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Abstract

Gamma distributions, which contain the exponential as a special case,

have a distinguished place in the representation of near-Poisson random-

ness for statistical processes; typically, they represent distributions of

spacings between events or voids among objects. Here we look at the

properties of the Shannon entropy function and calculate its corresponding

flow curves, relating them to examples of constrained degeneration from

ordered processes. We consider also univariate and bivariate gamma, as

well as Weibull distributions since these include exponential distributions.
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1 Introduction

The smooth family of gamma probability density functions is given by

f : [0,∞) → [0,∞) : x 7→
e−

xκ
µ xκ−1

(

κ
µ

)κ

Γ(κ)
µ, κ > 0. (1)

Here µ is the mean, and the standard deviation σ, given by κ = (µ
σ )2, is pro-

portional to the mean. Hence the coefficient of variation 1√
κ

is unity in the case

that (1) reduces to the exponential distribution. Thus, κ = 1 corresponds to an
underlying Poisson random process complementary to the exponential distribu-
tion. When κ < 1 the random variable X represents spacings between events
that are more clustered than for a Poisson process and when κ > 1 the spacings
X are more uniformly distributed than for Poisson. The case when µ = n is a
positive integer and κ = 2 gives the Chi-Squared distribution with n−1 degrees

of freedom; this is the distribution of (n−1)s2

σ2
G

for variances s2 of samples of size

n taken from a Gaussian population with variance σ2
G.

The gamma distribution has a conveniently tractable information geome-
try [1, 2], and the Riemannian metric in the 2-dimensional manifold of gamma
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Figure 1: Some examples of maximally extended geodesics passing through
(µ, κ) = (1, 1) in the gamma 2-manifold.

distributions (1) is

[gij ] (µ, κ) = =

[

κ
µ2 0

0 d2

dκ2 log(Γ) − 1
κ

]

. (2)

So the coordinates (µ, κ) yield an orthogonal basis of tangent vectors, which is
useful in calculations because then the arc length function is simply

ds2 =
κ

µ2
dγ2 +

(

(

Γ′(κ)

Γ(κ)

)′
− 1

κ

)

dκ2.

The system of geodesic equations is difficult to solve analytically but numerical
solutions using the Mathematica programs of Gray [8] were obtained in [2].
Figure 1 shows a spray of some maximally extended geodesics emanating from
the point (µ, κ) = (1, 1). Geodesic curves have tangent vectors that are parallel
along them and yield minimal information arc length distances in the gamma
2-manifold. We note the following important uniqueness property:

Theorem 1.1 (Hwang and Hu [9]) For independent positive random vari-
ables with a common probability density function f, having independence of the
sample mean and the sample coefficient of variation is equivalent to f being the
gamma distribution.

This property is one of the main reasons for the large number of applications
of gamma distributions: many near-random natural processes have standard
deviation approximately proportional to the mean [2]. Given a set of identically
distributed, independent data values X1, X2, . . . , Xn, the ‘maximum likelihood’
or ‘maximum entropy’ parameter values µ̂, κ̂ for fitting the gamma distribu-
tion (1) are computed in terms of the mean and mean logarithm of the Xi by
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maximizing the likelihood function

Lf (µ, κ) =

n
∏

i=1

f(Xi;µ, κ).

By taking the logarithm and setting the gradient to zero we obtain

µ̂ = X̄ =
1

n

n
∑

i=1

Xi (3)

log κ̂− Γ′(κ̂)

Γ(κ̂)
= log X̄ − 1

n

n
∑

i=1

logXi

= log X̄ − logX. (4)

2 Gamma entropy flows

Papoulis [14] Chapter 15 gives an account of the role of the Shannon entropy
function in probability theory, stochastic processes and coding theory. The
entropy of (1) is shown in Figure 2 using

Sf = −
∫ ∞

0

f log f dx : R
2+ → R

(µ, κ) 7→ κ− log

(

κ

µ

)

+ log(Γ(κ)) − (κ− 1)ψ(κ) (5)

with gradient

∇Sf (µ, κ) =

(

1

µ
, − (κ− 1) (κψ′(κ) − 1)

κ

)

. (6)

where ψ = Γ′

Γ is the digamma function. At fixed κ, the entropy increases like
logµ. At fixed mean µ, the maximum entropy is given by κ = 1, the exponential
distribution case of maximal disorder or chaos.

Figure 2 on the right shows entropy as a contour plot with superimposed
also some examples of integral curves of the entropy gradient flow field, namely
curves c satisfying

c : [0,∞) → R
2 : ċ(t) = ∇Sf |(c(t)). (7)

By inspection, we can see that the entropy gradient components are each in one
variable only and in particular the first component has solution

µ(t) = µ0e
t

so the mean increases exponentially with time. Such curves represent typical
trajectories for processes subordinate to gamma distributions; the processes be-
come increasingly disordered as κ→ 1. The entropy gradient curves correspond
to systems with external input—the mean increases as disorder increases. The
asymptote is κ = 1, the exponential case of maximum disorder. Conversely,
the reverse direction of the curves corresponds to evolution from total disorder
to other states (clustered for κ < 1, and smoothed out, ‘more crystal-like’, for
κ > 1) while the mean is allowed to reduce—somewhat like the situation after
the Big Bang, see Dodson [4].



4 On the entropy flows to disorder

0

2

4

6

1

2

3

4

-2

0

2

0 1 2 3 4 5 6

0

1

2

3

4

Gamma entropy Sf

κ

µ

κ

µ

Figure 2: Shannon entropy function Sf for the gamma family as a surface with
respect to mean µ and κ (left) and as a contour plot with entropy gradient flow
and integral curves (right). The asymptote is κ = 1, the exponential case of
maximum disorder.

3 Constrained degeneration of order

Lucarini [12] effectively illustrated the degeneration of order in his perturbations
of the simple 3D cubic crystal lattices (SC, BCC, FCC) by an increasing spatial
Gaussian noise. Physically, the perturbing spatial noise intensity corresponds
somewhat to a lattice temperature in the structural symmetry degeneration.
With rather moderate levels of noise, quite quickly the three tessellations be-
came indistinguishable. In the presence of intense noise they all converged to the
3D Poisson-Voronoi tessellations, for which exact analytic results are known [7].
Moreover, in all cases the gamma distribution was an excellent model for the
observed probability density functions of all metric and topological properties.
See also Ferenc and Néda [6] for some analytic approximations using gamma
distributions for two and three dimensional Poisson-Voronoi cell size statistics.
Lucarini provided plots showing the evolution of the mean and standard devi-
ation of these properties as they converge asymptotically towards the Poisson-
Voronoi case, illustrating the degeneration of crystallinity from κ ∼ ∞ to lower
values.

Of course, the constraint of remaining tessellations, albeit highly disordered
ones, precludes convergence down to the maximum entropy limit κ = 1. In fact
the limiting values are κ ≈ 16 for number of vertices and the same for num-
ber of edges and κ ≈ 22 for the number of faces; actually these are discrete
random variables and the gamma is not appropriate. However, for the posi-
tive real random variables, polyhedron volume in the limit has κ ≈ 5.6 and
polygon face area κ ≈ 16. Lucarini [11] had reported similar findings for the
2D case of perturbations of the three regular tessellations of the plane: square,
hexagonal and triangular. There also the gamma distribution gave a good fit
for the distributions during the degeneration of the regular tessellations to the
2D Poisson-Voronoi case; the limiting values were κ ≈ 16 for the perimeter of
polygons and κ ≈ 3.7 for areas.

We can give another perspective on the level of constraint persistent in the
limits for these disordered tessellations: for infinite random matrices the best
fitting gamma distributions for eigenvalue spacings have κ = 2.420, 4.247, 9.606



C.T.J. Dodson 5

Prime Sequence µP σP cvP = σP

µP
κP

1-100,000 13.00 10.58 0.814 1.74
100,000-200,000 14.49 11.93 0.823 1.67
200,000-300,000 15.05 12.48 0.830 1.67
300,000-400,000 15.43 12.78 0.829 1.64
400,000-500,000 15.64 12.97 0.829 1.64
500,000-600,000 15.88 13.23 0.833 1.62
600,000-700,000 16.08 13.36 0.831 1.62
700,000-800,000 16.20 13.51 0.834 1.62
800,000-900,000 16.35 13.59 0.831 1.61

900,000-1,000,000 16.46 13.75 0.835 1.60
1-10,000,000 17.81 15.01 0.843 1.56
1-100,000,000 20.07 16.97 0.846 1.34

Table 1: Statistical properties of the spacings between consecutive prime num-
bers: mean µP , standard deviation σP , coefficient of variation cvP = σP

µP
, maxi-

mum likelihood gamma parameter κP , for each of the first ten blocks of 100,000
primes, and the overall data for the first 10 million primes and the first 100
million primes.

respectively for orthogonal, unitary and symplectic Gaussian ensembles [2].
These values in a sense indicate the increasing statistical constraints of alge-
braic relations as the ensembles change through orthogonality, unitarity and
symplectivity.

In the context of analytic number theory, gamma distributions give approx-
imate distributions for the the reported data on spacings between zeros of the
Riemann zeta function [13]. The best fit gamma distributions to spacings be-
tween the first two million zeros of the Riemann zeta function has κ ≈ 5.6 [2].

The spacings between consecutive prime numbers in successive blocks have
surprisingly stable means and standard deviations, as we see in Table 1. This
gives the mean µP , standard deviation σP , coefficient of variation cvP , maxi-
mum likelihood gamma parameter κP for each of the first ten blocks of 100,000
primes, and the same data for the first 100 million primes. Of course, the gamma
distribution is not a good fit, as we can see in Figure 3 for the first 100 million
primes. From Table 1, the mean drifts up with the local mean size, as we would
expect from the Prime Number Theorem, but so also does the standard devi-
ation in proportion, hence keeping the coefficient of variation nearly constant.
This stability suggests that there should be some qualitative number theoretic
property which is being reflected and that the distribution of spacings among
these early primes is somewhat close to a Poisson process (κ = 1).

For the SARS disease epidemic outbreak [3, 15] the gamma distribution gave
a good model and the infection process was approximated by κ ≈ 3, cf. [5].

4 Bivariate gamma processes

Next we consider the bivariate case of a pair of coupled gamma processes. The
McKay family can be thought of as giving the probability density for the two
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Rank order position

Figure 3: Frequency histogram of the spacings between the first 100 million
primes and the maximum likelihood gamma frequencies (points) with κP = 1.34.
The early peaks in rank order are at spacings of 6, 12, 10, 18, 2 and 4. The
mean spacing µp = 20.07 occurs close to rank order 11.

random variables X and Y = X + Z where X and Z both have gamma dis-
tributions. This smooth bivariate family M of density functions is defined in
the positive octant of random variables 0 < x < y < ∞ with parameters
α1, c, α2 ∈ R

+ and probability density functions

m(x, y) =
c(α1+α2)xα1−1(y − x)α2−1e−cy

Γ(α1)Γ(α2)
. (8)

The marginal density functions, of X and Y are:

mX(x) =
cα1xα1−1e−c x

Γ(α1)
, x > 0 (9)

mY (y) =
c(α1+α2)y(α1+α2)−1e−c y

Γ(α1 + α2)
, y > 0. (10)

Note that we cannot have both marginal distributions exponential. The covari-
ance and correlation coefficient of X and Y are:

σ12 =
α1

c2
and ρ(X,Y ) =

√

α1

α1 + α2
.

Unlike other bivariate gamma families, the McKay information geometry is
surprisingly tractable and there are a number of applications discussed in Arwini
and Dodson [2]. In fact the parameters α1, c, α2 ∈ R

+ are natural coordinates
for the 3-dimensional manifold M of this family. The Riemannian information
metric is

[gij(α1, c, α2)] =





ψ′(α1) − 1
c 0

− 1
c

α1+α2

c2 − 1
c

0 − 1
c ψ′(α2)



 . (11)
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Figure 4: Geodesics passing through (c, α2) = (1, 1) (left) and a contour plot of
the entropy with some integral gradient curves (right), in the McKay submanifold
M1 which has α1 = 1.

It is difficult to present graphics of curves in the McKay 3-manifold M, but it
has an interesting 2-dimensional submanifold M1 ⊂ M : α1 = 1. The density
functions are of form:

h(x, y; 1, c, α2) =
c1+α2(y − x)α2−1e−c y

Γ(α2)
, (12)

defined on 0 < x < y < ∞ with parameters c, α2 ∈ R
+. The correlation

coefficient and marginal functions of X and Y are given by:

ρ(X,Y ) =
1√

1 + α2
(13)

hX(x) = c e−c x, x > 0 (14)

hY (y) =
c(1+α2)yα2e−c y

α2 Γ(α2)
, y > 0 (15)

In fact α2 = 1−ρ2

ρ2 , which in applications would give a measure of the variability

not due to the correlation. The matrix of metric components [gij ] on M1 is

[gij ] =

[

1+α2

c2 − 1
c

− 1
c ψ′(α2)

]

. (16)

Some geodesics emanating from (α2, c) = (1, 1) ∈ M1 are shown on the left of
Figure 4. The density functions can be presented also in terms of the positive



8 On the entropy flows to disorder

0.5

1.0

1.5

2.00.0

0.5

1.0
-2

-1

0

1

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0McKay entropy Sm|M1

ρα2

ρ

α2

Figure 5: Surface representation of the Shannon entropy function Sm for the
submanifold M1 of the McKay family with respect to parameter α2 and correla-
tion coefficient ρ (left), and contour plot (right). Superimposed also are gradient
flow arrows and the thick curve is the locus of maximum entropy. The two thin-
ner curves show the loci of α1 = 1 (upper curve) and α1 +α2 = 1 (lower curve),
which correspond, respectively, to Poisson random processes for the X and Y

variables.

parameters (α1, σ12, α2) where σ12 is the covariance of X and Y

m(x, y;α1, σ12, α2) =
( α1

σ12
)

(α1+α2)
2 xα1−1(y − x)α2−1e

−
√

α1
σ12

y

Γ(α1)Γ(α2)
(17)

mX(x) =
( α1

σ12
)

α1
2 xα1−1e

−
√

α1
σ12

x

Γ(α1)
, x > 0 (18)

mY (y) =
( α1

σ12
)

(α1+α2)
2 y(α1+α2)−1e

−
√

α1
σ12

y

Γ(α1 + α2)
, y > 0. (19)

The entropy function is

Sm : R
3+ → R

(α1, c, α2) 7→
√
α1c

−α1−1K (20)

K = log
c2

Γ(α1)Γ(α2)
+ (α1 − 1)ψ(α1) + (α2 − 1)ψ(α2) − (α1 + α2).

On M1

Sm|M1
=

1

c2

(

log
c2

Γ(α2)
+ (α2 − 1)ψ(α2) − (1 + α2)

)

(21)

∇Sm|M1
=

(

2

c3

(

log

(

Γ(α2)

c2

)

− ψ(α2)(α2 − 1) + α2 + 2

)

,
1

c2
(ψ′(α2)(α2 − 1) − 1)

)

.

On the right of Figure 4 is a contour plot of the entropy showing its gradient
field and some integral curves. It may be helpful to express the entropy in terms
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Figure 6: Surface representation of the Shannon entropy function Sw for the
Weibull family (left), and contour plot (right) with gradient flow and integral
curves.

of α2 and ρ, which gives

Sm|M1
=

4ρ4

(ρ2 + 1)
2

(

log

(

ρ2 + 1
)2

4ρ4 (Γ (α2))
+ (α2 − 1)ψ (α2) − (1 + α2)

)

.(22)

The McKay entropy in M1 with respect to α2, ρ is shown in Figure 5 (left) with
the gradient flow on a contour plot (right) together with the approximate locus
curve of maximum entropy. The two thinner curves show the loci of α1 = 1
(upper curve) and α1 +α2 = 1 (lower curve), which correspond, respectively, to
Poisson random processes for the X and Y variables.

Qualitatively, what we may see in Figure 5 is that for correlated random
variables X and Y subordinate to the bivariate gamma density (12), the maxi-
mum entropy locus is roughly hyperbolic. The maximum entropy curve is rather
insensitive to the correlation coefficient ρ when α2 > 1 and the difference Y −X
is dispersed more evenly than Poisson. When Y − X is actually Poisson ran-
dom, with α2 = 1, the critical value is at ρ ≈ 0.355. However, as α2 reduces
further—corresponding to clustering of Y −X values—so the locus turns rapidly
to increasing correlation. If we take the situation of a bivariate gamma process
with constant marginal mean values, then the McKay probability density has
constant correlation coefficient ρ; in this case the gradient flow lies along lines
of constant α2.

Dodson [5] gives an application to an epidemic model in which the latency
and infectivity for individuals in a population are jointly distributed properties
controlled by a bivariate gamma distribution.

5 Weibull processes

Like the gamma family, the Weibull family of distributions contains the ex-
ponential distribution as a special case; it has wide application in models for
reliability and lifetime statistics for random variable t > 0. The probability
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density function can be presented in terms of positive parameters ξ, β

w : R
+ → R : t 7→ β

ξ

(

t

ξ

)β−1

e−(t/ξ)β

. (23)

In applications of (23), reliability R(t) is the probability of survival to time t
and it is related to the failure rate Z(t) at time t through

R(t) =

∫ ∞

t

w(t) dt = e−(t/ξ)β
and Z(t) =

w(t)

R(t)
= β

(

1

ξ

)β

tβ−1. (24)

The Weibull mean, standard deviation and entropy are

µw = ξ Γ(1 +
1

β
) (25)

σw = ξ

√

Γ

(

β + 2

β

)

− Γ

(

1 +
1

β

)2

(26)

Sw(ξ, β) = − log(β) − log

(

1

ξ

)

− γ

β
+ γ + 1 (27)

∇Sw(ξ, β) = (
1

ξ
,
γ − β

β2
). (28)

In (27), γ is the Euler constant, of value approximately 0.577.
In case β = 1

n for positive integer n, then the coefficient of variation is

σw

µw
=

√

(2n)!

(n!)2
− 1,

and we see that the case β = 1 reduces (23) to the exponential density with
µw = σw = ξ and hence unit coefficient of variation. Figure 6 shows a surface
plot of the Weibull entropy Sw and a corresponding contour plot with gradient
flow and some integral curves. There is a resemblance to the gamma distribution
entropy in Figure 2 and from (28) again here we have µw(t) = µw(0)et, but in
the Weibull case the asymptotic curve has β = γ ≈ 0.577, which corresponds
to a process with coefficient of variation ≈ 4.65 compared with unity for the
exponential distribution and Poisson randomness.
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