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ON THE ENTROPY NORM SPACES
AND THE HARDY SPACE Re77'

W. C LANG

(Communicated by J. Marshall Ash)

Abstract. R. Dabrowski introduced certain natural multiplier operators which

map from the entropy norm spaces of B. Korenblum into the Hardy space

Re//1. We show that the images of the entropy norm spaces in Re//1 do not

include all of that space.

1. Introduction

We consider the entropy norm spaces of Korenblum [4]. He defined an

entropy function k : [0, 1] —► [0, 1] to be a concave, continuous, increasing

function with k(0) = 0. We denote by K0 the set of such functions such that

k'(0) = limJC_o+ k(x)/x = oo. According to Dabrowski [1] to each k £ K0 there

is a unique probability measure p — pK such that

K{x)=f fd_mdi
Jo  Jt       "

Then the entropy norm of a continuous 1-periodic function / € C(T) (where

T = 7? mod 1) is given by

Jo Jt s

where I = [t-s/2, t + s/2] and where ili(f) = sup{|/(«) - f(v)\ : u,v£l}.

(This norm was introduced by Korenblum [4]; this formula for the norm is

due to Dabrowski [4].) We denote by CK C C(T) the space of continuous

1-periodic functions of finite entropy norm.

In [2], Dabrowski introduced an operator TK : CK —► Re 77', given by

TKf(t)= j  f  ^f(f(t)-f(I))dp(s)dx
Jt Jo    s

where I = [x - s/2, x + s/2], f(I) = m Jt f(t) dt is the average of / over

7,  and Xi is the usual characteristic function of 7. He showed that TK is a
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multiplier with coefficients

1       f 1
fin = fi„(K) = ^-^-=; /      (cos(27t«5) - 1 + 2n2n2s2)-^ dpK(s)

2nlnl J(o ,i] s

(for n > 0 we set /?_„ = /?„ and Po = 0). In [3], Dabrowski asked the

question: given / € Re77', are there k £ K0 and ^eQ such that / = TKg1
(One reason why this question is of interest is because, as Dabrowski remarks,

a positive answer would imply the Fefferman duality (Re77'(0))* = BMO.)

2. The main result

We are ready to give a negative answer to this question.

Theorem. There is a function f £ ReHx such that there are no k £ Kq and

g£CK with f=TKg.

Proof. We construct / as follows. Let h be the function with Fourier series
E21i(v/«log(n + l))_1e„, where e„ = e2nint. Then h £ H2. So h2 £ Hx

(see, e.g., Zygmund [6, VII (7.22), p. 275]). We let / = Re(h2). So of course
f£ReHx. We have

oo     /«—1 \

a2 ~£ (£¥>»-. U

where bj — (VJlog(j + 1))_1. It is not hard to show that f has Fourier series

X^ti an cos(2nnt) where a„ > const.(log(« + l))-2 for n = 1,2,3,... .

Now we suppose that there is a k £ K0 and a g £ CK such that TKg = f.

We write g as \^cnen. Then since TKg = / we have cn = a„/'ftn, n > 1.

This enables us to write g as J2T c" cos(2nnt) where c„ > 0 for all « > 0.

We assume that g £ CK which implies that g is bounded. Consequently

(since g has a cosine series with positive coefficients), we must have £3 c« < °c

or Ysanlfin < oo- Therefore

00   /       j        \2  1

<" S Ui5fTT) J E < ~'
We must also have

oo      .

(2) T,j?fi"<o°-
n=\

[By Lang [5], fi„ compares with «/c(l/«) - n2 J0l/"K(t)dt = tc'(l/n) where

k(x) = ^JQxK(t)dt. We have ic(x) = j0xic'(t)dt, so this integral must be

convergent; we may estimate this integral by the sum

J!=l     v ' J!=l

(Note that ic'(x) = (1/x2) (xk(1/x) - J0X K(t) dt) is the product of 1/x2 and a
function which goes to 0 monotonically as x —► 0. So the integral and the sum

compare.)]
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But (1) and (2) are not compatible. Indeed, suppose the sums (1) and (2) are

both finite. Then by the Cauchy-Schwarz inequality

f1     i      Y(lvnr) (—J_l-)
2L, n iog(„ + i)     2^\n yPn) \\o%(n + 1) J%)

which is nonsense. So there cannot be k £ K0,   g £ CK such that TKg = f,

and we are done.   D
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