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gration proceeds as in the previous case, a grid in the (x, y) plane being chosen and
interpolation among these grid points being used to advance the integration in time.

However, attempts at extending the integration method in an obvious way to general
systems of hyperbolic equations in one space variable have not been successful. While
the method presented here is marginally stable, the attempted generalizations have
suffered from instabilities.

TABLE 1

Values of u(x,t) at t = 2.4.

-.48
-.40
-.32
-.24
-.16
-.08

.00
+ .08
+ .16
+ .24
+ .32
+ .40
+ .44
+ .46
+ .48
+ .50
+ .52
+ .54
+ .56

Exact u

0.004167
0.0208
0.0375
0.0542
0.0708
0.0875
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000

0.0000
0.0000
o.pooo

Computed u

0.02

0.003713
0.020805
0.03738
0.05399
0.07063
0.08748
0.10022
0.09994
0.10000
0.10000
0.10002
0.10028
0.09924
0.09785
0.12222
0.00000
0.00000
0.00000
0.00000

A = 0.10

0.003657
0.02056
0.03694
0.05336
0.06981
0.08621
0.10034
0.10000
0.10000
0.10000
0.10000
0.10008
0.09952
0.10351
0.08834
0.00000
0.00000
0.00000
0.00000

A = 0.20

0.003584
0.02024
0.03637
0.05253
0.06869
0.08484
0.10000
0.10000
0.10000
0.10000
0.10000
0.10000
0.10000
0.09884
0.06096
0.00000
0.00000
0.00000
0.00000

A = 0.30

0.003.508
0.01991
0.03576
0.05165
0.06745
0.08255
0.10072
0.10002
0.10000
0.10000
0.10000
0.10009
0.10111
0.08966
0.04563
0.00000
0.00000
0.00000
0.00000

ON THE EQUIDISTRIBUTION OF PSEUDO-RANDOM NUMBERS*

By J. N. FRANKLIN (California Institute of Technology)

1. Introduction. In the paper [1] J. Moshman discusses a method for generating
pseudo-random numbers. As Moshman points out, his method is an adaptation to decimal
computers of a process used on a binary computer by J. Todd and O. Taussky Todd [2].
Another adaptation to decimal computers was made by M. Juncosa [3]. The method is
used widely for computations in nuclear physics. For example, the method is used by
E. Leshan [4] to study the transport of neutrons.

In this method one chooses an initial number x0 and a multiplier N. Each of these
numbers is represented in a digital computer by a word with a fixed number of digits,
say s digits. The product Nx0 contains 2s digits, of which the s least significant digits
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are used to represent a;, . Now x2 is represented by the least significant s digits of the
2s-digit product, Nxl , and so on.

In a digital computer the number x0 is rational, and the sequence x0 , Xi , x2 , ■ • • is
periodic. In the present paper the sequences x0 , xl , x2 , • • • are considered in which xn
is irrational. By means of the ergodic theorem it is shown that almost all of these sequences
are equidistributed.

2. Application of the ergodic theorem. Let us normalize the number x0 by requiring

0 < x0 < 1. (1)

We set N equal to an integer > 1. Then

x„ = Nxn-i — [iVa;,-,] (n = 1, 2, ••■)» (2)

where [iVz] stands for the greatest integer < Nx. In this notation the Todds, Juncosa,
and Moshman choose, respectively,

Xo = 2" , N = 5"+1
x0 = 10"', N = 34t+1

x0 = 10-, N = 7"+1

where s is the number of digits in a word of the computer, and k is some positive integer.
One may consider more general sequences by fixing a number 0 and setting

xn = Nxn-! + 0 - [Nxn-1 + 0] (n = 1, 2, • • •)• (3)

Without loss of generality, we suppose 0 < 0 < 1. When 0 = 0, we have the definition (2).
The sequence x0 , x^ , • • • is said to be equidistributed if, for every fixed a, b in the

range 0 < a < b < 1,

- £ 1-ti-a as n->®. (4)
^ a<xk<b

A-0, •••,»—1

When N — 1 in (3), we have the case considered in the classical paper [5] by H. Weyl,
who showed that for every value of x0 the sequence (3) where N = 1, is equidistributed
if and only if 0 is irrational.

By Weyl's result the sequences (3) where iV = 1, are equidistributed for all x0 and
almost all 0. If the integer N is greater than 1, we shall show that the sequences (3) are
equidistributed for all 0 and almost all xn .

Theorem. Let j{x) be an arbitrary integrable function in the sense of Lebesgue. Let
0 < x0 < 1, and let a sequence x0 ,x, , x2 , • ■ • be formed according to (3), where N is a
fixed integer > 1 and 0 is a fixed number with 0 < 0 < 1. Then for almost all x0

I S fa) - f fix)
k" 0 JO

dx as n —> °° . (5)

The equidistribution (4) for almost all x0 follows at once from the theorem if f(x)
is defined to be the characteristic function of the interval a < x < b, which takes the
value 1 or 0 according as x lies within or outside of the interval.

In order to prove the theorem we make use of a statement of the ergodic theorem
due to F. Riesz [6]:
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"Let a measurable set 12 be given, of finite or infinite measure, the corresponding
measure and integral being defined according to Lebesgue, or more generally, by means
of a distribution of positive masses. That being the case, let us designate by fa point-
transformation which is single-valued (but not necessarily one-to-one) from 12 onto
itself; and let us suppose that T conserves measure in the sense that, E being a measur-
able set, TE its transform, and E' the set of points P whose images appear in TE, the
sets E' and TE have the same measure. Then, if fi(P) is an integrable function and
MP) = h(Tk~lP), the arithmetic mean of the functions /i , /2 , • • • , /„ converges almost
everywhere, as n —> , to an integrable function <p(P) which is invariant (almost every-
where) under T."

Riesz gives an elegant proof of this form of the ergodic theorem, which is more general
than G. Birkhoff's original form [7] in that the transformation T is not required to have
a unique inverse. After completing the proof, Riesz writes without elaboration:

"Let us add finally that in the case where 0 is of finite measure, it follows by inte-
gration term by term (which is permitted in this case because of the uniform integrability
of the terms)

[ viP) = f MP)."J a J a

A proof of this statement is written out at the end of this paper.
In our case the set 0 consists of the interval 0 < x < 1. The transformation T is

Tx = Nx + 6 - [Nx + 6]. (6)
Each point x in 0 is the image under T of exactly N points:

T k + x - 6 _ \k = 0, • • • , N — 1 if x > e, ^
^ Ifc = 1, • • • , N if x < 6.

To show that T preserves measure, it is sufficient to show that

f f(Tx) dx = f ](x) dx (8)
Jo JO

for all integrable functions f(x). In fact, if j{x) is the characteristic function of a measur-
able set TE, then f(Tx) is the characteristic function of the set E' of all points whose
images lie in TE, and Eq. (8) states that the sets TE and E' have the same measure.
By the periodicity of the function x — [x], we have

f j(Tx) dx = f f(Nx + 6 — [Nx + 0]) dx
Jo Jo

= h Jo + 9 ~ ̂  + ̂  dy
= f 1(y + 9 - [y + 0]) dy

Jo

= Je 1(y - [2/]) dy

= f J(y) dy,
Jo

which establishes the required formula (8). Now we can prove our theorem.
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Proof of the theorem. By the definitions (3) and (6),

x„ = Tkx o (k = 0,1,2,.-.). (9)

By the ergodic theorem, there exists an integrable function <p(x0) defined almost every-
where for 0 < x0 < 1 such that

- X /(£*) —i> <p(xo) a.e. as n-* <*>, (10)
n— 1

n *-o

<p(Tx0) = <p(x0) a.e., (11)

where "a.e." means "almost everywhere." To prove the theorem we must show that
the function <p(x0) is almost everywhere equal to a constant, namely the average value
of /:

<p(x0) = / f(x) dx a.e. (12)
Jo

Let the integrable function <p(t) have the Fourier series
oo

^2 ck exp (2kirit). (13)
k"-co

According to the theorem of Fejer and Lebesgue [8], p. 415, this series is summable by
arithmetic means to the sum <p(f) for almost all t.

We shall show that

ck = exp ( — 2kiri6)cNh (k = 0, ± 1, ± 2, • • •). (14)

By the invariance (11) of <p, we may write

Cjvib = [ <p(Nt + 6 — [iVi + 0]) exp (—2Nkwit) dt
Jo

l r"= N J ^ " _ ^ ^ ^ (15)

By the periodicity of the exponential function,

N
1 r"— <fi(t + 6 — [t + 0]) exp ( — 2kirit) dt

iV Jq

— f <p(t + 6 — [i + 0]) exp (—2kirit) dt
Jo

= f <p(t) exp [—2kiri(t — 6)] dt = exp (2kiri6)ck . (16)
Jo

This establishes (14).
By iterating (14) r times and taking absolute values, we find

| ck | = | cm |, with m = Nrk (r = 1, 2, ■ • •). (17)

But the Fourier coefficient cm —*■ 0 as m —» ± . Keeping k fixed in (17) and letting
r —* co, we find

ck = 0 if k 0. (18)
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Therefore, the Fourier series (13) contains only the constant term c0 . Then the sum by
arithmetic means equals c0 , and by the Fej6r-Lebesgue theorem

ip{t) = c0 a.e. (19)

It remains only to show that the constant cn has the value

Co = [ 1(x) dx. (20)
Jo

This follows immediately from the statement fv(P) = JM-P), which is appended to the
ergodic theorem. In our case, by (19),

Co = / <p(t) dt = / ftx) dx.
Jo Jo (21)

This completes the proof of the theorem.
3. Proof that J<p(P) = J7i(P). As Riesz suggests, this statement, which is appended

to his generalized ergodic theorem, may be proved by Lebesgue's convergence-theorem
if the underlying space 12 has finite measure.

For any number X > 0 we may define a bounded function g.{P) equal to fi(P) or
to 0 according as | fi(P) | < X or | /i(P) | > X. We may then define the remainder h^P) =
/,(P) — g,(P). Let an arbitrary number e > 0 be given. Since fi(P) is integrable, we may
choose a number X = X(e) so large that the corresponding function h^P) satisfies the
inequality

f I UP) I < (22)J n

We now apply the ergodic theorem separately to the functions g,(P) and h^P),
obtaining limits

limi £ gk(P) = X(P)■ n ~
a.e., (23)

lim - Z UP) = t(P) a.e. (24)
n-.ra Tl 4_ 1

Addition of these equations gives

<p{P) = x(P) + MP) a.e. (25)
Since every mean value appearing on the left-hand side of (23) has absolute value

< X for all P, and since m(0) < we may apply Lebesgue's theorem of bounded
convergence to obtain

Hm [ gt(P) = [ X(P). (26)
n-co U i J fl Jfl

Since fgt(P) = fgt(P) for all k, (26) gives

/ <7! CP) = / x(P). (27)

Even though the function h^P) is integrable, it is not obvious that all of the mean
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values

1 i; h(P) (» = i,2, •••)

are majorized by a single integrable function H(P). Therefore, to formula (24) we apply,
not Lebesgue's theorem, but Fatou's theorem. Using the inequality (22), we find

f | HP) I < lim / U t, UP)
n—*oo J I 1

< €.
(28)< ljmi E / I UP) I = / I UP)

n—»oo

Combining our results, we find

I / MP) - f <p(.P) = j f gm - I x(P) + / Ai(P) - / ^(P) |

< | / (7.(P) - / X(P) | + / I *i(P) I + / I ̂ (P) I
< 0 + € + e. (29)

Letting e —>• 0, we obtain the required result //i(P) = JV(P).
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SIMULTANEOUS IN VARIANCE OF GENERALIZED SPHERICAL
HARMONICS UNDER THE OPERATIONS OF TWO ROTATION

GROUPS*
By R. N. D'HEEDENE (Cornell University)

Abstract. A method is found for evaluating the coefficients of a sum of generalized
spherical harmonics so that the sum will be simultaneously invariant under two rotation
groups. The coefficients for a sum of ordinary spherical harmonics invariant under
each individual group must first be known.

*Reeeived May 15, 1957.


