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ABSTRACT

A theoretical explanation of some experimentally observed phenomena associated with the so-called Klebanoff

modes is obtained by analyzing the flow over a finite thickness flat plate resulting from a small-amplitude distortion

imposed on the upstream mean flow. The analysis shows (among other things) how the stretching of the vortex lines

around the plate leads to streamwise vorticity at the plate surface, which then produces a streamwise velocity pertur-

bation within the boundary layer that can be related to the experimentally observed Klebanoff mode. The complete

evolution of this flow must be found by solving the boundary-region equations of Kemp (1951) and Davis and

Rubin (1980), but a limiting analytical solution can also be obtained. Since the initial growth of the boundary-layer

disturbance is nearly algebraic, our results demonstrate how the algebraically growing disturbances promoted by

Landahl and others can be generated by a realistic external-disturbance environment. The relationship between these

results and various bypass transition mechanisms is discussed.

1. INTRODUCTION

There are a number of different environmental disturbances that can cause transition to turbulence in boundary

layers--with acoustic disturbances (Goldstein, 1985) probably being the most potent if they happen to be present in

the flow. Another type of environmental disturbance that has received considerable attention in the literature is free-

stream turbulence, which was actually studied by Dryden (1936), but the later investigations of Klebanoff (1971)

seem to be more well known.

Klebanoff measured the velocity fluctuations in a laminar flat-plate boundary layer due to externally imposed

turbulence in a free stream (Reshotko, 1994) with nominally uniform upstream velocity. Figure 1 is a plot made by

Klebanoff that has been shown around quite a bit, but, to our knowledge, has not actually been published in a journal

article. He found, among other things, that the streamwise velocity fluctuations U_u' peak at an rl of about 2.3 and

attain a maximum value of about one percent of the undisturbed free-stream velocity U_ (where r I is the usual

Blasius variable, i.e., the normal coordinate n divided by the boundary-layer thickness 80 = _/U_ with x* de-

noting the distance along the plate, and v denoting the kinematic viscosity). However, Klebanoff' s most important

observation was that the measured hot-wire signal passed through a low-pass filter at 12 Hz was almost identical in

magnitude to the signal measured over all frequencies, indicating that most of the energy was at frequencies below

12 Hz (Reshotko, 1994). This result has now been reproduced many times by Leventhal and Reshotko (1981),

Kendall (1985 and 1990), Arnal and JuiUen (1978), Westin et al. (1994), and others. Kendall's lateral correlation

studies show these structures to be very narrow in the spanwise direction----of the order of twice the displacement

thickness fi* in his particular case (where 8" -- 1.7 _0), while other experimenters find it to be nearly equal to fi*.

Kendall called these low-frequency structures, Klebanoff modes, and that name seems to have stuck.
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Klebanoff(1971)proposedthatthesemodescouldbeinterpretedasarelativelysmall amplitude thickening and

thinning of the Blasius boundary layer. Since perturbing the boundary-layer thickness 80 in the Blasius solution

u = F_(rl); 11 -=n/80 (where F B denotes the Blasius function, a prime denotes differentiation with respect to the argu-

ment, and all velocities are assumed to be normalized by Uoo) by a small amount, say 81, and expanding in a Taylor

series gives

= + = +.... (1)

This means that the difference between the actual streamwise velocity u and the Blasius solution should be propor-

tional to TIFf', which leads to the excellent agreement shown in figure 2--which is just a replot of the previous data.

This idea was presumably based on an earlier proposal by Bradshaw (1965) and put on a more or less rigorous

analytical basis by Crow (1966) to explain the fairly large thickening and thinning of the boundary layer observed

by Klebanoff and Tidstrom (1959) in their famous peak-valley splitting work, under presumably disturbance-free

conditions where the mean flow would be expected to be two-dimensional. Bradshaw (1965), who observed similar

behavior at the National Physical Laboratory, proposed that the observed thickening and thinning could be produced

by a small spanwise-periodic variation in the upstream mean-flow direction.

Crow (1966) analyzed this phenomenon by considering a small-amplitude linearized sinusoidal perturbation of

the flow over an infinitely thin flat plate, i.e., he considered the spanwise velocity perturbation (see fig. 3)

w_ = e cos 2_ z (2)

imposed on a uniform flow Uo, over an infinitely thin plate, where E<<I is a measure of the disturbance amplitude, _.

is its characteristic spanwise length scale, and z = z*/_.

He assumed that the disturbance Reynolds number _ - Rke (where Rk = UooX/v) is 0(1) and showed that the

resulting streamwise boundary-layer velocity was of the form

1

u = F_ - _ (ex sin 27r z)r/Fl_
(3)

where x = x*/_. is the scaled streamwise coordinate, which means that the corresponding boundary-layer thickness

would be

(4)

2. AN ALTERNATIVE PROPOSAL

Crow's solution leads to a steady streamwise vorticity disturbance at the surface of the plate. On the other hand,

the most general vortical distortion that can be imposed on the flow consists of all Fourier components of an arbi-

trary (unsteady) convected gust solution (Goldstein, 1978) of the linearized inviscid equations of motion. The

streamwise vorticity component of the upstream motion was considered by Goldstein and Leib (1993a). However,

here we look at another component of the upstream motion that might be visualized as the periodic steady wake flow

shown in figure 4, and can best be described as a spanwise variation in the streamwise velocity, so that the upstream

vorticity is initially normal to the plate.

Our reason for considering this component is based on the following considerations. Firstly, the inviscid rapid

distortion theory described below (see Hunt and Carruthers, 1990 and Goldstein, 1978, for additional details) shows

that the inviscid vortex stretching around the plate tends to amplify the normal component of vorticity more than the

other components. It also shows that, while the surface velocity remains bounded when the frequency of the distur-

bance is 0(UoJg), the zero-frequency (i.e., quasi-steady) component becomes logarithmically infinite at the surface

of the plate--which means that the vortex stretching acts like a low-pass filter that preselects the low-frequency
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componentofthemotion.Secondly,thesolutiontothelinearizedunsteadyboundary-layerequations(Gufiaevetal.,
1989)showsthattheboundarylayeronthesurfaceoftheplatealsoselectivelyamplifiesthelow-frequencyportion
ofthespectrumwiththesmallspanwisewavelengthcomponentsundergoingthegreatestamplification.Theun-
steadypartoftheflowactuallymovesoutoftheboundarylayeratlargevaluesofx, (firstintoakindofedgelayer
andthenintothefreestream)sothattheboundarylayeralsoactsasalow-passfilterforthefree-streamturbulence.

Thesevariousmechanismsareresponsibleforproducingthelow-frequencyelongatedstructuresinthebound-
arylayerwhichwehavereferredtoasKlebanoffmodes.Sincetheexternalturbulentflowbehavesmoreorless
linearlytolowestorderofapproximation,wecanprobablygainsomeusefulinsightintothedominantmotioninthe
boundarylayerbyconsideringthemostamplifiedFouriercomponentofthatflow,whichleadstotheupstream
boundaryconditionsdescribedabove.

Whiletheinviscidvortexstretchingaroundtheplatetendstopreselectthezero-frequency(i.e.,co<<UJ_)
componentofthefree-streamdistortion,theboundary-layerflowitselfactuallyselectsthelow-frequencycompo-
nentscorrespondingtocox*/Uoo=0(1),wherecodenotesthefrequency,sothat,whiletheexternalflowisquasi-
steady,theboundary-layermotionisactuallygovernedbytheunsteadyboundary-layerequations(Guliaevetal.,
1989).However,thepurposeofthispaperis toexplainsomeoftherelevantphysicalphenomena,ratherthannu-
mericallyreproducetheexperimentalresults,andthiscanbestbedonebyconcentratingonthenonlinearphenom-
enaandignoringtheunsteadyeffects.

Moreover,Watmuff(1997)foundthathewasabletoreducethepeakRMSvelocityintheKlebanoffmodesby
about50percentandmakehismeasuredcontoursofconstantRMSvelocitymuchmoreuniformbyreorderinghis
screensbasedonlaserscansoftheuniformityofthemesh.Hewasalsoabletodirectlymeasureweakspanwise
nonuniformitiesinthemeanflowvelocityupstreamoftheplatewhichhadanelongatedstreakinessin thetransverse
direction.Watmuffconcludesfromthisthat,"Theevidenceisalmostoverwhelmingthatthenonuniformitiesin the
freestream(andhencetheKlebanoffmodesintheboundarylayer)originatefromsmallnonuniformitiesinthe
porosityofthewindtunnelscreens."Thewake-likedistortiondescribedaboveclearlyprovidesanappropriatemath-
ematicalrepresentationforthistypeofnonuniformity.

Thestretchingofthevortexfinesaroundtheplatenotonlyamplifiesthelow-frequencycomponentofthevor-
ticity,butalsoproducestherequiredstreamwisevorticityattheplatesurfaceasshowninfigure4.Thisstreamwise
vorticitythenleadstoaperturbationtothestreamwiseboundarylayervelocitythatissimilartotheresultobtained
byCrow.Boththesevelocityperturbationsincreasemoreorlesslinearlywiththestreamwisedistancex*,andthe
solutionsarethereforenotuniformlyvalidinthestreamwisedirection,i.e.,theperturbationvelocitywillbecomeof
thesameorderasthebaseflowwhenex = 0(1) (see (3)). Moreover, the continued downstream growth of the mean

boundary layer eventually causes the boundary-layer thickness to become of the same order as the spanwise wave

length of the upstream distortion.

These linearized boundary-layer analyses can therefore only predict the initial stages of the bo,undary-layer

development, and certainly not the inherently nonlinear processes that occur further downstream which may, as we

shall see, be important for predicting the ultimate transition to turbulence. Moreover, the experiments show (as noted

above) that the spanwise wave length of the dominant motion in the boundary layer (i.e., the Klebanoff mode) is of

the same order as the boundary-layer thickness in the region where the measurements are carded out.

3. ASYMPTOTIC STRUCTURE OF FLOW

This leads us to consider the flow configuration depicted in figure 5. As in the Crow (1966) analysis, we allow

the disturbance Reynolds number t_ to be 0(1), but now suppose that there is a wake-type velocity distortion im-

posed on the flow at a distance 0(E/e) upstream of the leading edge, where, as before, e is the amplitude of the

distortion and _, is its characteristic spatial scale. We also suppose that the plate thickness is 0(_). Then in the as-

ymptotic limit e _ 0, R_ --_ _, with t_ = eRT. held fixed, the flow divides itself into four distinct asymptotic regions.

The first (Region ® in fig. 5) is a primarily inviscid region of dimensions 0(_) surrounding the leading edge where

the motion is a linear perturbation about a steady potential flow--which is the fundamental assumption for a branch

of fluid mechanics now commonly referred to as linear-rapid-distortion theory (Hunt and Carruthers, 1990). Classi-

cal rapid distortion theory (RDT) assumes that the disturbance length scale, _, is much smaller than the mean-flow

length scale. Here we follow the modern approach and allow these length scales to be of the same order. This theory

has its origins in a marvelous paper by Sir James that he called simply "Drift" and published in the first issue of the

Journal of Fluid Mechanics (1956). Lighthill considered the flow around an infinite circular cylinder and assumed

that the imposed upstream distortion varied linearly with z, rather than being periodic as in the present study.
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BelowRegion(9(i.e.,theRDTregion) is a region (Region _ in fig. 5) where the flow is governed by the lin-

earized laminar boundary-layer equations--as it is in the Crow (1966) analysis--with the resulting solution being

somewhat similar to the one found by Crow--at least to the lowest order of approximation. As in Crow' s analysis,

the linear boundary-layer solution breaks down when ex becomes large, and a new solution has to be obtained when

= ex is order one, i.e., in Region ®. The flow in Region ® is now fully three-dimensional, even though the

crossflow velocity w is still small, i.e., 0(e). This is because the streamwise length scale is now large enough to al-

low a balance between the streamwise and spanwise convection terms within the governing equations. The flow in

this region is then governed by what were originally referred to as the "boundary-region equations" by Kemp

(1951), who was the first to use them, but that terminology seems to have gotten lost over the years. In any event,

they are simply the Navier-Stokes equations with streamwise derivatives neglected in the viscous and pressure gra-

dient terms and, more importantly, correspond to a rational asymptotic limit of the Navier-Stokes equations for the

flows of the type being considered here. In the present paper, we resurrect the original terminology and refer to this

approximate form of the Navier-Stokes equations as the boundary-region equations.

Finally, the flow in the large outer Region @ is very simple and corresponds to a slow viscous decay of the im-

posed upstream velocity perturbation

u=l+eu_(z)e -_/a+ . . . (5)

over the long streamwise length scale which is balanced by a weak crossflow velocity

e0u
w - (6)

a&

needed to satisfy continuity. As in the Crow analysis, we have put x = x*/_, y = y*/_,, z = z*/_. and have assumed,

for simplicity, that u_ = a cos 2_ z, where a = constant, i.e., that the upstream distortion is purely harmonic. The

result can easily be generalized to an arbitrary periodic function of z, but the final result is not as transparent, and the

physical phenomena can probably be better illustrated by considering only a single harmonic component.

The upstream boundary condition has to be imposed at a finite distance upstream of the leading edge, say L, on

the long streamwise length scale _, but this corresponds to upstream infinity on the rapid inner scale x on which the

potential flow field about the plate actually varies. So the upstream boundary condition is more or less unaffected by

the presence of the plate in the strict asymptotic sense (but see Section 2.5 of Goldstein, 1978). Finally, the solutions

in each of the individual Regions 0) to ® must match together in the matched asymptotic expansion sense

(Van Dyke, 1975).

4. THE RAPID DISTORTION THEORY SOLUTION

The flow in Region ® (the RDT region) is given by the simple formula (Goldstein, 1978)

-- w + e[v_ + au_ (z)VA] (7)

wfiere _(x,y) is the known potential for the mean flow about the plate (including the mean boundary-layer displace-

ment effects, if necessary), a = e-L/a is a constant, u(z) is still assumed to be purely harmonic, and A(x,y) is the

famous Lighthill (1956)-Darwin (1953) drift function to which the title of Lighthill's (1956) paper refers. Its differ-

ence between any two points on a streamline is equal to the time it takes a fluid particle to traverse that distance. It

can be expressed as a simple integral (Lighthill, 1956; Goldstein, 1978; Darwin, 1953). Finally, the "perturbation

potential" t_(x,y,z) (which is produced by the interaction Of the upstream distortion with the flow field of the finite

thickness plate) is determined by the simple Poisson' s equation

V2_ = -au_V2A (8)

subject to the boundary conditions

_ 0 as x _ --_ (9)
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c_ __au 0A
_- -_- = 0 on surface of plate. (10)

Its solution shows that the crossflow velocity w exhibits the well-known logarithmic singularity

w _ au'_ £nW, (11)

as the mean-flow stream function _(x,y) goes to 0 at the surface of the plate (Lighthill, 1956; Goldstein, 1978)

where c_is a constant related to mean potential flow in the vicinity of the forward stagnation point. Since a similar

analysis of the unsteady flow shows that the 0(U /_) frequency components of the motion remain bounded at the

surface of the plate, this result justifies our observations (in Section 2 above) about the selective amplification of the

low-frequency component of the motion.

The solution to the boundary-value problem (8) to (10) must, in general, be found numerically. However, we

are mainly interested in the flow in the nonlinear Region ®, and the upstream boundary conditions for this region

can be obtained from the asymptotic solution to the RDT problem as x --->_. Fortunately, this result can be obtained

independently of the upstream solutions (Goldstein and Durbin, 1980; Goldstein, Leib, and Cowley, 1992) by (ana-

lyrically) solving a simple equation with constant coefficients. The resulting solution, which is the same as in

Goldstein, Leib, and Cowley (1992), depends on the upstream history effects only through the asymptotic drift func-

tion A+ + x, where A+ is a suitable integral over the particle paths from upstream infinity to downstream infinity. The

latter exhibits the logarithmic singularity

A+ ---) A0(n)-lgnn as n--->0 (12)
tz

at the surface of the plate corresponding to the log singularity in (11).

5. THE LINEAR BOUNDARY-LAYER SOLUTION

Region ® coincides with the boundary layer on the surface of the flat plate. The relatively mild singularity in

the inner limit of the Region (i) solution (11), which forms the outer limit of the Region ® solution, can be smoothed

out by viscous effects (Goldstein, Leib, and Cowley, 1992; Toomre, 1960) in Region @. In fact, the mean boundary

layer is again of the Blasius type sufficiently far downstream in the flow, and an analysis similar to that of Crow

(1996) shows that the distorted streamwise velocity is now given by

1

u --> FI_ + exgn@_) _ au_ (z) r/Fl_ + 0(ex)46

to lowest order of approximation. This result differs from Crow' s because the gauge function ex tn (ex) is larger

than his by the factor tn (ex) in order to accommodate the log singularity in the external flow. However, the next

order (i.e., 0(E)) terms in (13) would be significantly different from those obtained by Crow (1966) (whose lowest

order perturbation is 0(ex)).

(13)

6. THE LARGE-DISTURBANCE-REYNOLDS-NUMBER LIMIT OF THE BOUNDARY-REGION

EQUATION SOLUTIONS AND THE FORMATION OF TURBULENT SPOTS

The asymptotic solution (13) provides the upstream matching condition (i.e., the upstream boundary condition)

for the flow in the larger region downstream (Region ® in fig. 5). While the solution in this region is parabolic and

can therefore be found by downstream marching, it still constitutes a relatively difficult numerical problem (Davis

and Rubin, 1980; Wundrow, 1996). It therefore seems desirable to obtain some simplified analytical results. This
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canbedone by considering the large- and small-disturbance-Reynolds-number limits. In the small-disturbance-

Reynolds-number fimit, the boundary-region equations become linear. Here we discuss only the large-disturbance-

Reynolds-number limit in which _ - eR_. goes to infinity (as was done in Goldstein, Leib, and Cowley, 1992, and

Goldstein and Leib, 1993a,b).

In the large-_ limit, the downstream nonlinear flow splits into two layers when _1 = -_ gn(X/_)= 0(1) where

- /_ - fl

t_

the new gauge function S(a) is determined by =S _ ()-= ffgn ,_/_ : a viscous wall layer in which the ow is governed

by the three-dimensional, boundary-layer equations with no pressure-gradient terms--rather than by the boundary-

region equations and an outer inviscid vorticity layer induced by the log singularity in the upstream RDT solution.

The scaled crossflow velocity W = aw/,_n(M_) in this latter region is determined by the inviscid Burgers equation

(see fig. 6)

O_+w0W

02----7 _ = 0, (14)

which can, of course, be solved analytically. This solution can then be used to obtain the appropriate outer-edge

boundary condition for the viscous wall layer whose thickness _ is now smaller than _, by a factor of the square root

of _ (the large disturbance Reynolds number) times _nk/_ (Goldstein, Leib, and Cowley, 1992). The boundary

condition is that the streamwise velocity U goes to one, and the scaled crossflow velocity W goes to

W --+ f(z - X1W) as y - n/a --+ (15)

where

f(_)=-u2(_),

uooz is the imposed upstream velocity perturbation discussed above, and the primes denote differentiation with re-

spect to the total argument (Goldstein, Leib, and Cowley, 1992).

The solution to this boundary-value problem can be expressed in terms of the Blasius solution by

U = F_(_) (16)

where _ is now given by

(1 + 2lf')y (17)
/7- 1'

{3_7 [(1 + xlf') 3 -11} _-

rather than by the usual Blasius variable. Timoshin (1992) recently used a similar transform to solve a very different

boundary-layer problem. Since _ now depends on z, U also exhibits this dependence, and the solution is therefore

directly interpretable as a localized thickening and thinning of the Blasius boundary layer. It is a natural extension of

the linearized Crow-type solution into the nonlinear region. In fact, the large<Y limit of the linear boundary-layer

solution (13) can be recovered by expanding F B and _ in a Taylor series for small 2l--SO the solution (16) clearly

matches onto the appropriate linear solution in Region _) as XI -+ 0.

Of course, the solution to Burgers equation (14) eventually develops a singularity at a finite downstream posi-

tion and is discontinuous or multivalued downstream of that point. This introduces a line of singularities into the

vorticity-layer solution and a surface of discontinuity downstream of that line (Goldstein, Leib, and Cowley, 1992).

(See fig. 7.) A new inviscid solution, which accounts for streamline curvature effects, can then be constructed to

eliminate the line singularity, and (downstream of that) an inviscid solution that brings in pressure-gradient effects

can be constructed to eliminate the surface discontinuity (Goldstein and Leib, 1993b). This is all rather intricate, but
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theimportantthingtonoteisthatthissolutionisstillinviscidandhasthegeneralstructureshownin figure7
(Goldstein,Leib,andCowley,1992;GoldsteinandLeib,1993b).However,thedownstreampressure-gradientsolu-
tionimposesitsstrongpressuregradientsontheunderlyingboundarylayerandcausesit todevelopasingularityat
afinitedownstreamposition.Thissingularityisanindicationthattheboundary-layerapproximationbreaksdown,
andanew(lessapproximate)setofequationshastobeusedtodescribetheflow.Sincethespanwiselengthscale
decreasesandtheboundary-layerthicknessincreasesin thevicinityofthesingularity,thisprobablyturnsouttobe
thefull boundary-regionequations.

Theboundary-layervelocityprofileeventuallybecomesmuchflaterandcanevenbecomeinflectionalin the
viscinityofthesingularity.(SeeGoldstein,Leib,andCowley,1992.)Theflowthereforebecomessusceptibleto
rapidlygrowingTollmien-SchlichtingwavesandpossiblyevenRayleighinstabilitieswhichcouldultimatelyleadto
theformationofturbulentspots.It thereforeprovidesapossible"bypass"mechanismthatcouldleadtotransition
withoutinvolvingamoreglobalTollmien-Schlichtingwavesystem(butseebelow).

Figure8isaplot(takenfromGoldstein,Leib,andCowley,1992)ofconstantstreamwisevelocitycontoursin
thecrossflowplanecalculatedatvariousstreamwiselocationswithu setequaltocosz.Theinitialspanwisevaria-
tioninthelinearregimeis,ofcourse,sinusoidal,andthesubsequenteffectofthenonlinearityistoproduceasharp
focusingalongthelinesofmaximalthickness,withtheattendantintroductionofprogressivelyshorterstreamwise
lengthscalesintotheflow.

Sincethelargestreamwisevelocityperturbationsareconcentratedinnarrowspanwiseregions,thespanwise
averageRMSvelocity

1

(18)

(whichroughlycorrespondstothelocalRMSvelocitymeasurementintherealflow)willbemuchsmallerthanthe
maximumvelocityfluctuation.Thisisshownin figure9,inwhichthesolidcurveis thepeakvalue(relativeto1])of
theRMSvelocity(18),whilethedashedcurveis thepeak(withrespectto11)ofthemaximumvelocityfluctuation

withUdeterminedby(16)and(17)inbothcases.NoticethatwhiletheRMSvelocityfluctuationisonlyalittleover
10percentat_1-----0.75,themaximumvelocityfluctuationisnearlyequalto50percentatthispoint.Figure8shows
thatthisis largeenoughtoproducelocalizednonlinearbehavior,whilethestraight-linebehaviorofthesolidcurve
suggeststhattheRMSvelocitycontinuestobehavelinearly.

Theexperiments(seecomprehensivesummaryin tableIII ofWestin,etal.,1994)showthattheKlebanoff
modeRMSvelocityfluctuationscaneasilyexceed10percent.Thepresentresults,therefore,suggestthatthecorre-
spondingmaximumvelocityfluctuationswillthenbelargeenoughtoproducethelocalizedbreakdownofthe
boundary-layersolutionalludedtoabove,eventhoughtheRMSvelocityfluctuationsarestillrelativelysmall.Need-
lesstosay,nonlineartheorywillhavetobeusedtocalculatetheflow.

Figure10isaflowvisualizationbyKendall(1985)usingasmoke-wiretechniquetoviewthecrossflowplane
withacameralocated3mdownstreamofthetestsection.ThesmokewirewaslocatedataBlasiusrI valueofabout
1.5.Thisfiguresuggeststhatthecrossflowdistortionisfocusedinrathernarrowspanwiseregionsinagreementwith
thetheoreticalpredictions.

7. APPLICATIONOFSOLUTIONTOKENDALL'SEXPERIMENT

Figure11showssomedatatakenbyKendall(1985,1990)inanexperimentsimilartoKlebanoff's.Theclosed
symbolsshowtheagreementofthemeanvelocitydistributionwiththeBlasiusprofile.Theopensymbolsarethe
filteredsignalattheTollmien-Schlichtingwavefrequency.Thisdisturbanceisclearlysmall(notethe20-foldmag-
nification)andconcentratedattheouteredgeoftheboundarylayer--definitelynotaT-Smode.Theremaining
curverepresentsthebroad-bandsignalcorrespondingtothelow-frequencyKlebanoffmode.Thesolidcurveisthe
rlF/_'modeshapeproposedbyKlebanoffandputonamorerigorousanalyticalbasisbyCrow(1966).Kendall's
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turbulencelevelsarehigherthanthoseofKlebanoffbyafactorofaboutfourorfive,buttheresultsarethesame;the
agreementwithCrow'smodeshapeisexcellent,exceptperhapsattheouteredgeoftheboundarylayerwherethe
dataapproachesafinitevaluewhileCrow'sanalyticaldistributiongoestozero.Figure12isareplotofthedatain
Figure11,butthesolidcurveisnowobtainedfrom(18)withUdeterminedfrom(16)and(17).Theagreementis
nowslightlybetterthanit waswithCrow'slinearmodeshape._.

WhileKendalldidnotobserveanyTollmien-SchlichtingwavesintheregionwheretheKlebanoffmodesfirst
becomepredominant,hediddetectT-Swavepacketsfurtherdownstream.Thesewavepacketsfrequentlyexhibited
nonlinearamplitudedependenceonthefree-streamturbulencelevel,butmuchmoreinterestingly,appearedtobe
highlyintermittent---eventhoughKendall'smeasurementsshowedthefree-streamturbulencetoberelativelytime-
stationary(Kendall,1985).

Apossibleexplanationforthis,aswellasforthenonlineardependenceonfree-streamamplitude,isthatthe
upstreamKlebanoffmodesactasreceptivitysitesforthefree-streamturbulence(Goldstein,Leib,andWundrow,
1992).At thelowMachnumbersofKendall'sexperiment,thereisprobablyasignificantmismatchbetweentheT-S
wavelengthandthewavelengthofthefree-streamturbulence--withthelatterbeingconsiderablylongerthanthe
former.It isthereforenecessarythattheboundary-layerflowcontainsomesortofshortstreamwiselengthscalethat
can"scatter"thelongwavelengthfree-streamdisturbanceintotheshorterT-Swaves.Ithasbeenshown(Goldstein,
1983;Goldsteinetal.,1983;GoldsteinandHultgren,1989;Goldstein,1985)that(1)imperfectionsintheplatesur-
face,(2)thesuddenchangeinthecurvatureatthejunctionbetweentheleading-edgeregionandtheflatportionof
theplate,and(3)therapidgrowthofthelaminarboundarylayerattheleadingedgecanallproducetherequisite
shortstreamwiselengthscale.OurproposalhereisthattheKlebanoff modes can also fulfill this role with the short

streamwise length scales resulting from the previously shown focusing effect that occurs in the large-_ asymptotic

solution.

Since the Klebanoff modes are, in reality, not very steady, but rather meander across the plate at low frequen-

cies, i.e., they are governed by the unsteady boundary-layer equations, the more or less localized receptivity centers

would also be expected to move around and thereby cause the T.S. wave packets to appear to be intermittent to a

downstream observer with a fixed probe.

8. NUMERICAL SOLUTIONS FOR THE BOUNDARY-REGION EQUATIONS AND ALGEBRAIC

DISTURBANCE GROWTH

The appearance of logarithmic gauge functions in the large 6 asymptotic expansion for the solution in Region ®

(see Goldstein, Leib, and Cowley, 1992) suggests that this expansion is not very robust. The only recourse is to

solve the full (or perhaps the linearized) boundary-region equations numerically. Here we discuss the full nonlinear

case. The relevant initial conditions are determined by requiring that the solutions match onto the asymptotic solu-

tions in the upstream RDT/linear boundary-layer region (Region ® and @ in Fig. 5). Since, as we have seen, the

streamwise boundary-layer velocity grows nearly linearly with x (actually it grows like x _n x), the initial velocity in

Region ® will have to exhibit the same nearly algebraic growth. (This is, of course, also true for the large-_ asymp-

totic solution described above, which actually exhibits purely linear growth to lowest order of approximation.)

This linear or nearly linear growth corresponds to the algebraic growth mechanism originally discussed for

boundary layers by Hultgren and Gustavsson (1981), subsequently promoted by Landahl and his students (Landahl,

1990; Russell and Landahl, 1984) as a possible explanation for certain types of bypass transition, and now appears

to be gaining increasing acceptance by the transition community as a viable alternative to instability wave mecha-

nisms. We have applied it to spatially growing disturbances (in Goldstein, Leib, and Cowley, 1992, and Goldstein,

Leib, and Wundrow, 1992) and, more importantly, shown how these latter disturbances can be generated by realistic

disturbances in the environment (i.e., we have shown in Morkovin's words that these algebraically growing distur-

bances are "environmentally realizable"). Our results also suggest that it is probably necessary to account for non-

parallel flow effects when dealing with disturbances that are both environmentally realizable and algebraically

growing.

Figure 13 shows some preliminary solutions to the boundary-region equations taken from Wundrow (1996).

These results roughly match onto the upstream RDT solution with uo_ still given by cos z. However, the initial con-

dition has now been adjusted to make the velocity profiles more inflexional. The figure again shows contours of

constant streamwise velocity in the crossflow plane at various streamwise locations. As expected, the initial flow is

relatively two-dimensional with the perturbation varying sinusoidally in the z-direction. The figure also shows a
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fairlyrapiddeparturefromtheinitialtwo-dimensionalstatethatbecomesmorenonharmonicwithincreasingdown-
streamdistance.Therelativedistortionbecomesmaximalsomewheredownstreamof_= 1.3(i.e.,x =0.3_/E)and
thenrapidlydecaysoutwithfurtherincreaseindownstreamdistanceduetotheactionofviscosity.So,unlikethe
large-disturbance-Reynolds-numberlimitthatwediscussedabove,theboundarylayerdoesnotdevelopeasingular-
ityinthiscase.

Theideasdiscussedinthispapercanbeextendedtothecasewheretheupstreamdistortionisunsteady.The
boundarylayerwill filteroutmost,butnotall,oftheunsteadycomponentsofthemotion,andtheflowinRegion®
willbedescribedbytheunsteadyboundary-regionequations.Therelevantsolutiontotheseequationsrequiresex-
tensivenumericalcomputation,whichcan,however,begreatlysimplifiedbyconsideringthesmall-disturbance-
Reynolds-numberlimit.ThishasbeendoneinLeib,Wundrow,andGoldstein(1997).

9. EFFECTOFKLEBANOFFMODESONINSTABILITYWAVES

Atverylow free-stream turbulence levels (~0.1%), even the Schubauer and Skramstad (1948) experiments

show that the nonlinear breakdown of Tollmien-Schlichting waves are directly responsible for the appearance of

turbulent spots. The situation is less clear at intermediate turbulence levels (of the order of 1 percent or so). Figure

13 of Westin et al. (1994) shows that there is enhanced streamwise amplification of the boundary-layer fluctuations

within the band of frequencies corresponding to unstable Tollmien-Schlichting wave growth. However, these fluc-

tuations tend to be broad band, rather than being concentrated in a narrow range about the most unstable frequency

as in the low-turbulence-level experiments. But follow-on experiments by Boiko et al. (1994), in which discrete

frequency ToUmien-Schlichting waves were artificially introduced into the flow, show that sufficiently high levels

of free-stream turbulence (and, therefore, presumably the Klebanoff modes) can produce significant transfer of en-

ergy between frequencies within the unstable bands for Tollmien-Schlichting waves. It may therefore be possible

that unstable Tollmien-Schlichting-type waves growing on a base flow computed from the unsteady boundary-re-

gion equations will exhibit a sufficiently broad band-width to explain the experimental observations. But in order to

verify this, it is necessary to investigate the stability of this unsteady base flow, which is currently being done by the

present authors. However, even without doing the calculation, it is clear that certain portions of an initially

undistorted T.S. wave would grow faster than others as it propagates downstream, since certain portions of the base

flow would be more unstable than others. In fact, the rapidly growing localized Tomlmien-Schlichting waves and/or

Rayleigh instabilities that we discussed in conjunction with the large turbulent Reynolds-number, Klebanoff-mode

solution could be part of a more global T.S. wave system that impinges on the locally destabilized region from up-

stream. This would certainly enhance the local growth of the T.S. wave over the two-dimensional case, even though

the average growth could be much smaller than in the two-dimensional case.

The various mechanisms discussed in this paper could be operative in different flow regimes up to free-stream

turbulence levels of about 5 percent. Beyond that point, it is impossible to detect any turbulent spots or, for that mat-

ter, any other discernible features of the flow.

10. CONCLUDING REMARKS

In all of the experiments of which the authors are aware, no matter what the free-stream turbulence level, the

dominant streamwise velocity fluctuations are of the Klebanoff type, i.e., they are of very low frequency, have a

peak value at a Blasius rl-value of about 2.3, are very elongated in the streamwise direction, and are very narrow in

the spanwise direction. We have noted that this is consistent with the predictions of inviscid rapid-distortion theory,

which shows that the vortex stretching around the plate selectively amplifies the low-frequency component of the

motion. We also pointed out that it is consistent with the solutions to the linearized unsteady boundary-layer

equations which, for the convected (i.e., pressureless) free-stream disturbances that describe the weak free-stream

turbulence, grow linearly with the streamwise coordinate in the low-frequency limit and move out of the boundary

layer (first into a kind of edge layer and then into the free stream) in the high-frequency limit; so that only low-fre-

quency disturbances remain in the boundary layer at sufficiently large distances downstream.

Moreover, since it turns out that the streamwise velocity perturbations are driven by the spanwise gradient of

the spanwise velocity, the streamwise velocity growth rate initially increases with decreasing spanwise length scale.

This trend is eventually reversed by viscous effects in the downstream region where the boundary-layer thickness
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becomesofthesameorderasthespanwiselengthscale,and,inthemostgeneralcase,themotionisgovernedbythe
unsteadyboundary-regionequations.Butevenif thisselectiondidnotoccur,thefree-streamturbulenceand/orthe
mean-flowdistortionwhichdrivetheKlebanoff modes would eventually run out of energy when the spanwise

length scale became too short. These two factors combine to form a selection mechanism for the spanwise length

scale, with one or the other becoming dominant, depending on the nature of the free-stream turbulence. This might

explain the continuing argument among experimentalists as to whether the spanwise length scale is set by the free-

stream turbulence or by the boundary layer itself.
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