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ABSTRACT

The physical properties of the so-called Ostriker isothermal, non-rotating filament have been
classically used as benchmark to interpret the stability of the filaments observed in nearby
clouds. However, such static picture seems to contrast with the more dynamical state observed
in different filaments. In order to explore the physical conditions of filaments under realistic
conditions, in this work we theoretically investigate how the equilibrium structure of a filament
changes in a rotating configuration. To do so, we solve the hydrostatic equilibrium equation
assuming both uniform and differential rotations independently. We obtain a new set of
equilibrium solutions for rotating and pressure truncated filaments. These new equilibrium
solutions are found to present both radial and projected column density profiles shallower
than their Ostriker-like counterparts. Moreover, and for rotational periods similar to those
found in the observations, the centrifugal forces present in these filaments are also able to
sustain large amounts of mass (larger than the mass attained by the Ostriker filament) without
being necessary unstable. Our results indicate that further analysis on the physical state of
star-forming filaments should take into account rotational effects as stabilizing agents against
gravity.

Key words: stars: formation —ISM: clouds — ISM: kinematics and dynamics — ISM: structure.

1 INTRODUCTION

Although the observations of filaments within molecular clouds
have been reported since decades (e.g. Schneider & Elmegreen
1979), only recently their presence has been recognized as a unique
characteristic of the star formation process. The latest Herschel
results have revealed the direct connection between the filaments,
dense cores and stars in all kinds of environments along the Milky
Way, from low-mass and nearby clouds (André et al. 2010) to most
distant and high-mass star-forming regions (Molinari et al. 2010).
As a consequence, characterizing the physical properties of these
filaments has been revealed as key to our understanding of the origin
of the stars within molecular clouds.

The large majority of observational papers (Arzoumanian et al.
2011; Hacar et al. 2013; Palmeirim et al. 2013) use the classical ‘Os-
triker’ profile (Ostriker 1964) as a benchmark to interpret observa-
tions. More specifically, if the estimated linear mass of an observed
filament is larger than the value obtained for the Ostriker filament
(= 16.6 M pc~! for T = 10 K), it is assumed that the filament
is unstable. Analogously, density profiles flatter than the Ostriker
profile are generally interpreted as a sign of collapse. However, it
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is worth recalling the assumptions and limitations of this model:
(i) filaments are assumed to be isothermal, (ii) they are not rotat-
ing, (iii) they are isolated, (iv) they can be modelled as cylindrical
structures with infinite length and (v) their support against gravity
comes solely from thermal pressure. An increasing number of obser-
vational results suggest however that none of the above assumptions
can be considered as strictly valid. In a first paper (Recchi, Hacar &
Palestini 2013, hereafter Paper I) we have relaxed the hypothesis (i)
and we have considered equilibrium structures of non-isothermal
filaments. Concerning hypothesis (ii), and after the pioneering work
of Robe (1968), there has been a number of publications devoted to
the study of equilibrium and stability of rotating filaments (see e.g.
Hansen, Aizenman & Ross 1976; Inagaki & Hachisu 1978; Robe
1979; Simon et al. 1981; Veugelen 1985; Horedt 2004; Kaur et al.
2006; Oproiu & Horedt 2008). However, this body of knowledge
has not been recently used to constrain properties of observed fil-
aments in molecular clouds. In this work, we aim to explore the
effects of rotation on the interpretation of the physical state of fil-
aments during the formation of dense cores and stars. Moreover,
we emphasize the role of envelopes on the determination of density
profiles, an aspect often overlooked in the recent literature.

The paper is organized as follows. In Section 2, we review the
observational evidences suggesting that star-forming filaments are
rotating. In Section 3, we study the equilibrium configuration of
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rotating filaments and the results of our calculations are discussed
and compared with available observations. Finally, in Section 4
some conclusions are drawn.

2 OBSERVATIONAL SIGNS OF ROTATION IN
FILAMENTS

Since the first millimetre studies in nearby clouds it is well known
that star-forming filaments present complex motions both parallel
and perpendicular to their main axis (e.g. Loren 1989; Uchida et al.
1991). Recently, Hacar & Tafalla (2011) have shown that the internal
dynamical structure of the so-called velocity coherent filaments is
dominated by the presence of local motions, typically characterized
by velocity gradients of the order of 1.5-2.0kms~! pc~!, similar to
those found inside dense cores (e.g. Caselli et al. 2002). Comparing
the structure of both density and velocity perturbations along the
main axis of different filaments, Hacar & Tafalla (2011) identified
the periodicity of different longitudinal modes as the streaming mo-
tions leading to the formation of dense cores within these objects.
These authors also noticed the presence of distinct and non-parallel
components with similar amplitudes than their longitudinal counter-
parts. Interpreted as rotational modes, these perpendicular motions
would correspond to a maximum angular frequency @ of about
6.5-107'* s~!'. Assuming these values as characteristic defining the
rotational frequency in Galactic filaments, the detection of such
rotational levels then raises the question on whether they could
potentially influence the stability of these objects.’

To estimate the dynamical relevance of rotation we can take the
total kinetic energy per unit length as equal to 7 = %szfMlm,
where R, is the external radius of the cylinder and My, its linear
mass. The total gravitational energy per unit mass is W = GMyi2,
hence the ratio 7 /W is

T w 2 Rc g Mlin -
065 ( ) .
w 6.5-1071 0.15pc 16.6 M@ pc!

()

Clearly, for nominal values of w, R, and My;, the total kinetic energy
associated with rotation is significant, thus rotation is dynamically
important.

3 THE EQUILIBRIUM CONFIGURATION OF
ROTATING, NON-ISOTHERMAL FILAMENTS

In order to calculate the density distribution of rotating, non-
isothermal filaments, we extend the approach already used in Paper
I, which we shortly repeat here. The starting equation is the hydro-
static equilibrium with rotation: VP = p(g + w’r). We introduce
the normalization:

2
p=0py, T=1tTy, r=Hx Q= w. )
\ G po

Here, po and T} are the central density and temperature, respectively,

2k T
H= o
TG popmy

is a length-scale and €2 is a normalized frequency.

It is worth stressing that if the filament forms an angle g % 0 with the
plane of the sky, an ot;served radial velocity gradient AAV’ corresponds to a

,.
real gradient that is —— times larger than that.
cos
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Simple steps transform the hydrostatic equilibrium equation into:

 cods
9f+f€=9<9%—8kxx>. 3)
X

Callingnow [ = fdx X6dx, then clearly I' = Ox. Solving the above
equation for I, we obtain 81 = Q%x? — t'x — rx%. Upon differen-
tiating this expression with respect to x and rearranging, we obtain

/2 /
A GO {1+1}
6 T X

9 /
2 {z” + 5480207 — 2xszsz’} . ()
T X

Correctly, for Q2 = 0 we recover the equation already used in Pa-
per 1. This second-order differential equation, together with the
boundary conditions 6(0) = 1, 6/(0) = —1/(0) (see Paper I) can be
integrated numerically to obtain equilibrium configurations of both
rotating and non-isothermal filaments independently. This expres-
sion is more convenient than classical Lane—-Emden type equations
(see e.g. Robe 1968; Hansen et al. 1976) for the problem at hand.
Notice also that the normalization of w differs from the more con-
ventional assumption 1> = w?/47G py (Hansen et al. 1976).

3.1 Uniformly rotating filaments

If we set 7, Q2 = const. in equation (4), we can obtain equilib-
rium solutions for isothermal, uniformly rotating filaments. We have
checked that our numerical results reproduce the main features of
this kind of cylinders, already known in the literature, namely those
given below.

(i) Density inversions take place for > > 0 as the centrifu-
gal, gravitational and pressure gradient forces battle to maintain
mechanical equilibrium. Density oscillations occur in other equi-
librium distributions of polytropes (see Horedt 2004 for a very com-
prehensive overview). Noticeably, the equilibrium solution of uni-
formly rotating cylindrical polytropes with polytropic index n = 1
depends on the (oscillating) zeroth-order Bessel function J, (Robe
1968; see also Christodoulou & Kazanas 2007). Solutions for ro-
tating cylindrical polytropes with n > 1 maintain this oscillating
character although they cannot be expressed analytically. As evi-
dent in Fig. 1, in the case of isothermal cylinders (corresponding
to n — 00), the frequency of oscillations is zero for Q = 0, corre-
sponding to the Ostriker profile. This frequency increases with the
angular frequency 2.

(ii) For Q > 2, p'(0) > 0, due to the fact that, in this case, the
effective gravity g + w’r is directed outwards. For Q < 2, p'(0) < 0.
If @ = 2, there is perfect equilibrium between centrifugal and
gravitational forces (Keplerian rotation) and the density is constant
(see also Inagaki & Hachisu 1978).

(iii) The density tends asymptotically to the value $2/4. This
implies also that the integrated mass per unit length I1=
fooo 27mx6(x)dx diverges for Q% > 0. Rotating filaments must be
thus pressure truncated. This limit of 6 for large values of x is es-
sentially the reason why density oscillations arise for €2 # 2. This
limit cannot be reached smoothly, i.e. the density gradient cannot
tend to zero. If the density gradient tends to zero, so does the pres-
sure gradient. In this case, there must be asymptotically a perfect
equilibrium between gravity and centrifugal force (Keplerian rota-
tion) but, as we have noticed above, this equilibrium is possible only
if Q = 2. Thanks to the density oscillations, VP does not tend to
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Figure 1. Logarithm of the normalized density 6 as a function of x for
various models of isothermal filaments with different normalized angular
frequencies. The model with € = 0 corresponds to the Ostriker profile with
p o r~* at large radii.

zero and perfect Keplerian rotation is never attained. Notice more-
over that the divergence of the linear mass is a consequence of the
fact that the centrifugal force diverges, too, for x — oo.

All these features can be recognized in Fig. 1, where the loga-
rithm of the normalized density 6 is plotted as a function of the
filament radius x for models with various angular frequencies €2,
ranging from O (non-rotating Ostriker filament) to 1. Hansen et al.
(1976) performed a stability analysis of uniformly rotating isother-
mal cylinders, based on a standard linear perturbation of the hy-
drodynamical equations. They noticed that, beyond the point where
the first density inversion occurs, the system behaves differently
compared to the non-rotation case. Dynamically unstable oscilla-
tion modes appear and the cylinder tends to form spiral structures.
Notice that a more extended stability analysis, not limited to isother-
mal or uniformly rotating cylinders, has been recently performed by
Freundlich, Jog & Combes (2014; see also Breysse, Kamionkowski
& Benson 2014).

Even in its simplest form, the inclusion of rotations has inter-
esting consequences in the interpretation of the physical state of
filaments. As discussed in Paper I, the properties of the Ostriker fil-
ament (Stoddlkiewicz 1963; Ostriker 1964), in particular its radial
profile and linear mass, are classically used to discern the stability of
these structures. According to the Ostriker solution, an infinite and
isothermal filament in hydrostatic equilibrium presents an internal
density distribution that tends to p(r) o 7—* at large radii and a linear
mass Moy >~ 16.6 M pc!at 10K. Asshownin Fig. 1, and ought to
the effects of the centrifugal force, the radial profile of a uniformly
rotating filament in equilibrium (2 > 0) could present much shal-
lower profiles than in the Ostriker-like configuration (i.e. 2 = 0).
Such departure from the Ostriker profile is translated into a variation
of the linear mass that can be supported by these rotating systems.
For comparison, an estimation of the linear masses for different
rotating filaments in equilibrium truncated at a normalized radius
x =3 and 10 are presented in Tables 1 and 2, respectively. In these
tables, the temperature profile is the linear function 7(x) = 1 + Ax.
In particular, the case A = 0 refers to isothermal filaments, whereas
if A > 0, the temperature is increasing outwards.” As can be seen

2 In Paper I, we considered two types of temperature profiles as a function of
the filament radius, i.e. 71(x) = 1 + Axand 72(x) = [1 + (1 4+ B)x]/(1 + x),
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Table 1. Normalized linear masses at x = 3 com-
pared to the Ostriker filament with similar trunca-
tion radius, with Mog(x < 3) = 149 Mg pc ',

as a function of Q2 and A.

Q@ A=0 A=002 A=01 A=05
0.1  1.006 1.015 1.049 1.167
0.5 1.166 1.176 1.213 1.330
0.8 1553 1.561 1.593 1.676

1.0 2.108 2.108 2.111 2.117

Table 2. Similar to Table 1 but for linear masses
atx = 10, with Moy (x < 10) = 16.4 Mgy pc™".

Q A=0 A=002 A=01 A=05
0.1  1.015 1.039 1.137 1.623
02 1075 1.102 1.212 1.730
0.3 1.287 1.309 1.415 1.951
04 2533 2.321 2.063 2.379

0.5 7.019 6.347 4.371 3.234
0.6 10.37 10.53 9.398 4.988

0.7 1229 12.77 13.78 8.399
0.8 14.96 15.14 16.59 13.84
0.9  20.05 19.39 19.43 20.22

1.0 26.22 25.70 23.71 25.95

there, the linear mass of a rotating filament could easily exceed the
critical linear mass of its Ostriker-like counterpart without being
necessary unstable.

It is also instructive to obtain estimations of the above models in
physical units in order to interpret observations in nearby clouds.
For typical filaments similar to those found in Taurus (Hacar &
Tafalla 2011; Hacar et al. 2013; Palmeirim et al. 2013), with central
densities of ~5-10* cm 3, one obtains  ~ 0.5 according to equation
(2). Assuming a temperature of 10 K, and from Tables 1 and 2 (case
A = 0), this rotation level leads to an increase in the linear mass
between ~ 17.4 M pc*1 if the filament is truncated at radius x = 3,
and up to ~ 112 Mg pc~! for truncation radius of x = 10. Here,
it is worth noticing that a normalized frequency of € ~ 0.5, or
® ~ 6.5-107'* 57! corresponds to a rotation period of ~ 3.1 Myr.
With probably less than one revolution in their entire lifetimes
(r ~ 1-2 Myr), the centrifugal forces inside such slow rotating
filaments can then provide a non-negligible support against their
gravitational collapse, being able to sustain larger masses than in
the case of an isothermal and static Ostriker-like filament.

3.2 Differentially rotating filaments

As can be noticed in Fig. 1, a distinct signature of the centrifugal
forces acting within rotating filaments is the presence of secondary
peaks (i.e. density inversions) in their radial density distribution at
large radii. Such density inversions could dynamically detach the
outer layers of the filament to its central region, eventually lead-
ing to the mechanical breaking of these structures. In Section 3.1,
we assumed that the filaments present a uniform rotation, similar
to solid bodies. However, our limited information concerning the

whose constants defined their respective temperature gradients as functions
of the normalized radius. Both cases are based on observations. In this paper,
we will only consider the linear law T = 7(x); results obtained with the
asymptotically constant law are qualitatively the same.

MNRAS 444, 1775-1782 (2014)
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Figure 2. Logarithm of the normalized density 6 as a function of x for
various models of filaments with different rotation laws.

rotation profiles in real filaments invites to explore other rotation
configurations.

For the sake of simplicity, we have investigated the equilibrium
configuration of filaments presenting differential rotation, assum-
ing that Q linearly varies with the filament radius x. For illus-
trative purposes, we choose two simple laws: €;(x) = x/10 and
Q,(x) = 1 — x/10, both attaining the typical frequency Q = 0.5
at x = 5. The first of these laws presumes that the filament rotates
faster at larger radii but presents no rotation at the axis, resembling
a shear motion. Opposite to it, the second one assumes that the
filament presents its maximum angular speed at the axis and that it
radially decreases outwards.

The comparison of the resulting density profiles for these two
models presented above is shown in Fig. 2 for normalized radii
x < 10. For comparison, there we also overplot the density profile
obtained with a constant frequency €2 = 0.5 (see Section 3.1). For
these models, we are assuming A = 0, i.e. isothermal configurations.
Clearly, the law €2;(x) displays a radial profile with even stronger
oscillations than the model with uniform rotation. As mentioned
above, oscillations are prone to dynamical instabilities. In this case,
instabilities start occurring at the minimum of the density distribu-
tion, here located at x >~ 4.45. Conversely, these density oscillations
are suppressed in rotating filaments that obey a law like €2,(x). It is
however worth noticing that this last rotational law fails to satisfy
the Solberg—Hgiland criterion for stability against axisymmetric
perturbations (Tassoul 1978; Endal & Sofia 1978; Horedt 2004).
Stability can be discussed by evaluating the first order derivative
i[x“Q%(x)], which is positive for x € (0, 20/3) U (10, +-00) and
negative for x € (20/3, 10). We must therefore either consider that
this filament is unstable at large radii, or we must assume it to be
pressure truncated at radii smaller than x = 20/3 ~ 6.7. As we
mentioned above, we could not exclude the hypothesis that rotation
indeed induced instability and fragmentation of the original fila-
ment, separating the central part [at radii x < 4.45 for Q = Q;(x)
and x < 6.7 for 2 = Q,(x)] from the outer mantel, which might sub-
sequently break into smaller units. This (speculative) picture would
be consistent with the bundle of filaments observed in B213 (Hacar
etal. 2013). For comparison, the mass per unit length attained by the
model with Q = ©Q,(x) at x < 4.45 (which corresponds to ~0.2 pc
for T =10 K and 1. ~ 5-10* cm™3) is equal to 0.99 Moy whereas
the mass outside this minimum is equal to 22.7 Moy, i.e. there is
enough mass to form many other filaments.

MNRAS 444, 1775-1782 (2014)

-0.2
-0.4
-0.6
-0.8

log 6
L]

12 F
1.4 |
16 F
-1.8

-2

log x

Figure 3. Logarithm of the normalized density 6 as a function of x for
various models of uniformly rotating filaments with = 0.5 and different
temperature slopes A.

3.3 Non-isothermal and rotating filaments

As demonstrated in Paper I, the presence of internal temperature
gradients within filaments could offer an additional support against
gravity. Under realistic conditions, these thermal effects should be
then considered in combination to different rotational modes in the
study of the stability of these objects.

The numerical solutions obtained for the equilibrium configura-
tion of filaments with €2 = 0.5 and various values of A are plotted in
Fig. 3. Notice that fig. 5 of Palmeirim et al. (2013) suggests a rather
shallower dust temperature gradient with a value of A of the order
of 0.02 (green curve in Fig. 3). However, as discussed in Paper I,
the gas temperature profile could be steeper than the dust one, so it
is useful to consider also larger values of A. Fig. 3 shows that the
asymptotic behaviour of the solution does not depend on A: 0(x)
always tends to Q2/4 for x — oo. By looking at equation (4), it is
clear that the same asymptotic behaviour holds for a wide range of
reasonable temperature and frequency profiles. Whenever t”, t’/x
and QQ'x tend to zero for x — 00, and this condition holds for a
linear increasing 7(x) and for 2 = const., the asymptotic value of
0(x) is Q%/4. It is easy to see that also the asymptotically constant
law fulfils this condition if the angular frequency is constant.

Fig. 3 also shows that density oscillations are damped in the pres-
ence of positive temperature gradients. This was expected as more
pressure is provided to the external layers to contrast the effect of the
centrifugal force. Since density inversions are dynamically unsta-
ble, positive temperature gradients must be thus seen as a stabilizing
mechanism in filaments. Our numerical calculations indicate in ad-
dition that the inclusion of temperature variations also increases the
amount of mass that can be supported in rotating filaments. This
effect is again quantified in Tables 1 and 2 for truncation radii of
x = 3 and 10, respectively, compared to the linear mass obtained
for an Ostriker profile at the same radius. As can be seen there,
the expected linear masses are always larger than in the isothermal
and non-rotating filaments, although the exact value depends on the
combination of €2 and A due to the variation in the position of the
secondary density peaks compared to the truncation radius.

3.4 Derived column densities for non-isothermal, rotating
filaments: isolated versus embedded configurations

In addition to their radial profiles, we also calculated the col-
umn density profiles produced by these non-isothermal, rotating
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filaments in equilibrium presented in previous sections, as a critical
parameter to compare with the observations. For the case of isolated
filaments, the total column density at different impact parameters
x can be directly calculated integrating (either analytically or nu-
merically) their density profiles along the line of sight. As a general
rule, if the volume density p is proportional to 7, then the column
density X(x) is proportional to x' ~”. This result holds not only
for both Ostriker filaments (see also Appendix A) and more general
Plummer-like profiles (e.g. see equation 1 in Arzoumanian et al.
2011), but also for the new rotating, non-isothermal configurations
explored in this paper. Recent observations seem to indicate that
those filaments typically found in molecular clouds present column
density profiles with X(x) ~ x !, i.e. p >~ 2 (see Arzoumanian et al.
2011; Palmeirim et al. 2013), a value that we use for comparison
hereafter.

An aspect often underestimated in the literature is the influence
of the filament envelope in the determination of column densities
profiles. Particularly, if a filament is embedded in (and pressure-
truncated by) a large molecular cloud, the line of sight also intercepts
some cloud material whose contribution to the column density could
be non-negligible (see also Appendix A), as previously suggested
by different observational and theoretical studies (e.g. Stepnik et al.
2003; Juvela, Malinen & Lunttila 2012). In order to quantify the
influence of the ambient gas in the determination of the column
densities, here we consider two prototypical cases given below.

(i) The filament is embedded in a co-axial cylindrical molecular
cloud with radius R,,.
(i) The filament is embedded in a sheet with half-thickness R,,.

Note that, if the filament is not located in the plane of the sky, the
quantity that enters the calculation of the column density is not Ry,
itself, but R\, = R,/ cos B, where B is the angle between the axis
of the filament and this plane.

Following the results presented in Sections 3.1-3.3, we have
investigated the observational properties of three representative fil-
aments in equilibrium obeying different rotational laws, namely
Qi(x) = x/10, 2(x) = 1 — x/10 and Q3(x) = 0.5, covering both
differential and uniform rotational patterns. The contribution of the
envelope to the observed column densities is obviously determined
by its relative depth compared to the truncation radius of the fila-
ment as well as the shape of its envelope. To illustrate this behaviour,
we have first assumed that these filaments are pressure truncated
at x = 3 (a conservative estimate). Moreover, we have considered
these filaments to be embedded into the two different cloud config-
urations presented before, that is a slab and a cylinder, both with
extensions R, corresponding to five times the radius of the filament
(i.e. Rn/R. =5). In both cases, we have assumed that the density
of the envelope is constant and equal to the filament density at its
truncation radius, i.e. at x = 3.

The recovered column densities for the models presented above
as a function of the impact parameter x in the case of the two
cylindrical and slab geometries are shown in Figs 4 and 5, respec-
tively. In both cases, the impact parameter x is measured in units
of H. The results obtained there are compared with the expected
column densities in the case of two infinite filaments described by
an Ostriker-like profile (case p = 4) and a Plummer-like profile with
p o r~2 at large radii (case p = 2), as suggested by observations.
From these comparisons, it is clear that all the explored configura-
tions present shallower profiles than the expected column density
for its equivalent Ostriker-like filament. This is due to the constant
value of the density in the envelope, which tends to wash out the den-
sity gradient present in the filament if the envelope radius is large.

On the equilibrium of rotating filaments 1779
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Figure4. Column density, as a function of the normalized impact parameter
X, for filaments characterized by three different rotation laws: increasing
outwards (2 = x/10), decreasing outwards (2 = 1 — x/10) and constant
(€2 = 0.5). The filament is embedded in a cylindrical molecular cloud,
with radius five times the radius of the filament. The column density of
the Ostriker filament (case p = 4) and the one obtained for a Plummer-like
model with p ~ 2 (case p = 2) are also shown for comparison.
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Figure 5. Same as Fig. 4 but for a filament embedded in a slab, with
half-thickness five times the radius of the filament.

Moreover, the column densities expected for embedded filaments
described by rotating laws like €2, (x) and €23 (x) (this last one only if
the filament embedded into a slab) exhibit a radial dependency even
shallower than these p = 2 models at large impact parameters. The
relative contribution of filament and envelope is outlined in Fig. 6.
The model shown here corresponds to the blue line of Fig. 4: the
rotation profile is 2 = 1 — x/10 and the filament is surrounded
by a cylindrical envelope with R,/R. = 5. As expected, at larger
projected radii the observed radial profiles are entirely determined
by the total column density of the cloud.

Finally, it is important to remark that the expected column den-
sity profiles for the models presented above and, particularly, their
agreement to these shallow Plummer-like profiles with p = 2, sig-
nificantly depend on the selection of the truncation radius R. and
the extent of the filament envelopes R,,. This fact is illustrated in
Fig. 7 exploring the expected slope of the observed column density
profiles for pressure truncated and isothermal filaments following a
rotational law like €2,(x) = 1 — x/10 under different configurations
for both their truncation and cloud radii. These results were calcu-
lated as the averaged value of the local slope of the column density

MNRAS 444, 1775-1782 (2014)
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Figure 6. Fractional contribution of filament and envelope to the total
column density. The model shown here corresponds to the blue line of
Fig. 4: the rotation profile is & = 1 — x/10 and the filament is surrounded
by a cylindrical envelope with Rp,/R; = 5.

at impact parameters x < R., that is, where our models are sensi-
tive to the distinct contributions of both filaments and envelopes.
As expected, the larger the cloud depth is compared to the filament,
the flatter profile is expected. Within the range of values explored
in the figure, multiple combinations for both R. and R,, parame-
ters present slopes consistent to a power law like dependency with
p = 2. Although less prominently, few additional combinations can
be also obtained in the case of filaments with rotational laws like
Q1(x) = x/10 or Q3(x) = 0.5 (not shown here). Unless the rota-
tional state of a filament is known and the contribution of the cloud
background is properly evaluated, such degeneration between the
parameters defining the cloud geometry and the relative weights of
both the filament and its envelope makes inconclusive any stability
analysis solely based on its mass radial distribution.

Cylindrical envelope

4 CONCLUSIONS

The results presented in this paper have explored whether the inclu-
sion of different rotational patterns affect the stability of gaseous
filaments similar to those observed in nearby clouds. Our numerical
results show that, even in configurations involving slow rotations,
the presence of centrifugal forces have a stabilizing effect, effec-
tively sustaining large amounts of gas against the gravitational col-
lapse of these objects. These centrifugal forces promote however
the formation of density inversions that are dynamically unstable
at large radii, making the inner parts of these rotating filaments
to detach from their outermost layers. To prevent the formation of
these instabilities as well as the asymptotical increase of their lin-
ear masses at large radii, any equilibrium configuration for these
rotating filaments would require them to be pressure truncated at
relatively low radii.

In order to have a proper comparison with observations, we have
also computed the expected column density profiles for different
pressure truncated, rotating filaments in equilibrium. To reproduce
their profiles under realistic conditions we have also considered
these filaments to be embedded in a homogeneous cloud with dif-
ferent geometries. According to our calculations, the predicted col-
umn density profiles for such rotating filaments and their envelopes
tend to produce much shallower profiles than those expected for
the case of Ostriker-like filaments, resembling the results found in
observations of nearby clouds. Unfortunately, we found that dif-
ferent combinations of rotating configurations and envelopes could
reproduce these observed profiles, complicating this comparison.

To conclude, the stability of an observed filament cannot be
judged by a simple comparison between observations and the pre-
dictions of the Ostriker profile. We have shown in this paper that den-
sity profiles much flatter than the Ostriker profile and linear masses
significantly larger than the canonical value of > 16.6 M pc™' can
be obtained for rotating filaments in equilibrium, surrounded by an
envelope. Detailed descriptions of the filament kinematics and their

p=2

- 1 35

Figure 7. Expected radial dependence for the observed column density profiles (colour coded) of rotating filaments in equilibrium obeying a rotation law like
Q(x) = 1 — x/10, truncated at a radius R, and embedded into a cylindrical cloud extending up to a distance Ry,. R. and Ry, are displayed in units of the
normalized (i.e. x) and truncation (i.e. R/R.) radii, respectively. The black solid line highlights those models with a power-law dependence with p = 2, similar
to the observations. Notice that also the colour palette has been chosen in order to emphasize the transition from p < 2 configurations to p > 2 configurations.
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rotational state, in addition to the analysis of their projected column
densities distributions, are therefore needed to evaluate the stability
and physical state in these objects.

ACKNOWLEDGEMENTS

This publication is supported by the Austrian Science Fund (FWF).
We wish to thank the anonymous referee for the careful reading of
the paper and for the very useful report.

REFERENCES

André P. et al., 2010, A&A, 518, L102

Arzoumanian D. et al., 2011, A&A, 529, L6

Breysse P. C., Kamionkowski M., Benson A., 2014, MNRAS, 437, 2675

Caselli P., Benson P. J., Myers P. C., Tafalla M., 2002, ApJ, 572, 238

Christodoulou D. M., Kazanas D., 2007, preprint (arXiv:0706.3205)

Endal A. S., Sofia S., 1978, ApJ, 220, 279

Freundlich J., Jog C.J., Combes F., 2014, A&A, 564, A7

Hacar A., Tafalla M., 2011, A&A, 533, A34

Hacar A., Tafalla M., Kauffmann J., Kovacs A., 2013, A&A, 554, A55

Hansen C. J., Aizenman M. L., Ross R. L., 1976, ApJ, 207, 736

Horedt G. P., 2004, Astrophysics and Space Science Library, Polytropes -
Applications in Astrophysics and Related Fields. Kluwer, Dordrecht,
p. 306

Inagaki S., Hachisu 1., 1978, PASJ, 30, 39

Juvela M., Malinen J., Lunttila T., 2012, A&A, 544, A141

Kaur A., Sood N. K., Singh L., Singh K. D., 2006, Ap&SS, 301, 89

Loren R. B., 1989, ApJ, 338, 925

Molinari S. et al., 2010, A&A, 518, L100

Oproiu T., Horedt G. P., 2008, ApJ, 688, 1112

Ostriker J., 1964, ApJ, 140, 1056

Palmeirim P. et al., 2013, A&A, 550, A38

Recchi S., Hacar A., Palestini A., 2013, A&A, 558, A27 (Paper I)

Robe H., 1968, Ann. Astrophys., 31, 549

Robe H., 1979, A&A, 75, 14

Schneider S., Elmegreen B. G., 1979, ApJS, 41, 87

Simon S. A., Czysz M. E, Everett K., Field C., 1981, Am. J. Phys., 49, 662

Stepnik B. et al., 2003, A&A, 398, 551

Stodolkiewicz J. S., 1963, Acta Astron., 13, 30

Tassoul J.-L., 1978, Princeton Series in Astrophysics, Theory of Rotating
Stars. Princeton Univ. Press, Princeton

Uchida Y., Fukui Y., Minoshima Y., Mizuno A., Iwata T., 1991, Nature, 349,
140

Veugelen P., 1985, Ap&SS, 109, 45

APPENDIX A: ON THE COLUMN DENSITY
OF FILAMENTS EMBEDDED IN MOLECULAR
CLOUDS

In this appendix, we derive a formula to calculate the column density
of filaments embedded in large molecular clouds. For that, let us
assume first the general case of an isothermal filament described by
the Ostriker solution 8;(x) = [1 4+ x2]~2.If we call z the (normalized)
distance between the plane in the sky where the filament is located
and a generic plane, then the distance between the point (y, z)
(where y is the normalized impact parameter) and the axis is simply
x = 1/ x2 + z%. As it is well known, if we assume that the filament
extends until infinite distances, then the column density is

o o dz
b(x.ydz= | —
/; (x- 2z [wa+#+xw

1 U
T2+ (D

%00

On the equilibrium of rotating filaments 1781

filament

Figure A1. Section of the filament (with radius R.), embedded in a (cylin-
drical, co-axial) molecular cloud with radius Ry,.

However, the cylinder could be embedded in a more extended cloud,
with radius R,. If we take for simplicity the cloud aligned with the
filament, the situation is shown in Fig. Al.

Based on this figure (and due to the symmetry of the problem),
we can write the column density as

2o Zi Zi dZ
) =2 0;(x,z)dz =2 6,d +2/ _
09) /0 (x,2)dz / b dz L 012+ 07

(A2)

2o

Here we have defined (see also Fig. Al):

w=\Ri—x2 =R -p 6, =0, (A3)

and assumed that the density of the molecular cloud is constant and
equal to 8(R.). The result is

-1 [ RE=x2
Zi x2+1

CIDER+D | )

_LWR-XC-VR- JR-X

(14 R2)? X2+ DR2+1)

tan
() = 20p(zo — zi) +

)

1, [ R=x?
x>+1

RGN
It is easy to see that, in the limes for R, (and R,,) tending to infinity,

we recover the column density profile found above for the infinite
cylinder.

tan™
(A4)
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Another possibility is to assume that the cylinder is immersed in
a slab of gas with half-thickness Ry,. The derivation of the column
density remains the same and the only difference is that z, is now
fix (it is equal to R,) and does not depend any more on x as
before.

For filaments whose profiles are determined numerically (like the
ones found in Section 3) the integral:

/Zi 6(x,z2)dz, (A5)
0
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(where as usual x and z are related to x by x = 1/ x2 + z?) must be
calculated numerically. The contribution to the column density due
to the surrounding molecular cloud remains unaltered.
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