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The fundamental question as to whether thin intergranular 
films can adopt an equilibrium thickness in polycrystalline 
ceramics is addressed. Two continuum approaches are pre- 
sented, one based on interfacial energies and the other on the 
force balance normal to the boundary. These indicate that 
there will exist a stable thickness for the intergranular film and 
that it will be of the order of 1 nm. The origin of an equilibrium 
thickness is shown to be the result of two competing inter- 
actions, an attractive van der Waals-disperson interaction be- 
tween the grains on either side of the boundary acting to thin 
the film and a repulsive term, due to the structure of the 
intergranular liquid, opposing this attraction. As both of these 
interactions are of short range (<lo nm), it is a natural con- 
sequence that the equilibrium thickness is of the order of 1 nm, 
a value commensurate with that observed experimentally in a 
wide range of ceramics. Two further consequences of im- 
portance are indicated. The first is that thin intergranular 
liquid phases can support a normal stress. The second is that 
the dielectric constants of the adjacent grains play an im- 
portant role in determining the thicknesses of the intergranular 
phase. This leads to the conclusion, consistent with obser- 
vations, that the thickness of the intergranular phase in poly- 
phase ceramics is expected to be different at boundaries 
between dissimilar phases than that between like phases. 

I. Introduction 

NE of the most revealing findings produced during the ex- 0 amination of ccramic microstructures using the techniques of 
high-resolution transmission electron microscopy has been the fact 
that many of these materials contain a thin intergranular (generally 
siliceous) glass phase. The thickness of the intergranular glass 
phase can be quite small, being =0.5 to =2 nm in some silicon 
nitride and zirconia ceramics and upward of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=5 nm in some 
alumina-based materials. In the majority of materials the inter- 
granular phase is both continuous throughout the microstructure 
and, significantly, located at the two-grain junctions. 

As presently understood, the presence of a remnant intergranular 
glass phase can be produced by a number of different processes. In 
many ceramics, the phase results from the liquid-phase sintering 
process used to densify them. Examples of these include the silicon 
nitride alloys, the zinc oxide varistor materials, and alumina sub- 
strate materials. In others, such intergranular films are present 
because the materials are prepared by the controlled but incomplete 
crystallization of a glass (glass-ceramics). A third, but practically 
important, category is that in which the phase forms from the 
impurities present in the starting materials. For instance, a number 
of the ceramics developed for nuclear waste encapsulation4 and 
certain of the polycrystalline, tetragonal zirconia ceramics’ contain 
such intergranular films. 
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of the intergranular phase is one that would act to thm the phase whereas a repulsive 
force is one that would cause the film to thicken. 

The purpose of the present paper is to address the question as to 
why the thickness of thin intergranular phases observed in many 
polyphase ceramic materials appears to be of a relatively constant 
value and why that value is of the order of 1 nm. A succeeding 
contribution will be devoted to the question of the stability of such 
thin intergranular phases and the mechanisms by which they may 
retract from grain boundaries. The work described in this con- 
tribution assumes that the intergranular phase wets the boundaries, 
meaning that it is energetically favorable for the phase to exist at 
the grain boundaries. 

Following a brief review of the principal observational findings 
(Section 11), an interfacial energy treatment is presented that pro- 
vides a general conclusion as to the stable thickness of an in- 
tergranular phase. The presentation is based on well-established 
findings of the classical, van der Waals theory of liquids as pre- 
sented by Widom7,’ and de Gennes.” In Section IV, the individual 
forces acting normal to a thin intergranular fluid film between two 
grains are considered. It is shown that for a stable film thickness 
to exist the attractive force* due to the long-range van der Waals- 
dispersion interactions between the grains must be balanced by a 
net repulsive force, which is attributed here to a structural or steric 
interaction. Then a specific structural model is presented that pro- 
vides for a physical origin of the structural force. In Section V an 
estimate of the thickness of a silica intergranular phase in alumina 
is presented. Finally, in Section V1 the conclusions of the work and 
its implications for future observational tests are discussed. 

Throughout this paper it is assumed that the intergranular phase 
acts as a liquid phase and adopts an equilibrium thickness at high 
temperatures. I t  is envisaged that, as in the majority of liquid-phase 
sintered ceramics where solution-reprecipitation phenomena occur, 
the thickness of the intergranular phase decreases as the grains 
grow toward one another until an equilibrium value is attained. 
Further, it is assumed that the pertinent microstructural features of 
the phase are frozen in when the materials are cooled for sub- 
sequent examination at room temperature by, for instance, trans- 
mission electron microscopy. 

11. Observations 

It has long been argued, on the basis of observations, using 
optical and scanning electron microscopy, of apparent zero contact 
angles measured in polished sections, that second phases can exist 
as thin intergranular films at grain boundaries. However, it was not 
until the advent of high-resolution electron microscopy techniques 
that it was unequivocally demonstrated that they existed along 
grain boundaries o r  their thicknesses were measured directly. I- ’  

Observations reveal that the major fraction of intergranular phase 
is located at the intersections of three grains (triple junctions) and 
at four-grain junctions. Higher-resolution techniques further indi- 
cate that the majority of grain boundaries (two-grain junctions) 
contain a thin film of intergranular material. As the boundaries in 
more and more ceramics are scrutinized by transmission electron 
microscopy techniques, a greater number of materials are found to 
contain an intergranular phase. Such thin intergranular phases have 
been reported not only in the silicon nitride alloys in which their 
presence was first confirmed but also in a number of zinc oxide 
varistor ceramics, ccrtain silicon carbides, capacitor dielectrics, 
(single-phase tetragonal and partially stabilized) zirconia ceramics, 
glass-ceramics, nuclear waste ceramics and aluminas, including 
many substrate-grade aluminas. Intergranular films have also been 
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Fig. 1. Distribution of the intergranular glass phase in an yttria-alumina 
fluxed silicon nitride ceramic as revealed by diffuse dark field imaging in 
the transmission electron microscope. The micrograph. in which the inter- 
granular phase appears bright, illustrates the characteristic difference in 
thickness of the intergranular phase between silicon nitride (S)-silicon 
nitride zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5’) grains and that between silicon nitride zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S )-yttrium silicon 
oxynitride ( Y )  grains. (Micrograph courtesy of T. M .  Shaw, and origi- 
nally published in J .  Am. Cerum. Soc., 62 [11-12] 585-590 (1979) as 
Fig. 4(D).) 

detected in particularly high-purity materials, such as the recent 
observations‘ in Lucalox-type’ of alumina, where they were 
thought not to be present. 

Perhaps the most surprising observation is that the thickness of 
the intergranular material (=1 nm) is found to be relatively con- 
stant from one boundary to another in any given sample of mate- 
rial. In other words, within the accuracy of the observations, the 
thickness does not appear to be dependent on the angle of misori- 
entation across the boundary, the exception being that in a number 
of boundaries, which are widely believed to be low-angle bound- 
aries and boundaries of “special” orientations such as a coherent 
twin boundary, no intergranular phase is detectable. In polyphase 
ceramics, such as in many silicon nitride and sialon materials, the 
thickness of the intergranular phase has one value at boundaries 
between like phases and a different value at boundaries between 
dissimilar phases. An example of this is shown in Fig. 1, a micro- 
graph of a yttria-alumina fluxed silicon nitride. ’ 

Analysis of the elemental constituents of the intergranular 
phases in silicon nitride based materials using electron microscopy 
based techniques (X-ray microanalysis and electron energy loss 
spectroscopy) suggests that they are highly siliceous. ” Such an 
interpretation is consistent with the observations made by Auger 
electron spectroscopy of both ion-beam sputtered fracture 
surfaces”,’* and, more recently, of high-temperature in-situ frac- 
ture surfaces.’3 Only one polyphase ceramic, a developmental nu- 
clear waste ceramic, has been reported to contain an intergranular 
phase that is not siliceous and in that case it was found to be 
phosphate based. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl4 In all materials examined to date the inter- 
granular phase is also found to contain the impurity elements and, 
in those cases where a sintering aid is used, the elements from the 
aid. In those few cases where a complete analysis has been ob- 
tained, the composition is close to that of silica. It is important to 
note that because of the extremely fine scale of the intergranular 
phase the analyses have been restricted to three- and four-grain 
regions rather than at the grain boundaries themselves. 

‘General Electric Co., Pittafield, MA. 
:The actual thicknesses meawred may. in some systems, be affected by irradiation 

damage during observation in the electron microscope. In these cases the thickness of 
the intergranular phase appears to increase as a function of observation time. 
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Fig. 2. 
between phases LY and y .  

Interfacial phase, p ,  of thickness h 

111. Interfacial Energy 

Consider, as the most general description of an intergranular 
region, the phases and geometry of Fig. 2. It is then possible to 
make use, as we do in this section, of established theories of 
interfacial free energy developed for flat interfaces between 
phases. In the majority of boundaries, phases a and y will have 
identical properties, but as shown in Fig. 1 asymmetrical phase 
boundaries do also exist. 

An analysis of the stability and structure of the interface between 
two phases, a and y ,  when they are in equilibrium with an inter- 
mediate third phase, p ,  has been presented, within the context of 
the classical (van der Waals) theory of liquids, by W i d ~ m . ’ . ~  Such 
analyses ignore the effect of long-range forces, such as van der 
Waals dispersion forces, as has been pointed out by Widom himself 
and later by de Gennes.’ As will be recounted in the following it 
is possible to show that there exists a stable, finite thickness for the 
p phase when the contribution of long-range van der Waals- 
dispersion interactions are included. 

In addition to the neglect of long-range forces, the starting point 
of the Widom analysis is that Antonoff‘s rule“ for the interfacial 
free energies in bulk phases is satisfied: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ff = c7@ + V/jy (1) 

Provided that the p phase is in equilibrium with phases a and y the 
energy of the a y  interface is a minimum when it contains a layer 
of j3 phase, irrespective of the volume fraction of the /3 phase 
(Fig. 2). As the volume fraction of the p phase is decreased, the 
thickness of the a y  interface continuously decreases until its thick- 
ness is of the order of a characteristic coherence length (. From 
statistical thermodynamics considerations7 the interface is consid- 
ered to be diffuse and to have an excess free energy density over 
that of the bulk. For the interface, Widom7 expresses the difference 
between the free energy density in the interface and that in the bulk 
as a decreasing function of distance, z ,  measured into the bulk, to 
be of the form, exp(-/z// t) .  Thus, when the thickness of the p 
layer at the a y  interface is of microscopic thickness, h ,  the excess 
free energy of the interface is 

AIL exp(-h/[) (2 )  

where A is the interfacial area. and (T, is the interfacial energy for 
a bulk thickness (h = “) of the p phase. 

Thus, the findings of the classical theory of liquids suggest that 
there is an excess free energy per unit area of interface associated 
with the p phase being of microscopic thickness, h, rather than of 
bulk thickness. In this case the net interfacial energy should be 
written as the sum of the interfacial energies when the phases a and 
y are well separated (independent of the spacing h )  plus a term 
describing the additional interfacial energy (which is dependent 
on h)  when they are in relatively close proximity: 

(3) 

As noted above the statistical thermodynamics approach on which 
the results of the previous paragraph are based neglects the effects 
of any long-range interactions, such as van der Waals-dispersion 
forces. De Gennes‘) suggested that one way in which they can 
be readily incorporated is to include an additional term in the 
interfacial balance corresponding to the contribution of these 
interactions: 

(4) 

o ( h )  = a,[l + exp(-h/[)] 

cr(h) = @%[I + exp(-%/[)] + mLRY 
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where the long-range contribution is given by 

vLHF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -H/12rhz 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH is the Hamaker constant. This latter is the standard form for 
the van der Waals interaction energy. Mathematically, of course, 
it goes to --x as thc thickness h goes to zero, but this is well 
beyond the range of applicability sought here. The experiments 
(Refs. 29 to 32) in which the forcc between mica sheets is mea- 
sured dircctly down to ;=I nm have shown that this continuum 
expression is valid down to these distances. 

Details of the calculation of the van der Waals contribution are 
given in Section IV, but the formalism of Eq. (4) is sufficient for 
a statement to be made on the equilibrium thickness of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp phase 
at the cry interface. On differentiating Eq. (4) the thickness corre- 
sponding to the minimum interfacial energy is given by the solution 
to the equation 

h’ exp(-h/() = H(/6ruz (5  

Differentiating again with respect to h indicates that the energy is 
a minimum, and that the system is stable, provided that h > 3.5. 
The stable thickness may be expressed in terms of the physical 
parameters H ,  g ,  and 6, by rearranging Eq. (5) and expanding the 
logarithmic term: 

(6) 

Using the approximation h > 3[ (so that the second term on the 
right is always small compared to h/[), the stable thickness may 
be expressed as 

(7) 

The interfacial energy u- is itself of the order of kT/(‘ where k is 
Boltzmann’s constant and T is the absolute temperature. Thus, the 
stable thickness of an intervening phase at an cry interface can 
be written quite generally as 

h1.5 = In ( 1 6 2 r ~ & ~ / H )  + In (h/3# 

h = [ In (162.na,[’/H) 

h .5 In (162rkTIH) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8) 

It should be emphasized that this approximation is a general result, 
based on the thermodynamics of fluids. 

IV. Forces Acting on a Thin Intergranular Film 

(1) Force Balance 

For a stable, equilibrium intergranular phase thickness to exist 
it is a necessary condition that the net normal force acting on the 
film be equal to zero.I6 This condition is satisfied by the following: 

(9) 

where P is the applied pressure, P, is the capillary pressure, and 
n is the disjoining pressure. The disjoining pressure, a term origi- 
nally introduced by Der jag~ in ,~ ’~ ’~  can usefully be considered as 
the net pressure due to all interfacial forces that might be acting 
across the intergranular liquid phase. For the most general situation 
the disjoining pressure consists of the contributions such as those 
due to (a) van der Waals forces, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII,,,, , (b) electrical double layer 
interactions, IIsnLi (c) interactions resulting from solute ad- 
sorption on the two grain surfaces, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnAns, (d) hydrogen-bonding 
forces, nHB, and (e) any structural or steric forces, nsT. Thus, the 
disjoining pressure can be formally expressed as 

(10) 

In considering this force balance on the film in detail it is assumed 
that the forccs are those that would act between two parallel and 
flat surfaccs of adjacent grains across the thickness of the inter- 
granular phase.G 

In the absence of any experimental evidence indicating that 
electrical double layer interactions, solute adsorption, and hydro- 

P + P, + n = o 

n = nulsr + riEIL + nAas + nHB + nsr 

4The sign convention adopted here is that a positive (attractive) force is one that will 
act to bring the grains closer together, thereby causing the intergranular film to thin. 

gen bonding occur in polyphase ceramics at high temperatures, it 
is assumed for the present purposes that their contributions can be 
neglected. (In passing it is noted that there is no reason to suppose 
that electrical double layers will not be created between crystalline 
grains separated by a liquid silicate at high temperatures. Likewise, 
solute adsorption is to be expected. In this case the contribution to 
the disjoining pressure is expected to be repulsive, since solute 
adsorption would act as an osmotic pressure.) 

Subject to these simplifying assumptions, the net normal force 
acting across a thin intergranular phase may be written as 

P + P, + no,sr + IL,. = o (11) 

(2) van der Waals-Dispersion Force 

It is normally considered that the van der Waals forces between 
atoms or molecules can be separated into orientation, induction, 
and dispersion forces. Of these long-range van der Waals forces the 
component amenable to analysis is the dispersion force, which is 
conventionally referred to as the London dispersion force. This 
contribution has as its origin the electromagnetic interaction be- 
tween fluctuating dipoles in the different phases. l 8  The fluctuations 
involved principally have frequencies in the ultraviolet region of 
the spectrum and are instrumental in determining the optical 
dispersion characteristics of the phases, hence the term dis- 
persion forces. 

When the interaction is between isolated atoms and molecules, 
the dispersion force is of short range and has an inverse seventh- 
power dependence on distance. By contrast the dispersion force 
interaction between solid phases is of much longer range, and 
varies much more slowly with distance, as Hamaker” first showed. 
In a seminal paper Dzayloshinski, Lifshitz, and Pitaevski’” ex- 
tended the Lifshitz quantum field theory approach to the calcu- 
lation of the London dispersion force to treat the case of two 
interacting phases separated by a third. Their result, for the parallel 
slab geometry of Fig. 2, can be expressed as 

(12) 
where = ~ ~ ( i c )  is the dielectric permittivity of the jth phase as 
a function of an imaginary frequency i< and h is Planck’s constant 
divided by 27r. 

This equation indicates that the dispersion force can be either 
attractive or repulsive depending on the relative values of the 
dielectric permittivities of the three phases. (The condition under 
which the dispersion force is repulsive can be stated as being when 
the order of the dielectric constants is changing monotonically 
across the boundary, i.e., F, ,  > .zP > c y ) .  However, for the sym- 
metrical case of particular interest here in which the grains on 
either side of the intergranular phase are the same, Eq. (12) reduces 
to the simpler approximate form: 

= Hnga/6.nh3 (13) 

In this symmetrical case, the dispersion force will always be attrac- 
tive irrespective of the nature of the materials forming the grain 
boundary. It is noted that this equation has the form anticipated 
by Hamaker. 

At this point one can conclude that in the absence of an exter- 
nally applied stress, P, and any capillary pressure, P, , thin inter- 
granular films cannot be stable against the attractive force from 
dispersion force interactions unless there exists a repulsive struc- 
tural or steric force of sufficient strength to balance the long-range 
van der Waals force. 

In the following section a structural model is proposed that 
naturally gives rise to such a repulsive force. 

(3) Structural Disjoining Pressure 

In the preceding sections the thickness of a stable intergranular 
phase has been considered in abstract, model-independent terms. 
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To proceed further and to determine the sensitivity of the thickness 
of the intergranular phase to experimental variables (temperature, 
applied pressure, capillary pressure, and grain boundary misori- 
entation) a specific structural description of the grain boundary 
interfaces is required. We introduce here a structural component to 
the disjoining pressure. The notion of a structural disjoining pres- 
sure is not new, having been introduced by Derjaguin himself," 
but has not previously been given any direct physical embodiment. 

It is proposed that for microscopic thicknesses of the inter- 
granular phase the structure of the liquid phase is not random, as 
might be expected for bulk volumes of the phase, but rather 
exhibits a form of spatially varying orientational order close to 
each grain. If the correlation length associated with orientational 
fluctuations is 6, the orientational order imposed upon the liquid- 
phase structure by the adjacent grains will extend a distance of the 
order of 6 into the intergranular phase. The orientational order is 
assumed to depend only on the coordinate normal to the boundary. 
Although it is not strictly necessary to do so, the existence of the 
ordering is attributed to a preference of the first monolayer of 
molecules of the liquid phase adjacent to each crystalline grain to 
adopt an epitaxial arrangement on their surfaces. (The validity of 
these assertions cannot presently be substantiated for the systems 
of interest here. However, they are not radically new in other areas 
of material science as explained in the Discussion section, and 
furthermore they are experimentally testable in principle). 

In order to calculate the structural disjoining pressure, we adopt 
a mean field (continuum) approach in which the orientational or- 
dering across the thickness of the boundary is expressed as a scalar 
quantity, q ( x ) .  A more complete analysis would permit the order 
parameter as a tensor quantity, but this would preclude a tractable 
analysis and mask the physical insight afforded by the scalar ap- 
proach. Under this set of assumptions, the free energy density of 
the liquid phase may be written in a Taylor series form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

g = go + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUT+(X) + bq3(x )  

+ cq4(x) + . . . + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK[dq(x)/dx12 + . . . (14) 

This form, variously known as the Cahn-Hillard or Landau- 
Ginsburg equation,**." consists of three parts. The first term, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgo, 
is the free energy density in the absence of any ordering and 
corresponds to the free energy density of bulk, random liquid. The 
second part is a power series (Landau) expansion of the order 
parameter, 7 ~ .  The third part, the so-called gradient energy term, 
expresses the contribution due to the interaction between adjacent 
molecules. The symmetry of the grain boundary region, and hence 
the order parameter, imposes the condition that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb = 0. It is also 
assumed that the constant c is small compared with u so that the 
term in q4 can be neglected in comparison with that in q*. (This 
apparently arbitrary assumption is made both for reasons of trac- 
tability and because no data are available for its evaluation later. 
The neglect of these higher-order terms precludes the prediction of 
structural phase transitions of the intergranular phase, a subject 
beyond the scope of this initial analysis.) The excess free energy 
density thus reduces to the simpler form 

(15) 

From this expression, the excess free energy functional per unit 
area of boundary can be defined: 

g = go + a q 2 ( ~ )  + K[dqlx)/dxI* 

fhl2 

Once a function, AG", that minimizes this functional is obtained, 
as described in succeeding paragraphs, the structural contribution 
to the disjoining pressure can be calculated from the following 
definition: 

IIs, = d(AGe9)/dh (17) 

In seeking the stable thickness of the intergranular film, it is nec- 
essary to establish the conditions under which the excess free 
energy functional of Eq. (16) is a minimum. The minimization 
procedure required is a well-posed problem in the calculus of 

variations, from which it is known that the necessary conditions are 
satisfied by a function that is itself a solution of the Euler equation: 

Such a minimum-energy solution is the following second-order 
differential equation: 

whose general solution is of the form 

q ( x )  = A cosh (u /K ) ' " x  + B sinh (a/K)"*x (20) 

To proceed further it is necessary to consider specific bounddry 
conditions. For simplicity it is assumed that the grains on either 
side of the boundary are misoriented such that the orientation of the 
first monolayers on the two grains is in opposite directions. (This 
case represents an upper bound on the ordering energy since this 
constitutes the worst conceivable misorientation of the mono- 
layers). The boundary conditions can then be expressed as 

(21) 770 = q(h/2)  = - v ( - h / 2 )  

Applying these boundary conditions, Eq. (19) has the solution 

sinh [ ( u /K )~ "x ]  

'(') "sinh [(u/K)"*h/2] 
(22) 

leading in turn to an expression for the excess free energy per unit 
area of 

AG" = 2(uK)"*q: coth [(u/K)"'h/2] 

From the definition of Eq. (17) the disjoining pressure contribution 
resulting from the misorientation in opposite directions is 

d( A G '7 40 n,, = ___ = - 
dh sinh' (h/25) 

where I#Jo = uqz and 6 = (K/a)"* is a correlation length. This is 
a familiar form for the solution of ordering systems away from a 
critical point, ranging from superconductivity to order-disorder 
phenomena in alloys. 

For the case where the thickness of the intergranular liquid phase 
is greater than the characteristic correlation length, i.e., for the 
condition h > 5, the structural disjoining pressure contribution 
may be approximated as 

IIsr = -41#Jo exp(-h/[) (25) 

The structural model thus predicts the existence of a repulsive 
nature (due to the negative sign) for the structural disjoining pres- 
sure as required to balance the attractive force between the grains 
originating from their van der Waals-dispersion interactions. It is 
noted that Eq. (25) has the same exponential dependence as that 
present in the statistical thermodynamics description of the a y 
interface presented in Section 111 (Eq. (2)) .  

V. Estimate of the Equilibrium Thickness 

With an expression for the structural disjoining pressure from 
the previous section, the net force (per unit area) acting on a thin 
intergranular liquid film in equilibrium can be expressed as 

Ha,, 
P + P c + - -  4uqi  exp(-h/[) = O 

67rh 

In the absence of any applied and capillary stresses this equation 
has the same form as that presented at the end of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111, except 
that it is now expressed in terms of parameters that are, in principle 

"As a general point, solutions to the Euler equation are extremals. To show that 
a particular solution i b  either a minimum or a maximum, the second variation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmust 
be assessed. 
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Fig. 3. Calculated contributions from the van der Waals-dispersion force and the structural disjoining pressure to the net normal force acting 
on a thin silica film separating alumina grains. (All forces are understood to be forces per unit area.) The thickness of the intergranular silica 
phase is normalized by the molecular correlation distance, 5 .  The range of normal force is so large that for the purposes of illustration two 
regions are plotted separately, one for small spacings ( A )  and the other, at an expanded scale for larger spacings ( B ) .  In ( A )  the curves are 
displayed at a scale to  show the general shape of the net force including the existence of a force maximum, an unstablc zero force position, 
and the overall range of the forces. (A value of qo = 0.5 was used in order for the form of the equations to be visualized easily.) In ( B )  
only the region in the vicinity of the stable zero net force position is displayed to show that region more clearly (vr, = I .O). At a normalized 
thickness of 8h/5,  the film is subject to a zero normal force, and the slope of the curve indicates that i t  is stable. The fu l l  form of rhe structural 
disjoining pressure (Eq. (24)) rather than the approximation (Eq. (25)) is graphed here. 

at least, experimentally accessible. In this section Eq. (26) is 
evaluated leading to an approximate value for the thickness of an 
intergranular phase. For the purposes of illustration we consider a 
siliceous intergranular phase between two alumina grains, as might 
be found in a high-purity alumina ceramic.** In order to solve 
Eq. (26) we require the values of three principal parameters, the 
dielectric permeabilities of silica and alumina and a value for the 
preex ponen tiaI cons tan t , 4a 76. 

Evaluation of the dispersion force requires, in principle, a 
complete knowledge of the dielectric permeabilities over all 
frequencies (Eq. (12)). However, as outlined in Appendix A, 
an accurate approximation can be computed, following the pro- 
cedures described by Hough and White,24 from relatively few 
experimental data. The required data include the principal relax- 
ation frequencies and oscillator strengths, and in particular the 
optical constants. The relevant data for both silica and alumina 
have been determined by Hough and White and are reproduced in 
Appendix A. Using these data and evaluating Eq. (13) leads to a 
value for the nonretarded Hamaker constant for two alumina slabs 
separated by fused silica, H,,,,, ofS.895kT-a value of 1.63 x 
lo-" J at 2000 K. 

Evaluation of the structural disjoining pressure is also relatively 
straightforward. If the silica intergranular phase were fully or- 
dered, it would correspond to crystalline silica, whereas if it were 
completely disordered, it would be recognized as amorphous 
silica. The free energy difference between these two states is a 
measure of the free energy of ordering and corresponds to the 
constant 4,, = u q i  in Eq. (24). The appropriate numerical value 
to be used in quantifying this term, however, is less clear, and it 
is further complicated by being temperature dependent. Never- 
theless, a minimum value can be assigned corresponding to the 
heat of melting of pure silica. Using the JANAF tables,25 the heat 
of melting cristobalite to form silica has the value of 9.58 * 
0.2 J.mol--' (2.29 i O.S kcal*mol ~ ' ) .  This corresponds to a 
value of 4 x 10' Pa for the constant a. 

With these values for H,,, and av:  the net normal force acting 
per unit area of an intergranular phase between two opposingly 
oriented grains can be written as 

5.89SkT 

6rrh 
F = - -  1.6 X 10'qg exp(-h/[) 

**Within the spirit of the assumptions made here, it IS considered that equilibrium 
IS established at temperatures above which intermediate phases (mullite in this caae) 
might fbrm. 

The structural disjoining pressure and dispersion force pressure arc 
plotted in Fig. 3 as a function of distance normalized to the cor- 
relation length [. It will be noted that in the absence of capillary 
and applied stresses the net force acting on the intergranular film 
is zero at a distance of =7 to 8 correlation lengths. Assuming that 
the correlation length is the molecular size of the SiO, tetrahedral 
unit, i.e., -0.3 nm, then the stable thickness is =2 nm. 

It will be noted that this value of the equilibrium thickness is a 
maximum for the alumina-silica system since complete epitaxial 
alignment (vr, = 1) has been assumed in the calculation. Smaller 
values of vo lead to smaller thicknesses; for instance, a change to 
qo = 0.5 changes the predicted thickness to a value of 
5[-==1.5 nm. 

From Eq. (26) the equilibrium thickness ( F  = 0) can be written 
explicitly as the solution of the equality 

H,,,,/6.rrh3 = 4aq: exp(-h/[) 

which has the same form as that predicted from interfacial energy 
arguments (Eq. (5 )  in Section 111). 

VI. Discussion and Implications 

Two continuum approaches, one based on interfacial energies 
and the other on a simple force balance, indicate that a stable 
thickness of an intergranular liquid phase will result as a con- 
sequence of the interplay of an attractive van der Waals-dispersion 
interaction and a repulsive long-range structural interaction. In this 
respect there is a striking but predictable similarity with the 
findings of the Dejaguin-Landau-Verwey-Overbeek (DLVO) 

of colloid stability where a balance is sought between 
attractive van der Waals forces and repulsive electrostatic forces. 
A significant difference, however, lies in the fact that the DLVO 
theory is pertinent to dilute concentrations of colloids whereas in 
the situation considered here the particles (grains) can hardly be 
more crowded together. 

In contrast to the well-established DLVO theory, where the 
origin of the repulsive force is clear, we have had to introduce a 
novel, structurally dependent force (which might in the ternii- 
nology of polymer science be termed a steric force). By doing so 
we have provided one whose character is consistent with that 
expected from the statistical thermodynamics of polyphase liquid 
interfaces. This has been done on the basis of two quite reasonable 
assumptions, namely, the existence of some preferred epitaxial 
orientation of the liquid molecules on the grain surfaces imposed 
by the crystallographic structure of the grains themselves, and 
additionally the existence of a correlation between one molecule 
and the next adjacent one. The notion of some form of preferred 

theory 35.26.27 
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molecular orientation on the grain surfaces is consistent with the 
ideas of epitaxy, long familiar in other areas of materials science. 
The strongest analogy is the well-documented layering and pre- 
ferred orientation of the molecules of liquid crystals on substrates, 
even glass substrates. Such effects have not, to the author's knowl- 
edge, yet been observed for liquid silicates on ceramic surfaces. 
However, in the case of liquid crystal molecules on surfaces they 
can be readily observed.z8 A correlation of molecular orientations 
is also consistent with the polymeric view of liquid silicates, a view 
that silica, and incidentally water, are far from normal liquids but 
rather are strongly associated and exhibit many features character- 
istic of polymeric liquids. Having made these assumptions, the 
mean field theory (Eq. (14)) approach to the calculation of the 
structural disjoining pressure follows. 

A simple way of visualizing the origin of the repulsive, struc- 
tural disjoining pressure can be gained from the following thought 
experiment. Consider two crystalline grains having flat, parallel 
surfaces rotated with respect to one another and well separated by 
a silica liquid having a random structure. According to the assump- 
tion above, the first layer of silica molecules (SiO, tetrahedra) have 
a preferred orientation on the grain surfaces. To accommodate this 
alignment the silica molecules in the gap arrange themselves to 
match the orientation of the monolayers on either grain. When the 
size of the gap is large, this is a minor concern, the bulk of the silica 
remains liquidlike, and the distortion adds little to the overall 
energy of the system. The grains are now brought closer together 
by allowing free flow of the liquid out from the gap. As the gap 
gets smaller and smaller, the configurational matching becomes 
progressively more severe, and the silica less random. Correspond- 
ingly, the energy of the system rises. This is manifest as a force 
acting on the grains to resist their being brought together, a force 
that steadily increases in magnitude as the distortion increases as 
the grains are brought closer together. Clearly, when the mismatch 
has to be accommodated by just a few tetrahedral units, the dis- 
tortion is particularly extreme, and the repulsive force corrcspond- 
ingly large. (In fact, when the gap is so small, it is unlikely that 
mere rotational distortion of silica tetrahedra will accommodate the 
mismatch and so may involve bond-angle distortions, in which 
case there will be an additional force not considered here). 

The analysis provides a ready explanation as to why the thick- 
ness of the intergranular phase is found to be of the order of I nm 
rather than tens or hundreds of nanometers. That is, the equilibriurn 
thickness is a natural consequence of the fact that both the struc- 
tural disjoining pressure and the van der Waals-disperson force 
have only appreciable magnitude over distances of a few nano- 
meters. Furthermore, the analysis indicates why the thickness of 
the intergranular material has a different value at boundaries be- 
tween like phases and a different value at boundaries formed be- 
tween dissimilar phases, as illustrated for instance in Fig. I .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 

such asymmetric cases, there is still an attractive van der Waals 
interaction but since it is weaker the net equilibrium separation will 
be wider. (Since the dielectric constant of silica is generally lower 
than that of other ceramic phases, the condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> E~ > E, is 
not likely to be satisfied and the dispersion interaction will hence 
remain attractive.) Micrographs, such as Fig. 1 ,  clearly indicate, 
and perhaps contrary to expectations, that crystallographic orien- 
tation effects do not play a dominant role in determining the thick- 
ness of the intergranular material. Rather the dependence on the 
nature of the adjacent phases, as illustrated by the micrograph, 
suggest that the relative dielectric properties are determining. 

It is expected that the thickness of siliceous intergranular films 
in ceramics other than alumina will be similar to that estimated in 
Section V for the particular case of a silica intergranular film 
between alumina grains. The structural disjoining pressure will of 
course be the same since it is dependent only on the nature of the 
silica intergranular phase. Furthermore, the Hamaker constants of 
most ceramics are in the range of 1 to 100 kT. However, the lack 
of optical constants for ceramics other than aluminum oxide and 
silica precludes an accurate calculation (using the formulations of 
Appendix A) of the Hamaker constant and hence of the equilibrium 
thickness of an intergranular phase. Nevertheless, an estimate (less 
accurate than those provided by the method of Appendix A), can 

Table I. Estimated Hamaker Constants 
and Equilibrium Thicknesses 

Hamaker conqtdnt Equil~br~urn thicknes 
( X I 0  2 1  J) 5 

A1203-Si02-AI20~ 22 8.0 
Be0-Si02-Be0 17 8.3 
ZrOz(c)-Si02-Zr02(c) 103 5.0 
ZrO,(t)-SiO 2-Zr0 *( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ) 93 5.2 
AIN-Si02-AIN 85 5.5 

Ceramic system 

Si,N4-SiO2Si3N, 76 5.6 
Sic-Si0,-Sic 233 0 

be made by utilizing the Tabor-Winterton approximation2' to the 
Hamaker constant, since this is expressed in terms of the refractive 
indices, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ,  and the dielectric constants, e ,  of the phases; parame- 
ters known for the majority of structural ceramics. As expressed by 
Israelachvili,'" the Tabor-Winterton approximation is 

Using valucs from the literature for the dielectric constants and 
refractive indices (collected in Appendix B), the estimated Ham- 
aker constants for a number of ceramic systems are tabulated in 
Table I together with an estimate of the equilibrium thickness of a 
liquid silica film. 

The calculated values of these systems indicate that the stable 
thicknesses all lie in approximately the same regime, with the 
exception of the silicon carbide system, where the van der Waals 
attraction is larger at all distances than the structural disjoining 
term. This is a consequence of the exceptionally high refractive 
index of silicon carbide. It is interesting to note that to date no 
silicon carbide ceramic has been observed to contain a siliceous 
intergranular phase. 

There are a number of reasons, as mentioned in the previous 
sections, for the calculated thicknesses to be greater than might be 
observed. The first is that in Section IV(3) we have considered the 
geometry which has the largest possible misorientation of the adja- 
cent grains. There are some well-defined misorientations where the 
structural disjoining pressure goes to zero or changes sign. In these 
special cases, one of which is where the adjacent grains arc exactly 
parallel (i.e., would form a single crystal), there is no force acting 
to maintain a stable thickness of the intergranular phase and so it 
is predicted that there will be no phase present at these boundaries. 
Secondly, the strongest possible interaction between the grains and 
the first monolayer of silica tetrahedra has been assumed. This is 
tantamount to assuming that the tetrahedra are bound to the grain 
surfaces with an infinitely large binding energy. Had a finite bind- 
ing force been assumed, this would have enabled (together with 
nonnegligible higher-order Landau constants) a theoretical ex- 
ploration of possible structural phase transitions of the inter- 
granular phase as a function of, for instance, temperature. Thirdly, 
the heat of melting has been attributed solely to ordering of the 
silica tetrahedra, which overestimates the energy of ordering. It 
should also be pointed out that, in practice, situations can be 
envisaged where the analysis does not apply and hence where the 
thickness of the intergranular phase will be considerably larger 
than that calculated here. One such case in which the analysis is 
inappropriate is where the grains are constrained by their neighbors 
from approaching sufficiently close for the interactions discussed 
here to operate. 

The most important practical implication of this work is that if 
an intergranular phase wets the grain boundaries, then it will have 
an equilibrium thickness and cannot be removed except by (chemi- 
cally) altering its interfacial energy, or by the application of 
extraordinarily large compressive stresscs. (From Fig. 3, a com- 
pressive stress of the order of 70 MPa would be required to remove 
the intergranular phase when 77" = 0.5. For the case when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q, = 1.0 a compressive stress of 6.5 GPa would be necessary.) 
Application of smaller compressive stresses across the boundaries 
will alter the equilibrium thickness (Fig. 3(B)) but not markedlv 
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except for these extremely high stresses. For instance, to decrease 
the stable thickness from 8 h / t  to 7 h / <  (a distance of only 
=0.3 nm) requires a compressive stress of ==I5 MPa. (It is im- 
portant to note that application of a hydrostatic pressure alone will 
not be sufficient to decrease the thickness of the intergranular phase 
unless the liquid is free to flow from the material; i.e., the pressure 
applied to the grain skeleton must exceed the pore pressure in the 
liquid. Thus, in a hot isostatic pressing the sample must be encap- 
sulated in a membrane permeable to the liquid phase in order to 
squeeze out the liquid phase.) An associated finding is that grain 
boundaries containing a liquid film of equilibrium thickness will be 
able to support a normal stress. Such a situation has not hitherto 
been contemplated but is expected to pertain during high- 
temperature deformation, for instance, under creep conditions. As 
presented here, the structural disjoining pressure contribution will 
be most pronounced in ceramics containing network-forming liq- 
uids and in liquids having strong molecular interactions (strongly 
associated liquids). Thus, the contribution may be especially large 
for silicate intergranular phases. It also suggests, as intimated 
above, that in the ice-water system a thin intergranular film of 
water will be stable at the ice grain boundaries. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It has been assumed in the foregoing that, as in sintering or 
hot-pressing, the boundary is subject to capillary and applied 
stresses trying to thin the intergranular material. During service, 
however, boundaries may be subject to a net tensile applied stress, 
i.e., one that will act so as to separate the adjacent grains. Such a 
condition would pertain, for instance, in the vicinity of a crack 
during creep rupture or generally under tensile creep. Relatively 
small stresses will be required to separate the grains under such 
conditions, since the only force that must be overcome, other than 
any capillary stresses, is that due to the van der Waals-disperson 
interaction across the boundary. Furthermore, this becomes 
steadily smaller as the grains are pulled apart. From Fig. 3 the 
maximum tensile stress required to separate alumina grains is 
~ 0 . 2 5  MPa for the case in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.0. 

One consequence of the structural model introduced i n  
Section IV(3) is that since the molecular structure of the inter- 
granular liquid phase is nonrandom, its viscosity and diffusivity 
might be markedly different from those properties measured on a 
bulk sample of the same liquid. Of the two properties any changes 
in viscosity would be expected to be more detectable. Changes in 
diffusivity along the two-grain boundaries would be masked since 
in all microstructures examined to date the major fraction of the 
intergranular phase is located at three- and four-grain junctions. In 
contrast, grain boundary sliding experiments provide a measure of 
the viscosity of the intergranular phase, so the issue becomes 
whether the techniques arc sensitive to any changes. 

Finally, although the present paper brings considerable insight in 
understanding the physical origin of the thickness of intergranular 
thin films in ceramics, it is mercly a first attempt to address the 
important questions as to the stability of such intergranular phases. 
It is also incomplete in onc respect; that it is essentially a con- 
tinuum description of a phenomenon taking place on a scale corre- 
sponding to atomic dimensions. As such, no attempt has been 
made to include the discrete nature of the solvent structure 
force,”.’* which has force minima at spacings corresponding to the 
size of the solvent molecule. 

VII. Summary 

By employing two different continuum approaches, one based 
on the balance of forces acting normal to an intergranular liquid 
film and the other on conventional diffuse interface theory, it is 
shown that conditions exist for intergranular phases to exhibit a 
stable, equilibrium thickness. Further, it is calculated that the 
stable thicknesses for siliceous films is of the order of only a few 
silica tetrahedra, =2 nm, values consistent with previously re- 
ported electron microscopy observations in many ceramics. The 
stable thickness is found to be strongly dependent on the dielectric 
properties of the adjacent grains but only weakly dependent on 
compressive stresses applied across the boundary. One important 
consequence is that, contrary to bulk behavior, a liquid inter- 

granular film can withstand a normal stress. 

APPENDIX A 

Calculation of Hamaker Constants 

In a recent review, Hough and Whitej3 have detailed how the 
results of the modem theories of dispersion forces may be imple- 
mented for the computation of Hamaker constants. The essential 
steps in their work are reproduced below since it provides a general 
procedure for calculating Hamaker constants for ceramic systems. 
Hough and White start by showing that the Dzyaloshinskii, Lif- 
shitz, Pitaevskii expression (Eq. (12) in the text) for the Hamaker 
constant may be rewritten for computational purposes as a power 
series expansion: 

where 

are evaluated at frequencies 

5. = n ( 2 ~ r k T / h )  

and the prime on the summation indicates that the n = 0 term is 
given half weight. Evaluation of the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& ( i t )  requires 
a knowledge of the absorption spectrum of the materials of in- 
terest over the entire, real frequency range. This is rarely known 
for many simple materials let alone ceramic materials. There- 
fore, the next step in the computation is the introduction of a 
method (the Ninham-Par~egian’~.” approximation) for deter- 
mining this function: 

N 

(A-2) 

where 

2 . J  c, = -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 7  0, 

f; is the strength of an oscillator hav,ing a relaxation frequency of 
o, , and N is the number of oscillators. 

This approximation is a method of constructing the required 
function &(it) from experimental data that are generally more 
available, namely, the frequencies and relative strengths of the 
peaks in the absorption spectrum. Particularly important is the 
contribution to Eq. (A-1) from the ultraviolet regions of the ab- 
sorption spectrum since these are sampled in the power series many 
more times than the lower-frequency regions. 

For the calculation of Hamaker constants of ceramic materials a 
further step is required since for the majority of these compounds 
the ultraviolet absorption peaks have not, in general, been deter- 
mined. Hough and White show that the function &(it) can never- 
theless be obtained provided that the refractive index, n, is known 
as a function of the wavelength in the visible region of the spec- 
trum. Specifically, they show that a (“Cauchy”) plot of the function 
n’(w) - 1 against [ n 2 ( w )  - 110’ is a straight line having a slope 
of l/u;” and an intercept of Cuv. 

Thus, with a procedure for evaluating the ultraviolet con- 
tribution, the function &(it) can be constructed as 

(A-3) 

The strength of the infrared contribution is given by the difference 
between the low-frequency dielectric constant and the square of the 
refractive index, viz. 

C,, = E ( ,  - n 2  

and the relaxation frequency corresponds to that of the principal 
infrared absorption. 
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Table AI. Oscillator Strengths and Relaxation Frequencies Table BI. Refractive Indices and Dielectric Constants 
Fused silica Sapphiie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C,, 1.71 8.50 
1.098 2.071 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACut zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w,,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x loi4 rad * s:’,) 1.88 1.88 
w,, (xlOih rad-s 1 2.033 2.017 

The calculation of the Hamaker constant then reduces to the 
evaluation of Eq. (A-I), making use of Eq. (A-3) after the re- 
quired constants are obtained from the “Cauchy” plot construction 
of Hough and White. For two particular ceramics, fused silica and 
sapphire, the oscillator strengths and relaxation frequencies re- 
quired for the calculation of Hamaker constants have been 
determined” and are given in Table AI. 

APPENDIX B 

The refractive indices and dielectric constants used in the Tabor- 
Winterton approximation (Eq. (28)) to evaluate the Hamaker con- 
stants for the ceramic systems in Table I are listed in Table BI 
together with the literature sources from which they were obtained. 
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