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We present a new methodology to estimate the contact angles of sessile drops from molecular simu-
lations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114,
1954–1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density
contour with average coarse-grained density value equal to half of the bulk liquid density is identified
as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average
LV interface and unit normal vector to the solid surface, as a function of the distance normal to the
solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase con-
tact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively
easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a
featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an
SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our method-
ology for the first two systems are shown to be in good agreement with the angles predicted from
Young’s equation. The interfacial tensions required for this equation are computed by employing the
test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the
widely adopted spherical-cap approximation should be used with caution, as it could take a long
time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water
molecules initiated in a lattice configuration on a solid surface. But even though a water drop can
take a long time to reach the spherical shape, we find that the contact angle is well established much
faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation
dynamics. Making use of this observation, our methodology allows a good estimation of the sessile
drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the
need for long simulation times to reach the spherical shape. ➞ 2018 Author(s). All article content,

except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5021088

I. INTRODUCTION

The contact angle, the angle between a two-fluid inter-
face and a solid substrate, is crucial in the characterization
and quantification of the wetting properties and wettability
characteristics of fluid-solid systems.1–4 It is the result of the
balance between the interfacial tensions of the different phases
involved and is expressed by Young’s equation.5 When one of
the two fluids is liquid and the other is its own vapor, Young’s
equation is written as

cos θY =
γsv − γsl

γlv
, (1)

where θY is Young’s contact angle and γsv, γsl, and γlv are
the solid-vapor, solid-liquid, and liquid-vapor (LV) interfa-
cial tensions, respectively. The contact angle then plays the
role of a boundary condition via Young’s equation. It is

a)Electronic mail: s.kalliadasis@imperial.ac.uk
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noteworthy that the equation reflects the mechanical equilib-
rium in a direction parallel to the solid surface at the three-
phase contact line (the line formed by the intersection between
the two-fluid interface and the solid surface). But there is also
a relation in the normal direction which, in the framework of
the statistical mechanics of classical fluids, can be shown to be
closely connected to the concept of disjoining pressure (e.g.,
Refs. 4 and 6–8).

Two popular approaches to obtain the contact angles from
molecular dynamics (MD) simulations have been followed
over the years. In one of them, the contact angle is calcu-
lated by applying Young’s relation [Eq. (1)] with the interfacial
tension values obtained by simulating the corresponding pla-
nar interfaces. Early studies followed the mechanical route9

involving the calculation of the components of the pressure ten-
sor to compute the required interfacial tension values (which
in turn are used in the calculation of the contact angle from
Young’s relation). In addition to the mechanical route, there
have also been a number of new techniques proposed to cal-
culate interfacial tensions, such as the test-area perturbation
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method based on the thermodynamic definition of interfa-
cial tension10–12 and free-energy-based methods which rely
on transition matrix Monte Carlo simulations.13–15 In the
phantom-wall method,16,17 the work of adhesion (W = γlv

+ γsv ☞ γsl) is computed using thermodynamic integration
and the contact angle is calculated in conjunction with the LV
interfacial tension.

Although this first approach has been widely used for flu-
ids on planar substrates, its application for substrates with
topographical and chemical heterogeneities is non-trivial.
Moreover, to study three-phase contact line features such as
line tension, dynamic wetting, and spreading effects, simula-
tion of planar interfaces is not helpful. For these purposes, a
second approach consisting of a direct simulation involving
stabilisation of a sessile drop of a given fluid on the substrate
of interest, and analysing the interface to extract the contact
angle, is the preferred route. Once the droplet is stabilised, the
local fluid density is calculated by slicing the simulation box
into bins, counting the number of particles in each bin, and
calculating the ratio of the number of particles in a given bin
to the volume of the bin. The collection of interfacial bins, bins
with average density equal to half of the bulk liquid density
(iso-density contour), constitutes the LV interface. In general,
the droplet radius [r(z)] as a function of normal distance from
the solid surface (z) is then fitted to a circle,18–21 in effect
assuming the LV interface to be a spherical cap. The contact
angle is calculated as the angle of the tangent of the fitted circle
with the solid surface at the three-phase contact line. In this
approach, it is a common practice to ignore the simulation data
below a pre-defined cut-off distance to avoid the influence of
strong fluid density fluctuations close to the substrate on the
contact angle.

Not surprisingly, there have been a large number of studies
considering how the two approaches outlined above comple-
ment each other, for instance, in the case of Lennard-Jones
(LJ) sessile drops. Saville22 in his pioneering study of 1977
computed the contact angles for a LJ fluid on a LJ 9-3 pla-
nar surface using MD simulations and reported disagreement
between the values obtained from the two methods leading
to the conclusion that Young’s equation [Eq. (1)] was not
valid for nanodrops. It is important to note that Saville visu-
ally approximated the tangent to the iso-density contour close
to the wall for the contact angle and that the maximum sys-
tem size considered in his study was limited to 1205 particles.
Interestingly, in a later study, Nijmeijer et al.23–25 repeated the
comparison and concluded that Young’s equation was valid
in the case of nanodrops. But instead of the visual approxi-
mation of the tangent taken by Saville, Nijmeijer et al. fitted
the LV interface to a circle and evaluated the tangent from
the equation of the circle, thus obtaining the contact angle.
In essence, the difference in the results of the two studies
can be traced back to the level of rigor in the estimation
of the tangent to the interface. In recent years, independent
studies by Ingebrigtsen and Toxvaerd,26 Weijs et al.,20 and
Peng, Birkett, and Nguyen21 have confirmed the validity of
Young’s equation [Eq. (1)] using calculation of contact angles
of nanodrops via MD simulations. Furthermore, in addition
to validating Young’s equation, the agreement between the
two approaches also serves as a benchmark of the various

methods used for sessile drops and concomitant contact angle
calculation.

Despite the considerable attention that nanodrop simu-
lations have received for several decades and even though
analysis of LJ sessile drops using the spherical-cap approx-
imation is now well established, there are still a degree of
uncertainty and conflicting reports in its application for liq-
uids with anisotropic interactions, specifically in the case of
water drops. Hautman and Klein27 in their study of micro-
scopic wetting phenomena on different substrates fitted the
LV interface of the water sessile drop to a sphere: the radius
of the droplet [r(z)] vs the normal distance from the solid sur-
face (z) was fitted to a circle—which is what we have referred
to as the spherical-cap approximation. Later studies involving
water sessile drops28–33 adopted the methodology of Hautman
and Klein to estimate sessile drop contact angle values. In
these studies, a variation of the contact angle values for dif-
ferent drop sizes was noted and was attributed to the effect of
line tension. The macroscopic contact angle, i.e., the contact
angle of an infinite size droplet, was estimated by extrapolat-
ing the contact angle values of droplets of different sizes. The
effect of line tension has also been reported for LJ drops20,21

but is not as significant as that for water drops.29,31,34 Inge-
brigtsen and Toxvaerd26 cautioned that line tension might be
inclusive of the other effects, such as curvature dependence
of the LV interfacial tension, but also of shortcomings of
the particular ways the contact angle is estimated from the
drops. In fact, the subject of line tension and its effects on
contact angle remain to this day an active area of debate and
research.

Setting aside the possibility of line tension effects, let us
also briefly review studies centered on water which have con-
sidered other approaches to estimating the sessile drop contact
angles. Giovambattista, Debenedetti, and Rossky35 and Li and
Zeng36 relaxed the assumption of sphericity, adopting instead
a generic quadratic fit of the r(z) vs z profile, while Zhang
et al.37 used a parabola. Unfortunately, the reasons for the
choice of non-circular fits to the r(z) vs z data and a com-
parison to the corresponding macroscopic (Young’s) value are
not provided in these studies. More recently, Santiso, Herdes,
and Müller34 have followed a different approach to extract the
water sessile drop contact angle, with emphasis on addressing
the large fluctuations observed in the shape of the LV inter-
face. These authors explored large drops, of ∼50 nm diameter
(∼9× 105 beads), using a coarse-grained water model based on
a Mie potential,38 in which a single bead represents two water
molecules. They used surface meshing techniques to define a
geometric surface by treating the interfacial fluid molecules as
a point cloud data set (“local surface”) and calculated the con-
tact angle as the arc-cosine of the component of the averaged
normal to the interface along the normal to the solid surface.
The authors concluded that one may need to simulate sessile
drops with approximately half a million water molecules to
recover the macroscopic contact angle. Along the same lines,
Khalkhali et al.39 applied the Quickhull40 approach to trian-
gulate the sessile drop LV interface and obtained a probability
distribution of the contact angle values from the normals to the
triangles, but with a significant spread in the contact angle val-
ues. In addition, Shih et al.41 and Włoch et al.42 have reported
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simulation times of 100 and 50 ns, respectively, to be required
for the contact angle to reach equilibrium for a system of 2000
water molecules on a graphite surface, which are very differ-
ent to the time scales usually encountered in previous literature
(5-10 ns).

Here, we propose a new methodology to estimate sessile
drop contact angles and validate it by comparison with Young’s
equation. The interfacial tensions required in the equation are
computed by employing the test-area perturbation method10–12

for the corresponding planar interfaces. The angles between
the unit normal vectors to the average LV interface and unit
normal vector to the solid surface, as a function of the distance
normal to the solid surface, are calculated and extrapolated to
the three-phase contact line. Not only does the methodology
not require the presumption of the spherical-cap approxima-
tion of the LV interface but it also allows us to scrutinize the
geometry of the interface by looking at the cosines of the
angles as a function of the normal distance from the solid
surface (with a linear trend reflecting the spherical shape of
the LV interface). (For comparison purposes, the spherical-
cap approximation of the LV interface is adopted for LJ drops.)
The density calculation is based on the Gaussian convolution
technique proposed by Willard and Chandler,43 which makes
it easier to compute the normal at a point on the LV inter-
face; details are discussed in Sec. III A. The spherical-cap
approximation is outlined in Sec. III B. One of our objectives
is to shed light on the ambiguity regarding system sizes and
simulation times of drops, in particular, water drops. For this
purpose, we consider three prototypical systems: (i) a LJ drop
on a LJ 9-3 surface, (ii) a water drop on a LJ 9-3 surface,
and (iii) a water drop on a graphite surface. The extended sin-
gle point charge (SPC/E)44 model is used for water with the
forcefield details given in Sec. II B. Different contact angle sce-
narios are considered by varying the fluid-substrate interaction
strength.

Our study reveals that water sessile nanodrops can take
a long simulation time to equilibrate to a spherical shape, of
the order of 100 ns starting from a lattice configuration. As
may be expected, this time scale varies with different initial
configurations as well as different fluid-substrate interactions,
and hence it is not easy to a priori estimate the simulation time
required for the equilibration. In this context, the spherical-
cap approximation has to be used with care. With sufficiently
long simulation time, so that the water sessile drop reaches the
spherical shape, the spherical-cap approximation yields good
estimates of the contact angle values, without the need to resort
to large system sizes (e.g., as large as half a million molecules).
We also find that the contact angle relaxes much faster than
the typical time scale required for a sessile drop to adopt the
spherical shape (i.e., if the spherical-cap approximation is to be
used, a longer simulation time is usually needed starting from a
lattice configuration). Moreover, it is shown that sessile drops
follow a constant-contact-angle relaxation dynamics toward
the spherical shape.

II. MOLECULAR MODEL AND SIMULATION DETAILS

We consider two fluids, Lennard-Jones (LJ) fluid and
SPC/E water, and two surfaces, a featureless LJ 9-3 surface

(for both LJ fluid and water), and a graphite surface for water.
Further details are provided in the following.

A. Lennard-Jones fluid

The truncated LJ potential45 is given by

u∗LJ(r
∗) =


4
[
(

1
r∗

)12
−

(

1
r∗

)6
]

if r∗ ≤ r∗c

0 otherwise
,

and the fluid–LJ 9-3 surface potential (function only of the
distance normal to the solid surface) is given by

u∗sf (z
∗) =



ε∗sf

[
2
15

(

σ∗sf
z∗

)9
−

(

σ∗sf
z∗

)3
]

if z∗ ≤ z∗c

0 otherwise
,

where reduced units defined in terms of the fluid-fluid col-
lision diameter σff and fluid-fluid potential well depth εff

are used. Here r∗ = r/σff is the distance between two fluid
molecules, ε∗sf = εsf/εff is the solid-fluid potential well depth,
σ∗sf = σsf/σff is the solid-fluid collision diameter, r∗c = rc/σff

is the fluid-fluid potential cut-off distance, z∗ = z/σff is the
solid-fluid distance in the z-direction, z∗c = zc/σff is the solid-
fluid potential cut-off distance in the z-direction, ρ∗ = ρσ3

ff
is the fluid density, T ∗ = TkB/εff is the temperature, and kB is
the Boltzmann constant. The reduced fluid-fluid potential well
depth is ε∗ff = 1 and the fluid-fluid LJ interaction and solid-
fluid LJ interaction are cut-off at r∗c = z∗c = 5, without any tail
correction.

B. Water

In our simulations, water is represented using the rigid
SPC/E model.44 This is a three site model with a LJ site cen-
tered on the oxygen (O) atom, with the potential characterized
by well depth εOO = 0.155 kcal/mol and collision diameter
σOO = 3.166 Å. In this model, the oxygen atom is associated
with a charge qO = ☞0.8476 e (1 e = 1.602 × 10☞19 C) and
the two hydrogen atoms are associated with qH = +0.4238 e,
placed at a distance rOH = 1.000 Å from the oxygen atom form-
ing an angle EHOH = 109.47◦. The total interaction potential
is a combination of a truncated-LJ potential between oxygen
atoms in the water molecules and the electrostatic potential,
i.e.,

u(r) = uLJ(r) +
1

4πǫ0

qiqj

r
,

where qi and qj are the charges on atoms i and j, respectively,
and ǫ0 = 8.854 × 10☞12 F/m is the permittivity of the vacuum.

The LJ interaction uLJ(r) between two oxygen atoms,
separated by distance r, is given by

uLJ(r) =


4εoo

[
(

σoo
r

)12
−

(

σoo
r

)6
]

if r ≤ rc

0 otherwise
.

We do note however, that despite the academic value
of SPC/E as a prototypical molecular model for water, if
direct comparisons with experimental data are envisaged, other
options are advisable, such as by Vega and de Miguel.46

C. Simulation details

In the simulations involving water, the fluid-fluid and the
fluid-solid LJ interactions are cut-off at a distance of 12.5 Å,
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without the tail correction. The real-space electrostatic inter-
action is also cut-off at 12.5 Å, and the long-range electrostatic
interactions are handled using the particle-particle-particle
mesh (pppm) method.47 The SHAKE algorithm48 is used to
maintain the rigidity of the water molecules. In the case of
water on graphite, two graphene layers separated by 3.420 Å
in the z-direction (periodic in the x- and the y-direction) are
prepared as a substrate. As in previous studies,28,29,31 the car-
bon atoms in the graphite are frozen. The interaction between
the oxygen atom in water and a carbon atom in graphene is
modeled via a 12☞6 LJ potential characterised by εCO = 0.094
kcal/mol and σCO = 3.190 Å, and the same cutoff of 12.5 Å is
applied, without any tail correction.

All simulations are carried out in the canonical ensemble
(constant number of particles, volume, and temperature) using
the Nosé-Hoover thermostat in LAMMPS, an open source
MD software.49 In bulk fluid simulations, periodic bound-
ary conditions are applied in all three directions. Simulations
in the presence of a substrate are carried out with periodic
boundary conditions only in the x- and the y-direction and non-
periodicity in the z-direction. Specifically, at the top side of the
non-periodic dimension, we place a reflective wall (velocity of
a fluid molecule is simply reversed) for the case of a LJ fluid or
a repulsive wall (a LJ 9-3 surface with the fluid-substrate poten-
tial cut-off distance set as σoo) for the case of water. Electro-
statics in slab geometries (periodic in the x- and the y-direction
and non-periodic in the z-direction) are handled using the
method proposed by Yeh and Berkowitz50 and implemented
in LAMMPS. Different contact angle scenarios are generated
through different values of εsf and keepingσsf equal toσff. For
water on graphite, all long-range electrostatic interactions are
pre-defined from bulk studies,44 while the interaction param-
eters are taken from Werder et al.,28 which were optimized to
reproduce the macroscopic contact angle of water on graphite,
86◦. Although Werder et al. truncated electrostatic interactions
at 10 Å, we considered long-range electrostatic interactions
in our study. Let us also note here the recent experimental
findings concerning the effects of defects on the intrinsic wet-
tability of graphite51 and also rigorous forcefield developments
through parameterizing water-graphene nonbonded interac-
tions from ab initio calculation data52 or using the work of
adhesion.53

For all sessile drop simulations, the initial configuration
consists of fluid molecules arranged in a lattice on a solid sur-
face. In the case of a LJ sessile drop on a LJ 9-3 surface, we
consider 5072 particles in a simulation box with dimensions
60 × 60 × 50. The system is equilibrated for 5 × 105 time steps
until a sessile drop is formed and is followed for 5 × 105 time
steps in the production stage. During this stage, snapshots are
stored every 500 time steps, a total of 1000 snapshots, for fur-
ther analysis and estimation of the sessile drop contact angle
value. In the case of water on the LJ 9-3 surface, 4000 water
molecules are considered in a simulation box with dimensions
112 Å× 112 Å× 81 Å, except for the case εsf = 1.8 kcal/mol for
which a larger simulation box with dimensions 180 Å × 180 Å
× 81 Å was required to stabilize the sessile drop. For the water
sessile drops, simulation times are of the order of ∼70–140 ns.
The reasons for these long simulation times are explained
in detail in Sec. V C. For the system of water on graphite,

2197 water molecules are placed in a simulation box with
dimensions of 88.56 Å × 89.48 Å × 90.00 Å. These lat-
eral dimensions correspond to 6048 carbon atoms in total,
arranged in two graphene layers separated by 3.42 Å in the
z-direction.

III. METHODOLOGY FOR THE CONTACT ANGLE
CALCULATION

A. Identification of the LV interface

Instead of the traditional number-density calculation, car-
ried out by slicing the simulation box into bins and counting
the number of molecules in each bin, Willard and Chandler43

have proposed the use of Gaussian convolution for spatial
coarse-graining to calculate the (coarse-grained) density and
identify the interface. The spirit of their method is similar to
the smoothed particle hydrodynamics (SPH) approach applied
at the continuum level, proposed by Gingold and Monaghan54

and used by a number of other authors.55,56 SPH renders a
smooth and continuous field from a given set of discrete points;
for example, from a set of atomic coordinates, it provides a
smooth and continuous density field. Instead of the Gaussian
kernel used in this study to obtain coarse-grained density, other
kernels could also be used.57,58 Willard and Chandler used the
coarse-grained density obtained with their method to identify
the water LV interface and also the liquid-liquid interfaces
near melittin dimers. Here, we adopt the same approach to
calculate the coarse-grained density at any point in the sim-
ulation box. In addition, the Willard and Chandler approach
provides a straightforward way to calculate the outward normal
to the average LV interface, a key quantity in our methodol-
ogy to estimate the sessile drop contact angle. Furthermore, the
Willard and Chandler approach is easy to implement and pro-
vides a continuous density field. Though this approach avoids
the problem of selecting an appropriate bin size, an appropri-
ate choice of coarse graining length is needed and it is chosen
based on the far-field density profile convergence. Specifically,
the coarse-grained density at position r and time t is given by

ρ̄ (r, t) =
N

∑

i=1

φ (|r − ri(t)|; ξ) , (2)

where the sum is taken over the number of fluid molecules
N, φ(r; ξ) is the choice of spatial coarse-graining, and ξ is
the coarse-graining length. A convolution with a normalized
Gaussian function given by43

φ(r; ξ) = (2πξ2)−3/2 exp
(

−r2/2ξ2
)

(3)

is chosen for the spatial coarse-graining. The density at any
position at a given time is computed using Eq. (2), and the
iso-density contour with the average density 〈 ρ̄ (r)〉 equal half
of the bulk liquid density is identified as the average LV inter-
face. Although the summation in Eq. (2) is over all molecules,
the contribution of molecules at larger r is negligible and
the summation is limited to particles satisfying the criterion
r ≤ 3ξ, to reduce the computational cost.43

1. On the choice of ξ

Computation of the coarse-grained density using Eqs. (2)
and (3) requires an appropriate choice of ξ. In this study, the
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mean-density profile of the fluid with respect to the instan-
taneous LV interface (the planar LV interface on average) is
used for the selection of ξ. The simulation setup for the mean-
density profile calculations is the same as that used for the
LV interfacial tension calculations in Sec. IV, i.e., liquid and
vapor phases coexisting with two planar LV interfaces. For
a certain trajectory in the simulation and a given ξ value, an
instantaneous LV interface is identified as the two-dimensional
manifold with coarse-grained density [Eq. (2)] as half of
the bulk liquid density. The proximity of a fluid molecule
to the instantaneous LV interface, at time t, is computed
using43

ai(t) = [s(t) − ri(t)] · n̂(t)
] ����s(t)=s∗

i
(t)

, (4)

where s(t) represents a point on the instantaneous LV inter-
face identified, ri(t) is the position of the ith molecule, s

∗(t)
is the nearest point to ri(t) on the instantaneous LV inter-
face, and n̂(t) is the unit vector corresponding to the normal
~n(t) = −∇ ρ̄(r, t)|r=s(t) on the instantaneous LV interface.

The mean-density profile as a function of normal dis-
tance from the instantaneous LV interface (denoted as d) is
calculated as43

ρinst(d) =
1

L2

〈

∑

i

δ(ai − d)

〉

, (5)

where L is the length of the simulation box in the direction
parallel to the LV interface. For different ξ values, ρinst(d) is
calculated and a ξ value is chosen for which the far-field value
of ρinst(d) does not change with further increase in the value
of ξ (and is also found to be close to the bulk liquid density).
This ρinst(d) is obtained by averaging over 10 000 snapshots
in the production stage.

B. Calculation of the contact angle

Once the average LV interface of the sessile drop is identi-
fied, two methods are used to compute the sessile drop contact
angles. The first method (Method I) is the usual spherical-cap
approximation and the second method (Method II) is more
general in that it involves the calculation of the angle between
the (outward) unit normal to the average LV interface and the
unit normal to the solid surface. Clearly, Method II does not
require the a priori spherical-cap approximation of the LV
interface.

1. Method I

In the first method, the average LV interface of the sessile
drop is assumed to be a spherical cap and is fitted, using least
squares regression, to the equation of a sphere, i.e.,

(x − xc)2 + (y − yc)2 + (z − zc)2
= r2, (6)

where (xc, yc, zc) and r are the center and radius of the sphere,
respectively, fitted to the average LV interface and (x, y, z) rep-
resent points on this interface. A circular contour [cf. Fig. 1(a)]
is chosen from the sphere centered at (xc, yc, zc), and the con-
tact angle (θI) is calculated using tan α = zc√

r2−z2
c

and θI = α

+ 90◦. As mentioned previously, simulation data closer to the
solid-surface than a cutoff of rc = 2.5 σff are ignored to avoid
the influence of large density fluctuations.

2. Method II

In the second method [cf. Fig. 1(b)], the angles formed
by the (outward) unit vector normal to the average LV inter-
face ( ˆ〈n〉) with the unit vector normal to the solid surface
(n̂solid surface, parallel to the positive z-axis) are calculated as

β(z) =
〈

arccos
(

ˆ〈n〉 · n̂solid surface

)〉 ����z
, (7)

where the unit normal is given as

~n = −∇ ρ̄ = −
∑

i

∇φ (|r − ri(t)|; ξ) . (8)

The outside average in Eq. (7) is taken over interface points
and as a function of normal distance from the solid sur-
face (z), and θII = β(z = 0) is the contact angle. The pres-
ence of large density oscillations close to the wall limits
the direct use of Eq. (7) at the three-phase contact line
(z = 0) to estimate the contact angle. Instead, molecular sim-
ulation data close to the solid surface are ignored, and the
angle in Eq. (7) as a function of z is computed, fitted, and
extrapolated to the three-phase contact line to estimate the
sessile drop contact angle (similar to the corresponding cal-
culation in Method I). But in Method II, we have not made
any assumptions regarding the shape of the average LV inter-
face. It is noteworthy that the linearity of cos β(z) vs z would
reflect a constant curvature configuration, hence a spherical
cap.

FIG. 1. Schematic of the geometric considerations for the sessile drop contact angle calculation using two methods. (a) Method I, spherical-cap approximation.

A circular contour is chosen from the sphere of radius r centered at (xc, zc). tanα = zc/

√

r2 − z2
c and θI = α + 90◦; (b) Method II. β = arccos

(

ˆ〈n〉 · n̂solid surface

)

is the angle between the unit vector normal to the average LV interface (〈n̂〉) and unit normal to the solid surface (n̂solid surface). The filled black circles represent
points on the LV interface, and the densely dotted line represents a part of the interface.
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IV. TEST-AREA SIMULATIONS

For comparison, the LV, solid-liquid, and solid-vapor
interfacial tension values required in Eq. (1) are obtained using
the test-area perturbation method.10,12 For a system with N

particles in a volume V and at a temperature T, the interfacial
tension γ can be obtained from the change in free energy as a
result of change in the interfacial area A of the corresponding
interface at constant volume, i.e.,

γ =

(

∂F

∂A

) ����N ,V ,T
= lim
∆A→0

∆F

∆A
. (9)

The change in the Helmholtz free energy can be calculated
as10

∆F = F1 − F0 = −kBT ln〈exp (−∆U/kBT )〉|0, (10)

where ∆U = U1 ☞ U0 is the change in the internal energy of
the system as a result of a perturbation in the interfacial area
∆A = A1 − A0 effected according to ∆A/A0 = 5 × 10−4 at
constant system volume. The subscripts 1 and 0 are used to
denote the perturbed and the original systems, respectively.
The angular brackets represent the average of a quantity over
different snapshots. During the test-area perturbation, all coor-
dinates in the reference state are perturbed by preserving the
scaled centre of mass coordinates of the molecules. After the
energy in the perturbed state is computed, the coordinates are
reverted back to the reference state.

For both LV and solid-liquid interfacial tensions in the
case of a LJ fluid on a LJ 9-3 surface, 5832 particles are sim-
ulated in a box with dimensions 15 × 15 × 60 units (reduced
with σff). The system is equilibrated over 10 × 105 time steps
and followed by 50 × 105 time steps in the production stage,

with a reduced time step t∗ = t

√

εffσ
2
ff/mf = 0.005, where

mf is the mass of the fluid molecule. At every 10th time step
during the production stage, the energy change as a result of a
perturbation in the interfacial area is calculated and stored. For
the water LV and solid-vapor interfacial tension calculations,
simulation cell dimensions of 34.1 Å × 34.1 Å × 102.3 Å are
chosen with a total of 1331 molecules. The solid-liquid inter-
facial tension is calculated in a simulation cell of dimensions
34.1 Å × 34.1 Å × 68.2 Å with the same number of molecules.
The system is equilibrated for 20 × 105 time steps followed
by 100 × 105 time steps in the production stage, with a time
step of 2 fs. At every 100th time step during the production

stage, the energy change as a result of perturbation in the inter-
facial area is calculated and used in Eq. (10) to compute the
interfacial tension values.

V. RESULTS AND DISCUSSION

A. Test-area perturbation method

We first validate our test-area perturbation calculations by
comparing our computed LV interfacial tension values with
those in the literature. In the case of the LJ fluid, we find that
our computed LV reduced interfacial tension, γ∗(= γσ2

ff/εff )
= 1.06 ± 0.01, is in good agreement with the values obtained
by Gloor et al.10 (γ∗ = 1.086 ± 0.023) and Peng, Birkett, and
Nguyen21 (γ∗ = 1.089 ± 0.018) at the same reduced tempera-
ture T ∗ = 0.7. For SPC/E water, at T = 300 K, our computed
LV interfacial tension γ = 59.91 ± 1.10 mJ/m2 is also in good
agreement with the value of 60.8 mJ/m2 obtained by Vega
and de Miguel.46 The same method is used to compute the
solid-liquid interfacial tension for the LJ and water systems
and the solid-vapor interfacial tension for the water system.
For water on LJ 9-3 surface, two additional test-area pertur-
bation simulations are performed to obtain γsv + 2γlv and
γsl + γlv. These two quantities in conjunction with γlv are
used to calculate the Young’s contact angle (θY). Based on the
previous study by Peng, Birkett, and Nguyen,21 the solid-vapor
interfacial tension of the LJ system is assumed to vanish, as its
contribution is negligible at T ∗ = 0.7. We have also considered
different substrate-fluid interaction strengths (εsf) in order to
model different contact angle scenarios. The variation of θY

as a function of εsf is shown in Figs. 2(a) and 2(b) for both
the LJ fluid and SPC/E water systems, respectively, in contact
with a LJ 9-3 surface. The corresponding contact angle values
can be found in Tables I and II.

B. LV interface of the sessile drop

Computation of the coarse-grained density and identifi-
cation of the sessile drop LV interface requires a ξ value in
Eqs. (2) and (3). An appropriate value is chosen with the help
of the same setup as that used in the test area method for the
calculation of the LV interfacial tension, i.e., a stabilized liquid
block in contact with two vapor phases forming two planar LV
interfaces. The mean-density profile with respect to the instan-
taneous interface (ρinst) is calculated, following the procedure

FIG. 2. Variation of Young’s contact
angle, (θY), as a function of LJ 9-3
surface-fluid interaction strength, εsf,
and reduced strength, ε∗sf = εsf/εff .
(a) and (b) correspond to LJ fluid and
SPC/E water on a LJ 9-3 surface,
respectively. Interfacial tension values,
required for the Young’s contact angle,
are computed using the test-area pertur-
bation method.
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TABLE I. Comparison of sessile drop contact angle values with Young’s
values (θY) for a LJ fluid on the LJ 9-3 surface at the reduced temper-
ature T∗(=kBT /εff) = 0.7. The system contains 5072 LJ particles. r∗I and
θI are the radius of the fitted sphere and contact angle computed using
Method I, respectively, and θII is the contact angle computed using Method II.
ε∗sf (= εsf/εff ) is the reduced fluid-solid potential well depth.

ε∗sf θY (deg) r∗I θI (deg) θII (deg)

1.2 122.59 ± 3.45 11.43 ± 0.08 124 124
1.5 110.78 ± 2.92 12.03 ± 0.07 110 111
2.0 90.49 ± 1.87 13.88 ± 0.27 89 90
2.6 64.28 ± 2.61 19.40 ± 0.21 62 63
2.8 54.54 ± 2.51 24.20 ± 0.08 53 53

TABLE II. Comparison of the sessile drop contact angle values with Young’s
angle (θY) for the SPC/E water on a LJ 9-3 surface at T = 300 K. The system
contains 4000 water molecules. (θII) and rII are the contact angle and radius
of the water sessile drops estimated using Method II. εsf is the oxygen (of
water) interaction strength with the solid-surface.

ε∗sf (kcal/mol) θY (deg) rII (Å) θII (deg)

1.0 104.92 ± 5.09 11.43 ± 0.08 104
1.5 72.24 ± 5.56 12.03 ± 0.07 74
1.8 46.04 ± 6.25 13.88 ± 0.27 48

outlined in Sec. III A for different ξ values in the case of planar
LV interfaces, and is depicted in Fig. 3. In the case of the LJ
fluid, oscillations in ρinst close to the interface are evident for
ξ = 0.7; these are suppressed with larger values of ξ, as can
be seen in Fig. 3. The far-field value of ρinst also changes with
increasing values of ξ and approaches the bulk density value
ρ∗ = 0.835 for ξ = 1.3 at T ∗ = 0.7. A further increase in the
value of ξ to 1.5 does not result in a significant change in the
far-field value of ρinst. Thus, the value of ξ = 1.3 is chosen
to compute the coarse-grained density at the same tempera-
ture T ∗ = 0.7. In the case of SPC/E water sessile drops, with
bulk liquid density value of 0.033 molecules/Å3 at T = 300 K,
ξ = 2.6 is chosen. For SPC/E water, ρinst in Fig. 3 are very sim-
ilar to those obtained by Willard and Chandler.43 Iso-density
contours with average density 〈ρ∗〉 ≈ 0.420 at T ∗ = 0.7 for

the LJ fluid and 〈ρ〉 ≈ 0.017 molecules/Å
3

at T = 300 K for
SPC/E water are identified as the average LV interfaces and
are adopted for further analysis to estimate the sessile drop
contact angle values.

FIG. 4. Snapshot of the LJ sessile drop on a LJ 9-3 surface (not shown here)
at T∗ = 0.7 and for ε∗sf = 1.5 and σ∗sf = 1.0. The spherical-cap nature of the
interface is evident from the snapshot.

C. Contact angle and relaxation dynamics

We first consider 5072 LJ fluid particles in a simulation
box with dimensions 60 × 60 × 50 (in units of σff) on a LJ
9-3 substrate at T ∗ = 0.7 for the sessile drop simulations. The
average LV interface of the LJ sessile drop is identified (as
discussed in Sec. III A) and fitted to a sphere (Method I, as
described in Sec. III B) to estimate the sessile drop contact
angle values. These values are in good agreement with Young’s
contact angle values (Table I), as also observed in previous
studies.18,20 A snapshot of the LJ sessile drop on the LJ 9-3
surface is depicted in Fig. 4 and the spherical nature of the
interface is clearly seen.

We then proceed to apply Method II (Sec. III B) to obtain
the cos β vs z profile and extrapolate it to the three-phase con-
tact line at z = 0. The sessile drop contact angle values found
from Method II are also shown in Table I and also found to be
in good agreement with Young’s contact angles. The cos β vs
z data from Method II (Fig. 5) can be seen to follow a linear
profile for all contact angle scenarios at T ∗ = 0.7. Moreover,
the similar cos α vs z behavior from the spherical fit (accord-
ing to Method I) to the LV interface is also provided in Fig. 5
for comparison. Summarizing, Method II is able to capture
the spherical-cap nature of the LV interface, connected to a
linear behavior of cos β vs z data, without the need for a priori

assumptions on the shape of the average LV interface.
Having confirmed the validity of our proposed method

for sessile drop contact angle values, in the case of the LJ
fluid on the LJ 9-3 surface, we now consider SPC/E water on
the LJ 9-3 surface at 300 K for the sessile drop simulation
(total 4000 water molecules setup in a lattice configuration,

FIG. 3. Mean fluid density profile with
respect to the instantaneous LV interface
for (a) LJ fluid and (b) SPC/E water, for
different coarse-graining lengths (ξ). d

is the distance from the instantaneous
LV interface and d∗ = d/σff.
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FIG. 5. Cosine of the angle (cosα from
Method I and cos β from Method II, as
discussed in Sec. III B) as a function
of the normal distance to the solid sur-
face (z∗). The solid lines represent val-
ues obtained from Method I (cosα) and
the open circle values using Method II
(cos β). The open squares (z∗ = 0) corre-
spond to cos θY calculated using Eq. (1).
In all cases, the simulation temperature
is T∗ = 0.7.

initially). The water sessile drops took 70–100 ns to relax
to a spherical cap, depending on the fluid-surface interaction
strength. The LJ sessile drops on the LJ 9-3 surface were also
initiated in a lattice configuration, but only took 10-15 ns to
reach the spherical shape. It should be noted that the time scale
observed for the water sessile drops to become fully spheri-
cal, 70-100 ns, is quite different to the time scale of 20-30 ns
reported in the literature.27–33 This could be most likely due
to the chosen initial configuration, a lattice configuration.
Another common initial configuration is a pre-equilibrated
spherical drop which is then brought in contact with the solid
surface; such a procedure is likely to result in a faster relax-
ation of the sessile drop to the spherical shape. For water drops
to equilibrate to spherical shape on a graphite surface, Shih
et al.41 reported a time scale similar to that in our study,
≈100 ns, but the initial configuration of the water molecules
was not mentioned in their study. As already emphasised, a
linear trend of the cos β vs z profile (cf. Fig. 6) of equilibrated
water sessile drops reflects the spherical nature of the LV inter-
face. Furthermore, the estimated water sessile drop contact
angles are in good agreement with Young (cf. Table II). These
results suggest that sessile drops with a number of molecules
of the order of thousand can be used to extract good estimates
of the contact angle.

FIG. 6. Cosine of the angle (cos β) as a function of the normal distance from
the solid-surface (z) for water sessile drops on a LJ 9-3 surface. The open
circles correspond to the cosine of the angle values computed using Eq. (7)
and the dashed lines correspond to linear fitting and extrapolation of the data
to estimate the contact angle. The open squares (at z = 0) correspond to cos θY
calculated using Eq. (1). In all cases, the simulation temperature is 300 K.

The use of a LJ fluid on a LJ 9-3 surface and the test-
area method has enabled us to verify the validity of Young’s
equation. A number of studies20–22,25,26 have followed this
approach, but only a limited number of them have done the
same analysis for water sessile drops. Furthermore, the com-
parison between the sessile drop contact angle values and
Young’s values has helped us shed light on the ambiguity that
exists in terms of system size and simulation time for water.
It should also be noted that in Tables I and II we report the
error estimates for Young’s contact angle, but not for the ses-
sile drop contact angle values. This is because the calculation
of the latter is influenced by a large number of parameters
such as bin size or coarse-graining length (ξ) involved in the
local fluid density calculation, a chosen density value of the
iso-density contour to identify the LV interface, number of
configurations chosen for the sessile drop analysis, and the
cut-off distance chosen to ignore data close to the substrate.
The error in the radius of the sessile drop in Tables I and II only
represents the error from fitting the LV interface to a sphere
and does not include the effect of the parameters mentioned
above.

Finally, in the case of an SPC/E water sessile drop at 300 K
on a graphite surface, a time of ≈140 ns was required for the
drop to attain spherical shape, with 2197 water molecules ini-
tially setup in a lattice. Four snapshots at different times during
the simulation are shown in Fig. 7. In addition to the final lin-
ear trend of the cos β vs z data at 136 ns, which confirms the
spherical-cap nature of the interface for large times, the cos β
vs z data at intermediate simulation times are also shown in
Fig. 8. The evolution of the sessile drop toward the spherical
shape can be seen in Fig. 7 as also reflected in Fig. 8 where
the transition of cos β vs z profile from non-linear to linear is
evident. A number of intermediate contact angle values during
the drop evolution to the spherical shape can also be estimated
using our method. For these intermediate sessile drop contact
angle values, a partial set of cos β vsz data (for which a lin-
ear fit can be assumed) is fitted to a straight line and the fit is
extrapolated to the three-phase contact line (z = 0). The inter-
mediate sessile drop contact angle values, thus obtained, are in
good agreement with the values estimated from the spherical
sessile drop at 136 ns (cf. Table III).

In a previous study, to understand the effect of surface
polarity on water, Giovambattista, Debenedetti, and Rossky35

fitted the r(z) vs z profile of SPC/E water drops to a generic
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FIG. 7. Snapshots of water drops on
graphite (composed of two graphene
layers separated by 3.42 Å in z-
direction) at different times with simu-
lation temperature T = 300 K. Initially,
water molecules are set up in a lat-
tice configuration on graphite. Carbon
atoms of the graphite surface are kept
fixed during the simulation. (a)–(d) cor-
respond to the simulation times of 37,
72, 100, and 136 ns, respectively.

quadratic fit, considering only data below r(z) > 30 Å. The
non-sphericity of the water drop may have been the rea-
son for the contact angle estimation with only limited data,
although unfortunately the finer details were not mentioned
by the authors. In our study, a partial set of cos β vs z data
close to the substrate (that follows linear trend) is a reason-
able choice and results in good estimates of the sessile drop
contact angle, as shown. The extrapolated value of cos β vs z

data at the three-phase contact line (z = 0) at intermediate times
(on-route to the spherical shape of the interface) intersect close

FIG. 8. Cosine of the angle [cos β; Eq. (7)] as a function of the normal distance
from the graphite surface (z) at different times during the drop relaxation
toward a spherical cap (linear trend of cos β vs z) at 136 ns. The simulation
temperature is 300 K. The open circles represent values obtained using Method
II, and the dashed lines represent the linear fitting and extrapolation, of the
linear regime close to the solid surface, to the three-phase contact line (z = 0).

TABLE III. Variation of the contact angle of the SPC/E water sessile drop
on graphite (composed of two graphene layers separated by 3.42 Å in the
z-direction) at different times during the relaxation toward the spherical-cap.
The system contains 2197 water molecules at 300 K.

Time (ns) 5 30 58 72 107 136

θ (deg) 92 91 93 91 94 94

to the same point (cf. Fig. 8), revealing a constant-contact-
angle relaxation dynamics. This finding is also consistent
with the results by Lukyanov and Likhtman59 that interfa-
cial tensions have relaxation times faster than those for the
drop shape. (The idea of interfacial-tension relaxation is at the
heart of a macroscopic hydrodynamic model introduced by
Shikhmurzaev60 and was scrutinized asymptotically by Sib-
ley, Savva, and Kalliadasis.61) Although not reported here, we
observed similar constant-contact-angle relaxation dynamics
for the water sessile drops on the LJ 9-3 surface. Upon this
observation and with our proposed methodology, one does not
need to wait for a water drop to reach the spherical shape to
achieve good estimates of the contact angle; short simulation
times such as 10-20 ns are sufficient (in Table III). Further-
more, the maximum number of water molecules considered
is only 4000 molecules and was still able to obtain contact
angles in good agreement to Young’s equation (Table II). This
is a drastic improvement, for instance, to the results of San-
tiso, Herdes, and Müller34 who concluded the requirement
of half a million water molecules to obtain good agreement
with Young. Moreover, the spread in the angle distribution
obtained from our methodology is small (cf. Figs. 5, 6, and 8),
as expected for a homogeneous solid surface, compared to the
spread obtained by Khalkhali et al.39 Our method and those of
Santiso, Herdes, and Müller34 and Khalkhali et al.39 are some-
what similar in spirit, in that the spherical-cap approximation is
not invoked, instead the angle between the (outward) unit nor-
mal to the average interface and the normal to the solid surface
is used; but our method is shown to be robust as well as easy to
implement.

VI. CONCLUSIONS

A new methodology is proposed for the direct measure of
sessile drop contact angles following the Willard and Chan-
dler43 method to calculate the coarse-grained density and
outward normal to the average LV interface. The methodol-
ogy is exemplified by calculating the contact angle of a LJ
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fluid drop on a LJ 9-3 surface and of an SPC/E water drop
on LJ 9-3 and graphite surfaces. In all cases, we find good
agreement with Young’s equations. The interfacial tensions
required in Young’s equation are obtained by employing test-
area simulations for the corresponding planar interfaces. We
have been able to resolve a number of previous issues that still
eluded us such as the ambiguity in terms of system size and
simulation time. In particular, our study demonstrates that it
is neither the system size nor the simulation time that lim-
its the accurate estimation of the contact angle, but rather the
particular method adopted for its calculation. For instance,
the use of the spherical-cap approximation for a water drop
requires long simulation times of the order of 100 ns, but
this is not necessarily the case for the equilibration of the
contact angle. Although the entire water sessile drop does
not adopt the spherical shape even for long simulation times
such as 100 ns, the contact angle is well established much
faster, i.e., within 10–20 ns of simulation time, even when
starting from a configuration of water molecules in a lat-
tice. As a matter of fact, the sessile drop evolves toward the
spherical shape, following constant-contact-angle relaxation
dynamics.

It would be of interest to study several related prob-
lems, for example, analyzing the detailed characteristics of the
dynamics of drop evolution including the drop shape, density
fluctuations in the vicinity near the solid-fluid interface, and the
layering effect on the bulk fluid, but also to extend our method-
ology to other directions, such as variation of contact angle
with drop size, and other physical settings such as dynamic
wetting on planar62,63 and topographically and/or chemically
heterogeneous substrates.62,64–67 For dynamic wetting, in par-
ticular, the spherical-cap approximation is crude and would be
interesting to apply the proposed methodology for the varia-
tion of contact angle with time. For wetting of heterogeneous
substrates, the methodology proposed here would allow us to
obtain a distribution of the contact angle as a function of the
location on the substrate rather than a single contact angle. Of
interest would also be extensions of this study to LV interfaces
in confinement, such as that between two parallel walls (e.g.,
Ref. 68). We shall examine these and related issues in future
studies.
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