(r_m^k).$$

(4.15) contradicts the condition $\alpha + \varepsilon < \frac{1}{2}$.

Case (iii): $\theta_0 = -\frac{\theta_n}{n} + (2j-1)\frac{\pi}{2n}$ for some $j \in \{0, 1, ..., 2n-1\}$. Since $Re\{\alpha_n e^{i\theta_n} (re^{i\theta_0})^n\} = 0$, there are two subcases: iii(a) there is some $s(n-1 \ge s \ge 1)$ such that $Re\{b_\delta (re^{i\theta_0})^\delta\} = 0$ $(\delta = n-1, ..., s+1)$ and $Re\{b_s (re^{i\theta_0})^s\} \ne 0$: iii(b) $Re\{b_{n-1} (re^{i\theta_0})^{n-1}\} = \cdots = Re\{b_1 (re^{i\theta_0})\} = 0$.

In subcase iii(a), if $Re\{b_s(re^{i\theta_0})^s\}$ < 0, then when m is sufficiently large.

$$(4.16) Re\{b_s(r_m e^{i\theta_m})^s + \dots + b_0\} < -d_1 r_m^s \ (d_1 > 0).$$

We use the notations $d_{n,m}$, $d_{n-1,m}$, ..., $d_{s+1,m}$ to denote the distances that the points

$$\alpha_n e^{i\theta_n} (r_m e^{i\theta_m})^n$$
, $b_{n-1} (r_m e^{i\theta_m})^{n-1}$, ..., $b_{s+1} (r_m e^{i\theta_m})^{s+1}$

go to the imaginary axis respectively. Since

$$Re\{\alpha_n e^{i\theta_n} (re^{i\theta_0})^n\} = Re\{b_{n-1} (re^{i\theta_0})^{n-1}\}\$$

= $\dots = Re\{b_{s+1} (re^{i\theta_0})^{s+1}\} = 0$

and

$$\lim_{m\to\infty}\theta_m=\theta_0,$$

we see that a ray $\arg z = \theta_0$ is an asymptotic line of $\{r_m e^{i\theta_m}\}$, i.e., the imaginary axis is an asymptotic line of

$$\{\alpha_n e^{i\theta_n} (r_m e^{i\theta_m})^n\}, \{b_{n-1} (r_m e^{i\theta_m})^{n-1}\}, \ldots, \{b_{s+1} (r_m e^{i\theta_m})^{s+1}\}$$

respectively. So, for $j = n, n - 1, \dots, s + 1$, when $m \to \infty$, we have

$$d_{j,m} \rightarrow 0$$
.

Therefore, when m is sufficiently large,

(4.17)
$$-1 < Re\{\alpha_n e^{i\theta_n} (r_m e^{i\theta_m})^n\} = d_{n,m} < 1,$$

$$(4.18) -1 < Re\{b_j(r_m e^{i\theta_m})^j\} = d_{i,m} < 1, \ (j = n - 1, \dots, s + 1).$$

By (4.16), (4.17) and (4.18), we get that when m is sufficiently large.

(4.19)
$$Re\{Q(r_m e^{i\theta_m})\} < -\frac{d_1}{2}r_m^s.$$

If $Re\{b_s(re^{i\theta_0})^s\} > 0$, by the arguing similarly as above, we see that, when m is sufficiently large,

(4.20)
$$Re\{Q(r_m e^{i\theta_m})\} > \frac{d_1}{2} r_m^s \ (d_1 > 0).$$

By (4.19), (4.20) and the arguing similarly as in the proof of Cases (i) and (ii), we can get a contradiction.

In subcase iii(b), we see that there is a $M_1(>0)$ such that when m is sufficiently large,

$$-M_1 < Re\{Q(r_m e^{i\theta_m})\} < M_1,$$

(4.21)
$$\frac{1}{e^{M_1}} \le |e^{Q(r_m e^{i\theta_m})}| \le e^{M_1}.$$

By (4.7) (or (4.8)), (4.11) and (4.21), we have (4.22)

$$\frac{1}{r_m^k} \exp\{kr_m^{\alpha-\varepsilon}\} - o(1) \le \left(\frac{\nu(r_m)}{r_m}\right)^k (1 + o(1)) - o(1) \le |e^{Q(r_m e^{i\theta_m})}| \le e^{M_1},$$
 or

$$(4.23) \ r_m^{k(M-1)} - o(1) \le \left(\frac{\nu(r_m)}{r_m}\right)^k (1 + o(1)) - o(1) \le |e^{Q(r_m e^{i\theta_m})}| \le e^{M_1}.$$

But both (4.22) and (4.23) are contradictory.

Case (3): Q(z) is a transcendental entire function with $\sigma(Q) = \beta \le \alpha < \frac{1}{2}$. By the equation (4.3), we have

(4.24)
$$e^{Q(z)} = \frac{F^{(k)}}{F} - \frac{1}{F}.$$

As in the proof of Case (2), we choose z satisfying $|z| = r \notin [0,1] \bigcup E_4$, $(E_4 \subset (1,\infty))$ having finite logarithmic measure and |F(z)| = M(r,F), by the Wiman-Valiron Theorem, we get

(4.25)
$$e^{Q(z)} = \left(\frac{\nu(r)}{z}\right)^k (1 + o(1)) + o(1),$$

where $\nu(r)$ is the central index of F. Since F is of infinite order, we see that $\nu(r) \geq |z|^M$ for any large M > 0. So that we can take a principal branch of $Log((\frac{\nu(r)}{2})^k(1 + o(1)) + o(1))$, and get

(4.26)
$$Q(z) = \log((\frac{\nu(r)}{z})^k (1 + o(1)) + o(1)).$$

Hence we have

$$(4.27) |Q(z)| \le |\log|(\frac{\nu(r)}{z})^k(1+o(1)) + o(1)|| + 2\pi \le k\log\nu(r) + O(1).$$

By Lemma 2 and $\sigma_2(F) = \alpha$, we have

$$\frac{\log\log\nu(r)}{\log r} \le \alpha + 1$$

for sufficiently large r, by (4.27), we get

$$(4.28) |Q(z)| \le kr^{\alpha+1} + O(1).$$

But by Lemma 5(or 6), we know that there exists a set $H \subset (1, \infty)$ that have a logarithmic measure $lmH = \infty$, such that for all z satisfying $|z| = r \in H$, we have

$$(4.29) |Q(z)| \ge M(r,Q)^c,$$

where c(0 < c < 1) is a positive constant. Now for all z satisfying $|z| = r \in H \setminus E_4$ and |F(z)| = M(r, F), by (4.28) and (4.29), we get

$$\frac{M(r,Q)^c}{r^{\alpha+1}} \le k.$$

Since Q(z) is transcendental, we see that

$$\frac{M(r,Q)^c}{r^{\alpha+1}} \to \infty,$$

which contradict (4.30). Theorem 2 is thus proved.

ACKNOWLEDGEMENT. The authors would like to thank the referee for valuable suggestions to improve our paper.

References

- P. D. Barry, On a theorem of besicovitch, Quart. J. Math. Oxford 14 (1963), no. 2, 293–320.
- [2] _____, Some theorems related to the $\cos(\pi \rho)$ theorem, Proc. London Math. Soc. **21** (1970), no. 2, 334–360.
- [3] R. Brück, On entire functions which share one value CM with their first derivative, Results Math. 30 (1996), 21–24.

- [4] Zong-Xuan Chen and Chung-Chun Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J. 22 (1999), 273–285.
- [5] Zong-Xuan Chen, The growth of solutions of $f'' + e^{-z}f' + Q(z)f = 0$ where the order (Q) = 1 Sci. China. Ser. A 45 (2002), no. 3, 290–300.
- [6] G. Gundersen, Meromorphic functions that share finite values with their derivative, J. Math. Anal. Appl. **75** (1980), 441-446.
- [7] ______, Meromorphic functions that share four values, Trans. Amer. Math. Soc. 277 (1983), 545–567.
- [8] ______, Correction to Meromorphic functions that share four values, Trans. Amer. Math. Soc. 304 (1987), 847-850.
- [9] _____, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. 37 (1988), no. 2, 88-104.
- [10] W. Hayman, Meromorphic Function, Clarendon Press, Oxford, 1964.
- [11] Yu-Zan He and Xiu-Zhi Xiao, Algebroid Functions and Ordinary Differential Equations, Science Press, Beijing, 1988 (in Chinese).
- [12] G. Jank and L. Volkmann, Meromorphe Funktionen und Differentialgleichungen, Birkhäuser, Basel-Boston, 1985.
- [13] I. Laine, Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, 1993.
- [14] A. I. Markushevich, *Theory of Functions of a Complex Variable*, Vol. 2, translated by R. A. Silverman (Englewood Cliffs, N. J. Prentice-Hall, 1965).
- [15] E. Mues, Meromorphic functions sharing four valus, Complex Variables. 12 (1989), 167–179.
- [16] E. Mues and N. Steinmetz, Meromorphe funktionen, die mit ihrer ableitung werteteilen, Manuscripta Math. 29 (1979), 195-206.
- [17] R. Nevanlinna, Einige Eindentigkeitssätze in der theorie der meromorphen funktionen, Acta Math. 48 (1926), 367–391.
- [18] L. A. Rubel and C. C. Yang, Values shared by an entire function and its derivative, Lecture Notes in Math. 599, Berlin, Springer-Verlag, 1977, 101–103.
- [19] G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea, New York, 1949.
- [20] S. Wang, Meromorphic functions sharing four values, J. Math. Anal. Appl. 173 (1993), 359-369.
- [21] Lianzhong Yang, Solution of a differential equation and its application, J. Kodai Math. 22 (1999), 458-464.
- [22] Hong-Xun Yi and Chung-Chun Yang, The Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995 (in Chinese).

Zong-Xuan Chen
Department of Mathematics
South China Normal University
Guangzhou, 510631, P.R.China
E-mail: chzx@sina.com

Kwang Ho Shon Department of Mathematics College of Natural Sciences Pusan National University Pusan 609-735. Korea E-mail: khshon@pusan.ac.kr