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CASE INSTITUTE OF TECHNOLOGY 

ON THE EQUATION fn+gn~l 

BY FRED GROSS 

Communicated by Walter Rudin, July 23, 1965 

There is a close relationship between F e r m a i s last theorem and 
the family of solutions ƒ and g of the functional equation 

(1) xn + yn = 1. 

If, for example, SD denotes the class of all pairs (ƒ, g) of single 
valued functions ƒ and g meromorphic in a domain D and having the 
additional property that , for some z0 in JD, f(zQ) and g(zQ) are both 
positive rationals, then either, for w>2 , (1) has no solutions in SD or 
F e r m a i s last theorem is not true. 

In this note we discuss the solutions of (1) meromorphic in the 
complex plane. We shall call such solutions Mc solutions. 

THEOREM 1. For n = 2, all Me solutions are of the form 

(2) ƒ = and g(z) = . 

PROOF. This follows directly from a theorem on uniformization [ l ] . 
We need only note that for w = 2, (1) is of genus zero and that the 
rational solution (2), with f3(z) —z, maps the whole s-plane in a 1-1 
manner on the Riemann surface of (1). 

THEOREM 2. For n = 3, Mc solutions exist. One such solution is given 
by: 

ƒ = 4-i/e( s>')-i(i + 3-1/2.41/8 ^ 

g - 4~"«( i>)-i(l - 3-w-Vi* p), 

where & is a Weierstrass p-function. 
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PROOF. Tha t Me solutions exist follows from a theorem on uni-
formization [ l ] and the fact that when w = 3, (1) is of genus 1. The 
uniformization theorem assures the existence of elliptic solutions, 
but does not yield any simple method of constructing one. To prove 
tha t (3) is a solution we note that , with w = 3, (1) has solutions if and 
only if Fz — G2 = 1 has solutions. This follows by setting 
F = 3li2(f-g)/(f+g) and G = 41 '3/(f+g). The Weierstrass ^-function 
satisfies a differential equation of the form 

(4) (y')2 = 4;y3 - g2y - g,. 

When g2 and gz satisfy gl — 2 7 g ^ 0 , (4) is satisfied by a Weierstrass 
p-f unction whose periods depend on g2 and g$. Taking g2 = 0 and 
g3= 1, we get for a particular ^-function, that 

( £>')2 « 4 |>» - 1. 

I t follows that (3) is a solution. 
We know from the theory of uniformization [ l ] that, for w = 3, 

(1) has no rational solutions. I t is not known, however, what the 
most general solution is in this case. Thus we have 

CONJECTURE 1. For n = 3, the only Mc solutions are elliptic func
tions of entire functions. 

Me solutions, for w = 3, exist only if (1— g3)1/3 is single valued; 
namely if the branch points 1, e2vilz and eMIZ are attained at any 
point either a multiple of 3 times or not at all. From the theory of 
Nevanlinna [2], using the notation of that theory, one sees that for 
any completely ramified value a, which is attained by ƒ at any point 
at least n times or not at all 

n - 1 
S(a; ƒ) ^ 

n 
Since 20(a; ƒ) g 2, it follows that there exist at most [2n/(n— 1)] 

completely ramified values with the property described above. Thus 
conjecture 1 is included in 

CONJECTURE 2. The only meromorphic functions having three 
completely ramified values with n è 3 are elliptic functions of entire 
functions. 

The above argument also gives us 

THEOREM 3. For w > 3 , Mc solutions do not exist. For n>2 entire 
solutions of (1) do not exist. 

The first part of the theorem also follows from Picard's uniform
ization theorem, once we note that , for w > 3 , the genus of 1 is greater 
than 1. 
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The second part of the theorem can also be proved by more ele
mentary methods [3]. 

Returning to the notation at the beginning of this paper we let C 
be the finite complex plane and set 

S* = {(n, n) | ƒ(*) = ru g(s) = r2; (ƒ, g) E Sc}, 

where ƒ and g are nonconstant and Y\ and r2 denote positive rational 
numbers. We shall say further that (x, y) is a solution of (1) if x 
and y satisfy (1). 

An immediate consequence of Theorem 3 can now be stated. 

COROLLARY 1. For n>2, any set of solutions SQS* is finite, 

Mordell's conjecture [4] that , for n>3 (1) has at most a finite 
number of possible rational solutions, is thus reduced to an interpola
tion problem in the theory of meromorphic functions. For it would be 
sufficient to show that any infinite set of solutions of (1), with # > 3 , 
would have to be a subset of 5^. 

The author has also obtained some results on solutions mero
morphic in a domain D. The problem of characterizing such solutions, 
however, is still open. 
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