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Abstract

Assumption-Based Argumentation (ABA) has been shown to subsume various other
non-monotonic reasoning formalisms, among them normal logic programming (LP). We
re-examine the relationship between ABA and LP and show that normal LP also subsumes
(flat) ABA. More precisely, we specify a procedure that given a (flat) ABA framework
yields an associated logic program with almost the same syntax whose semantics coincide
with those of the ABA framework. That is, the 3-valued stable (respectively well-founded,
regular, 2-valued stable, and ideal) models of the associated logic program coincide with
the complete (respectively grounded, preferred, stable, and ideal) assumption labellings and
extensions of the ABA framework. Moreover, we show how our results on the translation
from ABA to LP can be reapplied for a reverse translation from LP to ABA, and observe
that some of the existing results in the literature are in fact special cases of our work.
Overall, we show that (flat) ABA frameworks can be seen as normal logic programs with a
slightly different syntax. This implies that methods developed for one of these formalisms
can be equivalently applied to the other by simply modifying the syntax.

1. Introduction

The formal study of argumentation in Artificial Intelligence aims at modelling argumenta-
tive reasoning, including for example constructing arguments from given knowledge, evalu-
ating conflicting arguments to determine argument validity, and handling preferences over
arguments or given information (Rahwan & Simari, 2009; Besnard, Garćıa, Hunter, Modgil,
Prakken, Simari, & Toni, 2014). Assumption-Based Argumentation (ABA) (Bondarenko,
Dung, Kowalski, & Toni, 1997; Dung, Kowalski, & Toni, 2009; Toni, 2014) has become
one of the leading approaches for formal argumentation which has proven useful in a wide
range of application areas such as decision making (Matt, Toni, Stournaras, & Dimitrelos,
2008; Dung, Thang, & Toni, 2008), multi-agent dialogues (Fan, Toni, & Hussain, 2010;
Fan & Toni, 2014), legal reasoning (Dung & Thang, 2009; Dung, Thang, & Hung, 2010),
and medicine (Craven, Toni, Cadar, Hadad, & Williams, 2012). It provides methods for
the construction of arguments from given inference rules and defeasible information, called
assumptions, as well as for the identification of attacks between assumptions based on the
notions of arguments and contraries of assumptions. The semantics of an ABA framework
are given in terms of sets of acceptable assumptions, which are able to defend themselves
against attacking assumptions. The most frequently studied fragment of ABA are flat ABA
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frameworks (e.g., Dung, Kowalski, & Toni, 2006; Dung, Mancarella, & Toni, 2007; Dung
et al., 2009; Toni, 2013; Fan & Toni, 2014), where assumptions cannot be derived using
inference rules.

ABA has a well-studied relationship to abstract argumentation (AA) (Dung, 1995b),
where arguments and attacks between them are given rather than constructed from knowl-
edge and semantics are defined in terms of sets of acceptable arguments, in that both flat
ABA is an instance of AA (Dung et al., 2007; Toni, 2014; Caminada, Sá, Alcântara, &
Dvořák, 2015b) and AA is an instance of ABA (Toni, 2012) under many well-studied se-
mantics. In addition to the “normal” notion of acceptability used in abstract argumentation
and many other argumentation formalisms, ABA is equipped with a dialectical notion of
acceptability (Toni, 2013) which makes it particularly suitable for many applications.

In addition to its relationship with AA, it has been shown that ABA is powerful enough
to capture various non-monotonic reasoning formalisms such as default logic, circumscrip-
tion, autoepistemic logic, and – most importantly for this paper – logic programming (LP)
(Bondarenko et al., 1997; Toni, 2007, 2008; Schulz & Toni, 2015). More precisely, the
aforementioned formalisms can be translated into ABA frameworks in such a way that the
semantics of the resulting ABA framework and of the respective formalism correspond. This
allows to apply methods developed for ABA, e.g. the dialectical notion of acceptability, to
the captured non-monotonic formalisms and has for example proven useful for explaining
(Schulz & Toni, 2016) as well as visualizing (Schulz, 2015) logic programs under certain
semantics. Importantly, the translation from a logic program yields a flat ABA framework.

In the current paper, we investigate the opposite direction, that is we define a translation
from a (flat) ABA framework to an associated logic program and show that LP is powerful
enough to capture the commonly used semantics of (flat) ABA. In particular, we study
the complete, grounded, preferred, stable, and ideal ABA semantics, which we will refer
to as common ABA semantics, and prove that they correspond to, respectively, the 3-
valued stable, well-founded, regular, (2-valued) stable, and ideal model semantics for LP.
Importantly, these results do not follow from previous work on translating LP to ABA
(Bondarenko et al., 1997; Schulz & Toni, 2015).

Correspondence under certain semantics between an ABA framework and some trans-
lation into a logic program is not surprising since existing translations from ABA to AA
(Dung et al., 2007; Caminada et al., 2015b; Schulz & Toni, 2017) and from AA to LP
(Osorio, Zepeda, Nieves, & Cortés, 2005; Wu, Caminada, & Gabbay, 2009; Strass, 2013;
Caminada, Sá, Alcântara, & Dvořák, 2015a) can be used to show correspondence under
certain semantics between an ABA framework and the logic program resulting from con-
catenation. However, the concatenation may lead to an exponential blow-up as it requires
the construction of all arguments from an ABA framework and is therefore not suitable for
practical matters such as the computation of ABA semantics using LP tools. Furthermore,
in the translation through concatenation, valuable information about the relation between
sentences in ABA gets lost. In contrast, our novel translation yields a logic program that
is syntactically very close to the inference rules of the ABA framework and thus preserves
the information in an ABA framework. It furthermore does not suffer from exponential
blow-up, making it suitable for the application of LP methods to ABA frameworks. Seman-
tic correspondence between ABA frameworks and our translation does therefore not follow
from existing correspondence results (as they concern a different translation). In addition,
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we also show that for a restricted class of ABA frameworks, the semi-stable ABA seman-
tics and 3-valued L-stable semantics of the logic program obtained through our translation
correspond. This result cannot be obtained through existing translations from ABA to AA
and from AA to LP.

The implications of our novel translation and our correspondence results are twofold:
Firstly, our results pave the way for the application of methods developed for LP to (flat)
ABA frameworks since our translation prevents an exponential blow-up while preserving
the semantics. Efficient computation methods for LP semantics could for instance be used
to determine the semantics of ABA frameworks, which is a promising direction for future
work. Secondly, our results illustrate not only that there exists a semantic correspondence
between (flat) ABA and LP (as obtained through existing results), but that (flat) ABA can
in fact be seen as LP with a slightly different syntax.

Our work contributes to an ongoing effort to compare non-monotonic reasoning for-
malisms and find translations between them that preserve the respective semantics. Starting
with comparisons of different non-monotonic logics such as default logic, circumscription,
and autoepistemic logic in the nineteen-nineties (Imielinski, 1987; Gottlob, 1995; Janhunen,
1999), attention has recently shifted towards the comparison of different extensions of ab-
stract argumentation frameworks such as evidential argumentation frameworks and bipo-
lar argumentation frameworks (Oren, Reed, & Luck, 2010; Cayrol & Lagasquie-Schiex,
2013; Polberg & Oren, 2014). Furthermore, the relationship between different structured
argumentation frameworks as well as their relation to abstract argumentation and other
non-monotonic reasoning formalisms has received considerable attention in recent years
(Chesñevar, Dix, Stolzenburg, & Simari, 2003; Vesic, 2013; Dung & Thang, 2014; Schulz &
Toni, 2015; Caminada et al., 2015b; Heyninck & Straßer, 2016; Young, Modgil, & Rodrigues,
2016; Grooters & Prakken, 2016).

This paper is structured as follows. First, we recall the definitions of ABA frameworks
and logic programs as well as of their respective semantics in Section 2 and illustrate how
the notion of an argument can be defined in terms of logic programs. In Section 3 we then
provide a translation from an ABA framework to an associated logic program and show that
the semantics of the two coincide. We subsequently show how our results on the translation
from ABA to LP can be reapplied for a reverse translation from LP to ABA in Section 4
and observe that some of the existing results in the literature are in fact special cases of
our work. In Section 5 we then discuss the relationship between LP and different fragments
of ABA frameworks, as well as their relationship under other semantics. In Section 6 we
conclude and discuss the implications of our work.1

2. Formal Preliminaries

In the current section, we provide a number of key definitions on Assumption-Based Argu-
mentation (ABA) and Logic Programming (LP).

1. Parts of the results of this paper have been presented at the first international workshop on argumentation
and logic programming (ArgLP) (Caminada & Schulz, 2015). The current paper provides an extended
and thoroughly revised version of these results. In particular, we have extended our initial results, which
hold for a very specialized fragment of ABA, to general flat ABA frameworks and we have added two
appendices (A and B) containing full proofs.
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2.1 Assumption-Based Argumentation

Definition 1. An Assumption-Based Argumentation (ABA) framework is a tuple 〈L,R,A, 〉̄
where L is a language, R is a set of inference rules based on this language, A ⊆ L is a
(non-empty) set of assumptions, and ¯ : A → L is a function that maps each assumption
χ ∈ A to what is called its contrary.

We denote by χ the sentence in L that is the contrary of assumption χ according to
the mapping ,̄ for example χ = ψ where ψ ∈ L. As a convention, we will use lower case
greek letters for assumptions and lower case Latin letters for non-assumption sentences.
An ABA framework is said to be flat (Bondarenko et al., 1997) iff assumptions only occur
in the body of the inference rules, and not in the head. From here onwards, and if not
stated otherwise, we assume that ABA frameworks are flat. Furthermore, we notice that
each assumption has just a single contrary. Although this deviates from some generalized
work on ABA, where each assumption has a set of contraries (Gaertner & Toni, 2007, 2008;
Fan & Toni, 2014, 2015), or where a set of sentences (containing at least one assumption)
is associated with a set of sentences which together form the contrary (Toni, 2007) of the
first set, in a lot of work on ABA (e.g., Dung et al., 2007, 2009; Toni, 2014; Schulz &
Toni, 2014) it is common for the authors to restrict themselves to assumptions with single
contraries as originally defined by Bondarenko et al. (1997). In addition, we will often
restrict ourselves to a fragment of ABA where the contrary of an assumption cannot be an
assumption itself (that is, ¯ : A → L \ A), which we call normal ABA frameworks. This is
the type of ABA framework that is for example obtained when translating a logic program
to an ABA framework (Bondarenko et al., 1997; Schulz & Toni, 2015). In Section 5 we
show that restricting ourselves to normal ABA frameworks does not affect the generality of
our results since any flat ABA framework (including those where assumptions have sets of
contraries) can be equivalently expressed as a normal ABA framework.

Definition 2. Let F = 〈L,R,A, 〉̄ be an ABA framework. An ABA argument Asms ` x
for conclusion x ∈ L supported by assumptions Asms ⊆ A is a finite tree with nodes labelled
with sentences in L or with the special symbol TRUE2, such that:

• the root is labelled with x

• for every node N:

– if N is a leaf node, then N is labelled with an assumption or with TRUE

– if N is not a leaf node and z ∈ L is the label of N, then there exists a rule in
R of the form z ← y1, . . . , yn and either n = 0 and N has just a single child
that is labelled with TRUE, or n > 0 and N has n children, labelled with y1, . . . , yn
respectively

– Asms is the set of all assumptions labelling leaf nodes

We say that an ABA argument Asms ` χ is trivial iff it consists of a single node, which
implies that χ is an assumption and Asms = {χ}.

2. We assume that the special symbol TRUE, just like the special symbols FALSE and UNDEFINED do not occur
in any ABA framework. So TRUE, FALSE, UNDEFINED 6∈ L.
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Based on the definition of an ABA argument, we proceed to introduce ABA semantics.
For this, we apply the notion of assumption labellings (Schulz & Toni, 2014) instead of
extensions (Bondarenko et al., 1997). As we will observe later, the three labels of an
assumption labelling provide a straightforward correspondence with the three values of
logic programming models.

Definition 3. Let F = 〈L,R,A, 〉̄ be an ABA framework. An assumption labelling of
F is a total function Lab : A → {in,out,undec}. We denote by in(Lab) the set of all
assumptions labelled in by Lab, and similarly by out(Lab) and undec(Lab) the sets of
assumptions labelled out and undec, respectively. An assumption labelling Lab is called a
complete assumption labelling of F iff for each χ ∈ A it holds that:

1. if Lab(χ) = in then for each ABA argument Asms ` χ it holds that Asms∩out(Lab) 6=
∅

2. if Lab(χ) = out then there exists an ABA argument Asms ` χ such that Asms ⊆
in(Lab)

3. if Lab(χ) = undec then there exists an ABA argument Asms ` χ such that Asms ∩
out(Lab) = ∅, and for each ABA argument Asms ` χ it holds that Asms 6⊆ in(Lab)

We will often denote a labelling Lab as a triple 〈in(Lab),out(Lab),undec(Lab)〉.
The following proposition states that we are free to change the direction of the three

if-statements in Definition 3. This will be a useful property for some of the proofs.

Proposition 1. (Schulz & Toni, 2014) Let F = 〈L,R,A, 〉̄ be an ABA framework, and
let Lab be an assumption labelling of F . Lab is a complete assumption labelling of F iff for
each χ ∈ A it holds that:

1. if for each ABA argument Asms ` χ it holds that Asms∩out(Lab) 6= ∅, then Lab(χ) =
in

2. if there exists an ABA argument Asms ` χ such that Asms ⊆ in(Lab), then Lab(χ) =
out

3. if there exists an ABA argument Asms ` χ such that Asms ∩ out(Lab) = ∅, and for
each ABA argument Asms ` χ it holds that Asms 6⊆ in(Lab), then Lab(χ) = undec

The notion of assumption labellings has been extended from the complete semantics
as introduced by Schulz and Toni (2014) to other well-known ABA semantics (Schulz &
Toni, 2017), which were previously defined in terms of extensions rather than labellings
(Bondarenko et al., 1997; Toni, 2014). Note that there exists a one-to-one correspondence
between the assumption labellings and the assumption extensions of an ABA framework
(Schulz & Toni, 2014, 2017). In essence, the set of in-labelled assumptions of a complete (re-
spectively grounded, preferred, stable, or ideal) assumption labelling constitutes a complete
(respectively grounded, preferred, stable, or (maximal) ideal) assumption extension.

Definition 4. Let F = 〈L,R,A, 〉̄ be an ABA framework. A complete assumption labelling
Lab of F is called:
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1. a grounded assumption labelling iff in(Lab) is minimal (w.r.t. ⊆) among all complete
assumption labellings of F

2. a preferred assumption labelling iff in(Lab) is maximal (w.r.t. ⊆) among all complete
assumption labellings of F

3. a stable assumption labelling iff undec(Lab) = ∅

4. an ideal assumption labelling iff in(Lab) is maximal (w.r.t. ⊆) among all complete as-
sumption labellings of F satisfying that for all preferred assumption labellings Labpref
of F , in(Lab) ⊆ in(Labpref )

Any ABA framework has one or more complete assumption labellings, in particular, a
unique grounded assumption labelling, one or more preferred assumption labellings, zero or
more stable asstumption labellings, and a unique ideal assumption labelling.

As complete, grounded, preferred, stable, and ideal semantics are well-studied in the
ABA literature (e.g., Čyras & Toni, 2015; Baláz, Frtús, Flouris, Homola, & Šefránek, 2014;
Toni, 2014; Dunne, 2009), we refer to these as the common ABA semantics3. These different
semantics have proven suitable for different applications. For example, the preferred seman-
tics is used in the context of legal reasoning with ABA (Dung & Thang, 2009), whereas
grounded and ideal semantics are suitable for modelling agent dialogues (Fan & Toni, 2014).

The following example illustrates the difference between the various common ABA se-
mantics and will be used as a running example throughout this paper.

Example 1. Let F = 〈L,R,A, 〉̄ be an ABA framework with

• A = {α, β, γ, δ, ε, φ, λ}

• L = A ∪ {a, b, c, d, e, f, l}

• α = f , β = b, γ = c, δ = d, ε = e, φ = f , λ = l

• R = {a← ; b← a, γ ; c← β ; d← b, e, δ ; e← a, α ; e← a, φ ; f ← ε, φ}

F has six complete assumption labellings:
Lab1 = 〈{λ}, ∅, {α, β, γ, δ, ε, φ}〉, Lab2 = 〈{α, φ, λ}, {ε}, {β, γ, δ}〉,
Lab3 = 〈{γ, λ}, {β}, {α, δ, ε, φ}〉, Lab4 = 〈{α, φ, γ, λ}, {β, ε}, {δ}〉,
Lab5 = 〈{β, δ, λ}, {γ}, {α, ε, φ}〉, Lab6 = 〈{α, β, δ, φ, λ}, {γ, ε}, ∅〉.
Lab1 is the grounded assumption labelling, Lab4 and Lab6 are the preferred assumption
labellings, Lab6 is the only stable assumption labelling, and Lab2 is the ideal assumption
labelling.

Next, we introduce a new result, namely that the set of in assumptions of a complete
assumption labelling Lab1 is a subset of the set of in assumptions of another complete
assumption labelling Lab2 iff the set of out assumptions of Lab1 is a subset of the set of
out assumptions of Lab2.

3. We here restrict ourselves to semantics that can be defined based on the complete semantics and therefore
do not deal with the admissible semantics.
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Lemma 1. Let F = 〈L,R,A, 〉̄ be an ABA framework, and let Lab1 and Lab2 be complete
assumption labellings of F . It holds that in(Lab1) ⊆ in(Lab2) iff out(Lab1) ⊆ out(Lab2).

Proof. “⇒”: Assume that in(Lab1) ⊆ in(Lab2). Let χ ∈ out(Lab1). Then, by the
definition of a complete assumption labelling (Definition 3) there exists an ABA argu-
ment Asms ` χ with Asms ⊆ in(Lab1). Since in(Lab1) ⊆ in(Lab2) it follows that
Asms ⊆ in(Lab2). So by Proposition 1 (point 2), χ ∈ out(Lab2).
“⇐”: Assume that out(Lab1) ⊆ out(Lab2). Let χ ∈ in(Lab1). Then, by the defini-
tion of a complete assumption labelling (Definition 3) it holds that each ABA argument
Asms ` χ has Asms ∩ out(Lab1) 6= ∅. Since out(Lab1) ⊆ out(Lab2) it follows that
Asms ∩ out(Lab2) 6= ∅. So by Proposition 1 (point 1), χ ∈ in(Lab2).

2.2 Logic Programming

We now shift our attention to logic programming. We start with formally introducing
the notion of a logic program. For current purposes, we restrict ourselves to normal logic
programs.4

Definition 5. A logic programming rule is an expression x ← y1, . . . , yn, not z1, . . . ,
not zm (n ≥ 0, m ≥ 0) where x, each yi (1 ≤ i ≤ n) and each zj (1 ≤ j ≤ m) is an atom,
and not represents negation as failure (NAF). We say that x is the head of the rule, and
y1, . . . , yn, not z1, . . . , not zm the body of the rule. Moreover, we say that y1, . . . , yn is the
strong part of the body, and not z1, . . . , not zm is the weak part of the body. We assume the
presence of three special atoms TRUE, FALSE and UNDEFINED, which can only occur in the
strong part of the body. A NAF literal is an expression not w, where w is an atom. We
say a rule is NAF-free iff it does not contain any NAF literal (that is, iff m = 0). A logic
program P consists of a set of logic programming rules. A logic program is NAF-free iff
each of its rules is NAF-free. The Herbrand Base of a logic program P (written as HBP )
is the set of all atoms in P (excluding the special atoms TRUE, FALSE and UNDEFINED). We
denote by HBnot

P = {not w | w ∈ HBP } the set of all NAF literals of atoms in the Herbrand
Base.

In the following, we recall the definitions of LP semantics.

Definition 6. A 3-valued interpretation of a logic program P with respect to a set of atoms
Atms ⊇ HBP is a pair 〈T, F 〉 where T, F ⊆ Atms and T ∩ F = ∅.

Definition 7. A 3-valued interpretation 〈T, F 〉 of a NAF-free logic program P w.r.t. Atms ⊇
HBP is a 3-valued model of P w.r.t. Atms if for all logic programming rules x← y1, . . . , yn
in P it holds that

• x ∈ T or

• x ∈ F and ∃i ∈ {1, . . . , n} : yi ∈ F ∨ yi = FALSE or

4. We recall that a logic program is called normal iff it does not contain strong negation, and does not
contain any disjunction in the head of any rule (e.g., Alferes & Pereira, 1992; Brogi, Lamma, Mancarella,
& Mello, 1992).
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• x ∈ Atms \ (T ∪ F ) and ∃i ∈ {1, . . . , n} : yi ∈ F ∨ yi ∈ Atms \ (T ∪ F ) ∨ yi =
FALSE ∨ yi = UNDEFINED

When P is a NAF-free logic program (possibly containing TRUE, FALSE or UNDEFINED),
we write ΦAtms(P ) for its unique minimal 3-valued model 〈T, F 〉 (w.r.t. Atms), i.e. 〈T, F 〉
has minimal T and maximal F (w.r.t. ⊆) among all 3-valued models of P w.r.t. Atms.

Definition 8. The reduct of a logic program P w.r.t. a 3-valued interpretation Mod =
〈T, F 〉, written as PMod, is obtained by replacing in every rule each NAF literal not x by
TRUE if x ∈ F , by FALSE if x ∈ T , and by UNDEFINED otherwise.

Since PMod is a NAF-free program, it has a unique minimal 3-valued model, written as
ΦHBP

(PMod).5

We now recall various logic programming semantics which are based on 3-valued in-
terpretations (Przymusinski, 1990). Notice that although our definition of well-founded
and regular models is slightly different from what is in the literature, equivalence is shown
by Caminada et al. (2015a). We also define a new semantics based on 3-valued models,
namely ideal models6, inspired by the idea of ideal scenarios for logic programs (Alferes,
Dung, & Pereira, 1993). In fact our ideal models coincide with ideal scenarios, as shown in
Appendix B.

Definition 9. Let P be a logic program and Mod = 〈T, F 〉 a 3-valued interpretation of P
w.r.t. HBP . We say that Mod is:

• a 3-valued stable model iff ΦHBP
(PMod) =Mod

• a well-founded model iff Mod is a 3-valued stable model where T is minimal (w.r.t.
⊆) among all 3-valued stable models of P

• a regular model iff Mod is a 3-valued stable model where T is maximal (w.r.t. ⊆)
among all 3-valued stable models of P (Eiter, Leone, & Saccà, 1997)

• a (2-valued) stable model iff Mod is a 3-valued stable model where T ∪ F = HBP

• an ideal model iff Mod is a 3-valued stable model where T is maximal (w.r.t. ⊆)
among all 3-valued stable models of P satisfying that for all regular models 〈Treg, Freg〉
of P , T ⊆ Treg

Any logic program has one or more 3-valued stable models, in particular, a unique well-
founded model, one or more regular models, zero or more (2-valued) stable models, and a
unique ideal model.

We sometimes refer to 3-valued stable, well-founded, regular, (2-valued) stable and ideal
semantics as the common LP semantics.

5. Please be aware that we have made the formalization of Przymusinski (1990) a bit more precise by
explicitly mentioning that the unique minimal 3-valued model is with respect to HBP and not for instance
with respect to HBPMod . To see why this matters, consider the logic program P = {a← not b}. When
we take Mod to be 〈{a}, {b}〉 it holds that HBP = {a, b} and HBPMod = {a} (as PMod = {a← TRUE})
so ΦHBP (PMod) =Mod whereas ΦHB

PMod (PMod) = 〈{a}, ∅〉 6=Mod. This illustrates that for defining
a 3-valued stable model in a meaningful way, one has to do so with respect to the Herbrand Base of the
original program P (not the reduced one).

6. Note that our definition of ideal models is different from the one by Nieves and Osorio (2016) which is
not inspired by the ideal scenario semantics.
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Example 2. Let P be the the logic program {a ← ; b ← a, not c ; c ← not b ; d ←
b, e, not d ; e ← a, not f ; f ← not e, not f}. The common LP semantics of P are as
follows. There are six 3-valued stable models:
Mod1 = 〈{a}, ∅〉, Mod2 = 〈{a, e}, {f}〉, Mod3 = 〈{a, b}, {c}〉,
Mod4 = 〈{a, b, e}, {c, f}〉, Mod5 = 〈{a, c}, {b, d}〉, Mod6 = 〈{a, c, e}, {b, d, f}〉.
Mod1 is the well-founded model,Mod4 andMod6 are the regular models, Mod6 is the only
(2-valued) stable model, and Mod2 is the ideal model.

Just as was done for ABA, we can also define arguments in the context of logic pro-
gramming.7

Definition 10. Let P be a logic program. An LP argument for x ∈ HBP (the conclusion)
is a finite tree with nodes labelled with atoms in HBP , NAF literals in HBnot

P , or with the
special atoms TRUE, FALSE or UNDEFINED such that:

• the root is labelled with x

• for every node N:

– if N is a leaf node, then N is labelled with a NAF literal or with one of the special
atoms TRUE, FALSE or UNDEFINED

– if N is not a leaf node and z is the label of N, then there exists a rule in P of the
form z ← y1, . . . , yn, not w1, . . . , not wm and either m+ n = 0 and N has just a
single child, that is labelled with TRUE, or n+m > 0 and N has n+m children,
labelled with y1, . . . , yn, not w1, . . . , not wm respectively

For NAF-free logic programs, atoms which are in T or F of the unique minimal 3-valued
model have special LP arguments, as shown by the following proposition.

Proposition 2. Let P be a NAF-free logic program, let Atms ⊇ HBP , let 〈T, F 〉 be
ΦAtms(P ), and let x ∈ HBP . It holds that:

1. x ∈ T iff there exists an LP argument for x where every leaf node is labelled with TRUE

2. x ∈ F iff each LP argument for x has at least one leaf node that is labelled with FALSE

Proof. See Appendix A

Example 3. Let PMod4 be the reduct of the logic program from Example 2 with respect to
the 3-valued stable model Mod4 = 〈T4, F4〉 where T4 = {a, b, e} and F4 = {c, f}. PMod4 is
the NAF-free logic program {a ← ; b ← a, TRUE ; c ← FALSE ; d ← b, e, UNDEFINED ; e ←
a, TRUE ; f ← FALSE, TRUE}. Since Mod4 is a 3-valued stable model of P , it holds that
Mod4 = ΦHBP

(PMod4), so Proposition 2 applies to arguments of PMod4 and its minimal
3-valued model Mod4. Figure 1 depicts three such LP arguments: The only LP argument
for b has all leaf nodes labelled TRUE, and b ∈ T4; for f ∈ F4 the only LP argument is such
that some leaf node is labelled FALSE; and the only LP argument for d has not all leaf nodes
labelled TRUE but has no leaf node labelled FALSE, so as stated in Proposition 2 d /∈ T4 and
d /∈ F4.

7. Our way of defining arguments in the context of LP is slightly different from what is done for instance by
Dung (1995b), as our aim is to facilitate an easy translation between LP arguments and ABA arguments.
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b

a TRUE

TRUE

f

FALSE TRUE

d

e

a TRUE

TRUE

UNDEFINEDb

a TRUE

TRUE

Figure 1: LP arguments constructed from PMod4 (see Example 3).

3. Translating ABA Frameworks to Logic Programs

In order to compare ABA to logic programming, we first introduce a novel translation from
a normal ABA framework to a logic program and then present semantic correspondence
results. At the end of this section, we compare our new translation with a translation
obtained from existing results.

3.1 A Novel Translation

The idea of our translation is to take the rules of the ABA framework and substitute each
assumption by the NAF literal of the assumption’s contrary. Note that this means that
different assumptions might be substituted by the same NAF literal if they have the same
contrary.

Definition 11. Let F = 〈L,R,A, 〉̄ be a normal ABA framework. We define the associated
logic program PF as {x← y1, . . . , yn, not ζ1, . . . , not ζm | x← y1, . . . , yn, ζ1, . . . , ζm ∈ R}.

Since we assume that no ABA framework contains the special symbols TRUE, FALSE or
UNDEFINED, the associated logic program will not contain any of these symbols either. Note
also that since F is a normal ABA framework, i.e. the contraries of assumptions are non-
assumptions, HBPF contains no atoms which are assumptions in F . As illustrated by the
following example, an associated logic program may comprise less rules than the original
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e

a α

TRUE

e

a φ

TRUE

e

a not f

TRUE

Figure 2: The two ABA arguments for e (left and middle) and the one LP argument for e
(right) from Example 4.

ABA framework, which is due to the fact that different assumptions may have the same
contrary.8

Example 4. Consider again the ABA framework F from Example 1. The associated logic
program PF is the logic program introduced in Example 2. Note that PF comprises one rule
less than F since two ABA rules e← a, α and e← a, φ are translated to the same LP rule
e ← a, not f . Furthermore, note that l ∈ L but l /∈ HBPF since neither l nor λ occurs in
an ABA rule.

It can be observed that the translation from a normal ABA framework to a logic program
can also be applied to translate ABA arguments (Definition 2) to LP arguments (Definition
10). For instance, in Example 4, an ABA argument for conclusion e has an associated LP
argument for conclusion e. However, various ABA arguments may have the same associated
LP argument, as illustrated in Figure 2. The reason is that different assumptions may be
translated to the same NAF literal, e.g. α and φ in Example 4 are both translated to not f .
In general, we observe that each non-trivial ABA argument in F has an associated LP
argument in PF , and that each LP argument is associated to at least one ABA argument.

3.2 Semantic Correspondence

One of the main aims of the current paper is to examine how ABA semantics are related to
logic programming semantics when translating an ABA framework to a logic program. For
this, we introduce the functions Lab2Mod and Mod2Lab to convert between ABA assumption
labellings and logic programming models.

To convert an assumption labelling to a 3-valued interpretation, we start by “invert-
ing” the labelling. That is, we construct an interpretation 〈T ′, F ′〉 where T ′ contains the
contraries of the assumptions that are out, whereas F ′ contains the contraries of the as-
sumptions that are in. However, since we started with assumptions, this will only yield the
status of atoms which are contraries of assumptions. In order to obtain the status of all
atoms in the logic program (including those that are not the contrary of any assumption in
the ABA framework) we perform a simple trick: apply the Gelfond-Lifschitz reduct.

8. Another subtle aspect of the translation is that ABA rules are composed of sentences whereas LP rules
are composed of atoms (possibly inside of a NAF literal). In essence, the translation creates an LP atom
for each (non-assumption) sentence that occurs in the ABA rules.
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To convert a 3-valued interpretation to an assumption labelling, the idea is again to
“invert” the interpretation. The assumptions whose contrary is in F will be labelled in.
The assumptions whose contrary is in T will be labelled out. The assumptions whose
contrary is in the Herbrand Base, but not in T or F will be labelled undec. The only
remaining case is that of assumptions whose contrary is not in the Herbrand Base. This
case occurs if there exist assumptions in the ABA framework which are not part of any
inference rule and neither are their contraries. Thus, there are no ABA arguments for the
contraries of these assumptions, so the assumptions can simply be labelled in.

Definition 12. Let F = 〈L,R,A, 〉̄ be a normal ABA framework and let PF be the as-
sociated logic program. We define a function Lab2Mod that, given a complete assumption

labelling Lab of F , yields the 3-valued interpretation ΦHBPF
(P
〈T ′,F ′〉
F ) where T ′ = {χ | χ ∈

out(Lab)} and F ′ = {χ | χ ∈ in(Lab)} ∩HBPF .9 We also define a function Mod2Lab that,
given a 3-valued stable model 〈T, F 〉 of PF , yields an assumption labelling Lab of F with
in(Lab) = {χ ∈ A | χ ∈ F} ∪ {χ ∈ A | χ 6∈ HBPF}, out(Lab) = {χ ∈ A | χ ∈ T} and
undec(Lab) = {χ ∈ A | χ ∈ HBPF \ (T ∪ F )}.

We observe that the functions Lab2Mod and Mod2Lab provide a one-to-one mapping
between the complete assumption labellings of F and the 3-valued stable models of PF .

Theorem 2. Let F = 〈L,R,A, 〉̄ be a normal ABA framework and let PF be the associated
logic program. It holds that

1. if Lab is a complete assumption labelling of F then Lab2Mod(Lab) is a 3-valued stable
model of PF

2. ifMod is a 3-valued stable model of PF then Mod2Lab(Mod) is a complete assumption
labelling of F

3. Lab2Mod and Mod2Lab are bijections which are each other’s inverses

Proof. See Appendix A

Example 5. Consider again F and PF from Example 4. The six complete assumption la-
bellings of F are given in Example 1, and the six 3-valued stable models of PF in Example 2.
It is easy to verify the correspondences between complete assumption labellings and 3-valued
stable models, e.g. Mod1 = Lab2Mod(Lab1) and Lab1 = Mod2Lab(Mod1).

Theorem 2 is important, since in ABA complete assumption labellings are the basis
of various other semantics (like grounded, preferred, stable, and ideal), just like in logic
programming 3-valued stable models are the basis of various other semantics (like well-
founded, regular, (2-valued) stable, and ideal). For instance, where preferred semantics
takes the complete assumption labellings and selects those with the maximal set of in la-
belled assumptions, regular semantics takes the 3-valued stable models and selects those
with maximal T . Hence, to prove equivalence between preferred semantics in ABA and reg-
ular semantics in logic programming, we need to show that there is an equivalence (through

9. Note that for any χ ∈ out(Lab) it holds that there exists an inference rule with head χ, and therefore
χ ∈ HBPF . For T ′ it is thus not necessary to use the intersection with HBPF .
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the functions Lab2Mod and Mod2Lab) between the complete assumption labellings with max-
imal in and the 3-valued stable models with maximal T . For this purpose, we first introduce
the following lemma on the correspondence between sets of in labelled assumptions of com-
plete assumption labellings and sets T of 3-valued stable models.

Lemma 3. Let F = 〈L,R,A, 〉̄ be a normal ABA framework and let PF be the associated
logic program. Let Lab1 and Lab2 be complete assumption labellings of F , and let Mod1 =
〈T1, F1〉 = Lab2Mod(Lab1) andMod2 = 〈T2, F2〉 = Lab2Mod(Lab2). It holds that in(Lab1) ⊆
in(Lab2) iff T1 ⊆ T2.

Proof. “⇒”: Assume that in(Lab1) ⊆ in(Lab2). From Mod1 = Lab2Mod(Lab1) it follows

that 〈T1, F1〉 = ΦHBPF
(P
〈T ′

1,F
′
1〉

F ) with T ′1 = {χ | χ ∈ out(Lab1)}∩HBPF and F ′1 = {χ | χ ∈
in(Lab1)}∩HBPF . FromMod2 = Lab2Mod(Lab2) it follows that 〈T2, F2〉 = ΦHBPF

(P
〈T ′

2,F
′
2〉

F )
with T ′2 = {χ | χ ∈ out(Lab2)} ∩ HBPF and F ′2 = {χ | χ ∈ in(Lab2)} ∩ HBPF . From the
fact that in(Lab1) ⊆ in(Lab2) it follows (Lemma 1) that out(Lab1) ⊆ out(Lab2), so we
obtain that T ′1 ⊆ T ′2. Now, suppose that x ∈ T1. From Proposition 2 it follows that there

exists an LP argument for x in P
〈T ′

1,F
′
1〉

F such that each leaf node is labelled with TRUE. From

the fact that T ′1 ⊆ T ′2 it then follows that the same LP argument also exists in P
〈T ′

2,F
′
2〉

F . So
x ∈ T2.
“⇐”: Since Lab2Mod and Mod2Lab are each other’s inverses (point 3 of Theorem 2) it follows
that Lab1 = Mod2Lab(Mod1) and Lab2 = Mod2Lab(Mod2). From the definition of Mod2Lab
it then follows that out(Lab1) = {χ ∈ A | χ ∈ T1} and out(Lab2) = {χ ∈ A | χ ∈ T2}.
From T1 ⊆ T2 it then follows that out(Lab1) ⊆ out(Lab2). From Lemma 1 it then follows
that in(Lab1) ⊆ in(Lab2).

From the fact that for complete assumption labellings and 3-valued stable models
Lab2Mod and Mod2Lab are each other’s inverses, it follows that Lemma 3 can also be ap-
plied for two 3-valued stable modelsMod1 andMod2 of PF and the associated assumption
labellings Lab1 = Mod2Lab(Mod1) and Lab2 = Mod2Lab(Mod2) of F .

The following theorem states the correspondence between the various semantics of ABA
frameworks and their associated logic programs.

Theorem 4. Let F = 〈L,R,A, 〉̄ be a normal ABA framework and let PF be the associated
logic program. It holds that:

1. if Lab is a grounded assumption labelling of F then Lab2Mod(Lab) is a well-founded
model of PF

2. if Mod is a well-founded model of PF then Mod2Lab(Mod) is a grounded assumption
labelling of F

3. if Lab is a preferred assumption labelling of F then Lab2Mod(Lab) is a regular model
of PF

4. if Mod is a regular model of PF then Mod2Lab(Mod) is a preferred assumption la-
belling of F
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5. if Lab is a stable assumption labelling of F then Lab2Mod(Lab) is a (2-valued) stable
model of PF

6. if Mod is a (2-valued) stable model of PF then Mod2Lab(Mod) is a stable assumption
labelling of F

7. if Lab is an ideal assumption labelling of F then Lab2Mod(Lab) is an ideal model of
PF

8. if Mod is an ideal model of PF then Mod2Lab(Mod) is an ideal assumption labelling
of F

Proof. See Appendix A.

The reader can easily verify that there is a one-to-one correspondence between the
common ABA semantics of the ABA framework F from Example 4 and the common LP
semantics of its associated logic program PF . For example, the preferred assumption la-
bellings of F (see Example 1) correspond to the regular models of PF (see Example 2) in
terms of Lab2Mod and Mod2Lab.

The semantics of an ABA framework were originally defined as assumption extensions,
i.e. sets of “acceptable” assumptions (Bondarenko et al., 1997), rather than as assumption
labellings. However, the two notions of ABA semantics coincide (Schulz & Toni, 2017),
so 3-valued stable (respectively well-founded, regular, (2-valued) stable, ideal) models also
correspond to complete (respectively grounded, preferred, stable, ideal) assumption exten-
sions.

3.3 Translation from Existing Results

As pointed out in the introduction, it is not surprising that there exists a semantic cor-
respondence for some translation from an ABA framework into a logic program due to
the semantic correspondence of ABA and AA (Dung et al., 2007; Caminada et al., 2015b;
Schulz & Toni, 2017) and AA and LP (Osorio et al., 2005; Wu et al., 2009; Strass, 2013;
Caminada et al., 2015a). However, the translation obtained from concatenating the ABA
to AA and the AA to LP translations is different from our translation, as illustrated in the
following.

Example 6. Let F be the ABA framework with:

• A = {α, β}

• L = A ∪ {a, b, c, d}

• α = d, β = b

• R = {a← ; b← a, α ; c← a, β}

Translating F into an AA framework and then into a logic program using existing
translations (Dung et al., 2007; Caminada et al., 2015b; Schulz & Toni, 2017; Osorio et al.,
2005; Wu et al., 2009; Strass, 2013; Caminada et al., 2015a) yields the logic program
P = {x ← ; y ← ; z ← not y ; v ← ; w ← not y} (where the names of the atoms could
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be anything)10. In comparison, according to our translation we obtain the logic program
PF = {a ← ; b ← a, not d ; c ← a, not b}, which is much closer to the underlying ABA
framework. Note that apart from preserving the names of atoms, our translation preserves
the dependencies between atoms, such as the dependency of b on a, which is lost in the
concatenated translation. Thus, the semantic correspondence holding for the concatenated
translation from ABA to LP does not straightforwardly carry over to our translation.

Another advantage of our translation is that it prevents exponential blow-up, which is
important for future work on using LP tools for ABA.

Example 7. Let F be the ABA framework with:

• A = {α}

• L = A ∪ {ai, bi | 0 ≤ i ≤ n} ∪ {x}

• α = x

• R = {a0 ← ; b0 ← ; ai+1 ← ai ; ai+1 ← bi ; bi+1 ← ai ; bi+1 ← bi}

where n ∈ N

Translating F into an AA framework results in an exponential blow-up since the number
of constructable arguments quadruples every time i is incremented. Then further translating
it into a logic program thus yields a large logic program with exponential blow-up. In
contrast, our translation results in a logic program with the same number of rules as F .

4. Translating Logic Programs to ABA Frameworks

In the previous section, we studied a translation from normal ABA frameworks to logic
programs, and observed that the various types of labellings of an ABA framework coincide
with the various types of models of the associated logic program. In the current section,
we go the other way around. That is, we examine a translation from a logic program to
an ABA framework as done by Bondarenko et al. (1997) and Schulz and Toni (2015, 2016),
and then show that existing correspondence results are generalised by our work.

4.1 Translation

Without loss of generality, we restrict the translation to logic programs without the special
atoms TRUE, FALSE and UNDEFINED11 (this is to prevent these atoms from occurring in the
resulting ABA framework).

10. The AA framework obtained from F has the following arguments, where the letter in front of an argument
denotes its name: x : {} ` a, y : {α} ` b, z : {β} ` c, v : {α} ` α, w : {β} ` β.

11. Any logic program P containing these special atoms can be transformed to an equivalent logic program P ′

without these atoms by (1) removing each occurrence of TRUE from the bodies of the rules, (2) removing
each rule that contains FALSE in its body, and (3) replacing each occurrence of UNDEFINED by a new atom
u and adding a rule u ← not u. It can be verified that Mod is a 3-valued stable (resp. well-founded,
regular, 2-valued stable and ideal) model of P iff Mod is a 3-valued stable (resp. well-founded, regular,
2-valued stable and ideal) model of P ′. We refer to Appendix A (Proposition 3) for a formal proof.
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Definition 13. Let P be a logic program not containing the special atoms TRUE, FALSE and
UNDEFINED. We define the associated ABA framework FP = 〈L,R,A, 〉̄ with A = {not w |
w ∈ HBP }, L = HBP ∪ A, R = {x ← y1, . . . , yn, not z1, . . . , not zm | x ← y1, . . . , yn,
not z1, . . . , not zm ∈ P} and not w = w for every not w ∈ A.

We define LP2ABA to be the function that, given a logic program P , yields the associated
ABA framework FP (Definition 13). Similarly, we define ABA2LP to be the function that,
given a normal ABA framework F , yields the associated logic program PF (Definition 11).

We first show a syntactic feature of the two translations: translating a logic program
to an associated ABA framework using LP2ABA, and then translating this ABA framework
back to a logic program using ABA2LP yields the original logic program.

Lemma 5. Let P be a normal logic program. It holds that ABA2LP(LP2ABA(P )) = P .

Proof. Let FP = 〈LP ,RP ,AP , 〉̄ be LP2ABA(P ).
“⊆”: Let x ← y1, . . . , yn, not z1, . . . , not zm be a logic programming rule that is part of
ABA2LP(LP2ABA(P )). Then from the definition of ABA2LP it follows that there exists an
ABA rule x ← y1, . . . , yn, ζ1, . . . , ζm in RP with ζi ∈ AP and ζi = zi (1 ≤ i ≤ m). From
the definition of LP2ABA it then follows that ζi = not zi (because not zi is the only as-
sumption in AP that has zi as its contrary (1 ≤ i ≤ m)) and that there exists a rule
x← y1, . . . , yn, not z1, . . . , not zm in P .
“⊇”: Let x← y1, . . . , yn, not z1, . . . , not zm be a logic programming rule in P . Then from
the definition of LP2ABA it follows thatRP contains a rule x← y1, . . . , yn, not z1, . . . , not zm
with not zi = zi (1 ≤ i ≤ m). From the definition of ABA2LP this then implies that
ABA2LP(LP2ABA(P )) contains a rule x← y1, . . . , yn, not z1, . . . , not zm.

Example 8. Let P be the logic program from Example 2. The associated ABA frame-
work LP2ABA(P ) is 〈L,R,A, 〉̄ with A = {not a, not b, not c, not d, not e, not f}, L =
{a, b, c, d, e, f} ∪ A, R = {a ← ; b ← a, not c ; c ← not b ; d ← b, e, not d ; e ←
a, not f ; f ← not e, not f}, and not a = a, not b = b, etc. The associated logic pro-
gram of this ABA framework is then ABA2LP(LP2ABA(P )) = {a ← ; b ← a, not c ; c ←
not b ; d← b, e, not d ; e← a, not f ; f ← not e, not f}

4.2 Semantic Correspondence

Based on this syntactic equivalence, Theorem 6 and Theorem 7 point out that our results
on semantic correspondence regarding the translation from ABA to LP, as stated in the
previous section, can be reused for the translation from LP to ABA. Hence, our work
generalizes the results by Schulz and Toni (2015) and Bondarenko et al. (1997), where
only the LP to ABA direction is considered. In particular, the function Lab2Mod from
Definition 12 can be applied to assumption labellings of an ABA framework FP , which
is associated with a logic program P , to yield models of P . Conversely, Mod2Lab can be
applied to models of a logic program P to yield assumption labellings of the associated
ABA framework FP .

Theorem 6. Let P be a logic program and let FP = LP2ABA(P ) be its associated ABA
framework. It holds that:
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1. ifMod is a 3-valued stable model of P , then Mod2Lab(Mod) is a complete assumption
labelling of FP

2. if Lab is a complete assumption labelling of FP , then Lab2Mod(Lab) is a 3-valued
stable model of P

Proof. 12 Let PFP
be the associated logic program of FP , i.e. PFP

= ABA2LP(FP ). From
FP = LP2ABA(P ) it then follows that PFP

= ABA2LP(LP2ABA(P )). It then follows from
Lemma 5 that PFP

= P .

1. LetMod be a 3-valued stable model of P . As P = PFP
, it directly follows thatMod

is a 3-valued stable model of PFP
. From Theorem 2 (point 2) it then follows that

Mod2Lab(Mod) is a complete assumption labelling of FP .

2. Let Lab be a complete assumption labelling of FP . From Theorem 2 (point 1) it
then follows that Lab2Mod(Lab) is a 3-valued stable model of PFP

. From the fact that
PFP

= P , it then directly follows that Lab2Mod(Lab) is also a 3-valued stable model
of P .

We now extend the correspondence results from Theorem 6 to common ABA and LP
semantics.

Theorem 7. Let P be a logic program and let FP = LP2ABA(P ) be its associated ABA
framework. It holds that:

1. if Mod is a well-founded model of P , then Mod2Lab(Mod) is a grounded assumption
labelling of FP

2. if Lab is a grounded assumption labelling of FP , then Lab2Mod(Lab) is a well-founded
model of P

3. ifMod is a regular model of P , then Mod2Lab(Mod) is a preferred assumption labelling
of FP

4. if Lab is a preferred assumption labelling of FP , then Lab2Mod(Lab) is a regular model
of P

5. if Mod is a (2-valued) stable model of P , then Mod2Lab(Mod) is a stable assumption
labelling of FP

6. if Lab is a stable assumption labelling of FP , then Lab2Mod(Lab) is a (2-valued) stable
model of P

7. if Mod is an ideal model of P , then Mod2Lab(Mod) is an ideal assumption labelling
of FP

12. This was proven by Schulz and Toni (2015) for a simplified version of Mod2Lab and Lab2Mod. Here, we use
our results from Section 3 for the proof which also serves as an illustration for the proofs of Theorem 7.
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8. if Lab is an ideal assumption labelling of FP , then Lab2Mod(Lab) is an ideal model of
P

Proof. Let PFP
be the associated logic program of FP , i.e. PFP

= ABA2LP(FP ). From
FP = LP2ABA(P ) it then follows that PFP

= ABA2LP(LP2ABA(P )). It then follows from
Lemma 5 that PFP

= P .

1. LetMod be a well-founded model of P . As P = PFP
, it directly follows thatMod is a

well-founded model of PFP
. From point 2 of Theorem 4 it follows that Mod2Lab(Mod)

is a grounded assumption labelling of FP .

2. Let Lab be a grounded labelling of FP . From point 1 of Theorem 4 it then follows
that Lab2Mod(Lab) is a well-founded model of PFP

. From the fact that PFP
= P , it

then directly follows that Lab2Mod(Lab) is a well-founded model of P .

3. Similar to point 1, but using point 4 of Theorem 4.

4. Similar to point 2, but using point 3 of Theorem 4.

5. Similar to point 1, but using point 6 of Theorem 4.

6. Similar to point 2, but using point 5 of Theorem 4.

7. Similar to point 1, but using point 8 of Theorem 4.

8. Similar to point 2, but using point 7 of Theorem 4.

The reader can verify that the common LP semantics of the logic program P from
Example 2 correspond to the common ABA semantics of the associated ABA framework
FP given in Example 8.

If it is possible to reuse our results from the ABA to LP translation for the LP to ABA
translation, then would the reverse also be possible? In other words, is it possible to reuse
some of the existing work on the LP to ABA translation (e.g., Bondarenko et al., 1997;
Schulz & Toni, 2015) to obtain similar results for the ABA to LP translation? The short
answer is no, at least not in any obvious way. Our ability to reuse the results from the
ABA to LP translation for the LP to ABA translation critically depends on the fact that
ABA2LP(LP2ABA(P )) = P as stated in Lemma 5. To reuse the results of the LP to ABA
direction for the ABA to LP direction would thus require the property that for any ABA
framework F , LP2ABA(ABA2LP(F)) = F . However, this property does not hold, since in the
translation from ABA to LP some information gets lost (like the precise set of assumptions,
some of which may not occur in any rule) as in essence only its set of rules R gets translated.

Example 9. Consider the ABA framework F from Example 1 and its associated logic
program ABA2LP(F) = PF , which is the logic program from Example 2. Translating PF back
to an ABA framework yields LP2ABA(PF ) = F ′, where F ′ is the ABA framework introduced
as LP2ABA(P ) in Example 8. The most obvious difference between F and F ′ is in the set of
assumptions. Even though not b corresponds to the original assumption β, and not c to γ,
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not a does not correspond to the original assumption α since they have different contraries.
Furthermore, F ′ is missing one of the rules from F , and the fact that two of the assumptions
(α and φ) originally had the same contrary is lost. Furthermore, the non-used sentences (l
and λ) in the language of F are not present in F ′.

Furthermore, the two functions Lab2Mod and Mod2Lab, which convert between assump-
tion labellings and LP models for ABA frameworks and their associated logic programs (as
introduced in Section 3), can be directly applied to logic programs and their associated
ABA frameworks (see Theorem 6). In contrast, functions converting between LP and ABA
semantics for logic programs and their associated ABA frameworks (as introduced in exist-
ing work (e.g., Bondarenko et al., 1997; Schulz & Toni, 2015) cannot be applied the other
way around (i.e. for ABA frameworks and their associated logic programs), as shown in the
following.

We recall the conversion functions by Schulz and Toni (2015) (applied to an ABA frame-
work and its associated logic program), which are in fact special cases of the functions we
give in Definition 12.

Definition 14. Let F = 〈L,R,A, 〉̄ be a normal ABA framework and let PF be the associ-
ated logic program. Given an assumption labelling Lab of F , the function Lab2Mod′ yields the
3-valued interpretation 〈T, F 〉 where T = {χ | χ ∈ out(Lab)} and F = {χ | χ ∈ in(Lab)}.
Given a 3-valued interpretation 〈T, F 〉 of PF , the function Mod2Lab′ yields an assumption
labelling Lab of F with in(Lab) = {χ ∈ A | χ ∈ F}, out(Lab) = {χ ∈ A | χ ∈ T} and
undec(Lab) = {χ ∈ A | χ ∈ HBPF \ (T ∪ F )}.

These translations between assumption labellings and LP models do not preserve the
ABA and LP semantics as is the case when using Mod2Lab and Lab2Mod, i.e. Theorems 2
and 4 does not hold when applying Mod2Lab′ or Lab2Mod′.

Example 10. Consider the ABA framework F from Example 4 and its associated logic pro-
gram PF from Example 2. Lab2Mod′(Lab1) = 〈∅, {l}〉, which is not a 3-valued stable model
of PF . Similarly, Mod2Lab′(Mod1) = 〈∅, ∅, {α, β, γ, δ, ε, φ}〉 is not a complete assumption
labelling of F .

Thus, existing results on the correspondence between ABA and LP semantics when
translating LP to ABA cannot be applied to the translation from ABA to LP.

5. Going Beyond Normal ABA Frameworks and Common Semantics

So far, we have only studied a special type of ABA frameworks, namely flat ABA frameworks
where each assumption has a single contrary which is not an assumption itself. Furthermore,
we have only considered common ABA semantics, that is complete, grounded, preferred,
stable, and ideal semantics. In the current section, we briefly examine what happens when
we try to go beyond these restrictions, that is, if we use either ABA frameworks that are
not normal or ABA semantics that are not common. Note that the translation from a logic
program to an ABA framework always yields a normal ABA framework, so we only consider
the translation from an ABA framework which is not normal to a logic program.
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5.1 Beyond Normal ABA Frameworks

The most obvious way to go beyond normal ABA frameworks is to consider the type of ABA
frameworks used in most of the literature, namely flat ABA frameworks, i.e. to drop the
restriction that the contrary of an assumption has to be a non-assumption. Using ABA2LP

to translate such an ABA framework to a logic program can result in NAF literals of the
form not α, where α is an assumption. Since there is no rule with head α in the ABA
framework, and thus neither in the associated logic program, not α will always be satisfied,
which does not always reflect the situation in the underlying ABA framework.

Example 11. Let F = 〈L,R,A, 〉̄ be the ABA framework with A = {α, β}, L = {a, b}∪A,
α = β, β = a, and R = {a ← α; b ← β}. This ABA framework has three complete
assumption labellings: 〈∅, ∅, {α, β}〉, 〈{α}, {β}, ∅〉, and 〈{β}, {α}, ∅〉. Translating F to a
logic program using ABA2LP yields PF = {a← not β; b← not a}, where HBPF = {a, b, β},
so an assumption is now an atom in the Herbrand Base of the associated logic program. PF
has only one 3-valued stable model, namely 〈{a}, {b, β}〉, which corresponds to the second
complete assumption labelling in terms of Lab2Mod and Mod2Lab. However, there is no
corresponding 3-valued stable model for the other two complete assumption labellings.

We now show that a flat ABA framework (where contraries can be assumptions) can
always be translated to an equivalent normal ABA framework, that is, to a normal ABA
framework that has the same complete (respectively grounded, preferred, stable and ideal)
labellings as the flat ABA framework. The idea is that every assumption that has an
assumption as its contrary gets a new non-assumption as its contrary. A rule is then added
with the new contrary as its head and the old contrary as its body.

Definition 15. Let F = 〈L,R,A, 〉̄ be an ABA framework where contraries are allowed to
be assumptions or non-assumptions (that is: ¯ : A → L). The corresponding normal ABA
framework is F ′ = 〈L′,R′,A, 〉̃ with L′ = L ∪ {χ∗ | χ ∈ A and χ ∈ A}, R′ = R ∪ {χ∗ ←
χ | χ ∈ A and χ ∈ A} and χ̃ being χ if χ ∈ L \ A or χ∗ if χ ∈ A.

The following theorem shows that the contrary of an assumption has corresponding
arguments in F and F ′. To distinguish arguments constructed from different ABA frame-
works, we use the notation Asms `F χ to denote that the argument is constructed from
the ABA framework F .

Theorem 8. Let F = 〈L,R,A, 〉̄ be an ABA framework where contraries are allowed to
be assumptions or non-assumptions and let F ′ = 〈L′,R′,A, 〉̃ be the corresponding normal
ABA framework.
It holds that:

1. no assumption χ ∈ A has χ̃ ∈ A

2. let χ ∈ A and Asms ⊆ A. Asms `F χ iff Asms `F ′ χ̃.

Proof. See Appendix A.

Since complete assumption labellings only depend on the arguments for the contrary of
an assumption in question, it follows that the assumption labellings of F and F ′ are the
same.
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Corollary 1. Let F = 〈L,R,A, 〉̄ be an ABA framework where contraries are allowed to
be assumptions or non-assumptions and let F ′ = 〈L′,R′,A, 〉̃ be the corresponding normal
ABA framework. Then Lab is a complete (respectively grounded, preferred, stable or ideal)
assumption labelling of F iff it is a complete (respectively grounded, preferred, stable or
ideal) assumption labelling of F ′.

Thus, given that any flat ABA framework can be translated to a corresponding normal
ABA framework, which can then be translated to a logic program by means of ABA2LP, it
holds that the 3-valued stable (respectively well-founded, regular, (2-valued) stable, ideal)
models of the resulting logic program coincide (in terms of Mod2Lab and Lab2Mod) with the
complete (respectively grounded, preferred, stable, ideal) assumption labellings of the flat
ABA framework. Hence, the results presented in this paper hold not just for normal ABA
frameworks, but also for flat ABA frameworks in general.

Observation 1. Let F = 〈L,R,A, 〉̄ be a flat ABA framework, F ′ the corresponding
normal ABA framework, and PF ′ the associated logic program of F ′.

1. if Lab is a complete (respectively grounded, preferred, stable, ideal) assumption la-
belling of F then Lab2Mod(Lab) is a 3-valued stable (respectively well-founded, regular,
(2-valued) stable, ideal) model of PF ′.

2. ifMod is a 3-valued stable (respectively well-founded, regular, (2-valued) stable, ideal)
model of PF ′ then Mod2Lab(Mod) is a complete (respectively grounded, preferred,
stable, ideal) assumption labelling of F .

Example 12. Let F = 〈L,R,A, 〉̄ be the ABA framework from Example 11. The corre-
sponding normal ABA framework is F ′ = 〈L,R′,A, 〉̃ with L′ = L∪{β∗}, R′ = R∪{β∗ ←
β}, and α̃ = β∗ and β̃ = a. F ′ has the same three complete assumption labellings as F (see
Example 11).

Translating F ′ to a logic program using ABA2LP yields PF ′ = {a ← not β∗; b ←
not a; β∗ ← not a}, where HBPF′ = {a, b, β∗}. PF ′ has three 3-valued stable models,
which correspond to the three complete assumption labellings of F ′ in terms of Lab2Mod and
Mod2Lab: 〈∅, ∅〉, 〈{a}, {b, β∗}〉, 〈{b, β∗}, {a}〉.

Another way to go beyond normal ABA frameworks is to allow assumptions that have a
set of contraries (e.g., Gaertner & Toni, 2007, 2008; Fan & Toni, 2014, 2015), instead of just
a single contrary (e.g., Bondarenko et al., 1997; Dung et al., 2009, 2007; Toni, 2014; Schulz
& Toni, 2014). We will refer to these kind of ABA frameworks as multiple contraries ABA
frameworks, to distinguish them from the single contrary ABA frameworks we have studied
so far. It turns out that a multiple contraries ABA framework can always be translated to an
equivalent single contrary ABA framework, using a procedure first described by Gaertner
and Toni (2008). The idea is that for each assumption α with α = {a1, . . . , an} a new
sentence a∗ is added to L as well as a new rule a∗ ← ai for each i ∈ {1, . . . , n} to R, and α
is set to a∗. The resulting ABA framework is clearly single contrary. Furthermore, for every
assumption α, there exists an ABA argument Asms ` ai for some ai ∈ α in the multiple
contraries ABA framework iff there exists an ABA argument Asms ` a with a = α in the
translated single contrary ABA framework. This implies that the assumption labellings of
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the two ABA frameworks are the same. Thus, in order to translate a multiple contraries
ABA framework to a logic program, the ABA framework can first be translated to a single
contrary ABA framework, which is subsequently translated to the associated logic program
using ABA2LP. Since the semantics of the multiple contraries and the single contrary ABA
frameworks are the same, the semantics of the multiple contraries ABA framework and the
associated logic program coincide as stated in Theorems 2 and 4.

When it comes to broadening our results to more general classes of ABA frameworks,
the only remaining constraint is that the ABA framework needs to be flat. If we were to
consider non-flat ABA frameworks, that is, ABA frameworks where the head of a rule can
be an assumption, then the translation to logic programming could yield a logic program
where the head of a rule can be a NAF literal. Clearly, this would go beyond the syntax
of a normal logic program, and many of the LP semantics that were applied in the current
paper have simply not been defined in the context of such a non-normal logic program.
Overall, we therefore observe that our results hold for flat ABA frameworks only. We do
want to emphasize, however, that most of the recent research on ABA is restricted to flat
ABA frameworks (Dung et al., 2006, 2007, 2009; Toni, 2013; Fan & Toni, 2014).

5.2 Beyond Common ABA Semantics

Apart from going beyond normal ABA frameworks, one could also examine what happens
when going beyond common ABA semantics. Take for instance the semi-stable semantics
(Verheij, 1996; Caminada, 2006), which has recently been formulated in the context of ABA
(Caminada et al., 2015b; Schulz & Toni, 2015).

Definition 16 (Schulz & Toni, 2015). Let F = 〈L,R,A, 〉̄ be an ABA framework. We
say that an assumption labelling Lab is a semi-stable assumption labelling of F iff Lab is
a complete assumption labelling of F where undec(Lab) is minimal among all complete
assumption labellings of F .

It has been shown that there exists a one-to-one relationship between semi-stable as-
sumption labellings and semi-stable assumption extensions in the sense defined by Cam-
inada et al. (2015b), with the set of in labelled assumptions in a semi-stable assumption
labelling constituting a semi-stable assumption extension. It has also been observed that
semi-stable semantics for ABA behaves in a way that is very similar to semi-stable se-
mantics for abstract argumentation (Caminada et al., 2015b). For instance, each stable
assumption labelling (extension) is also a semi-stable assumption labelling (extension), and
each semi-stable assumption labelling (extension) is also a preferred assumption labelling
(extension). Moreover, for ABA frameworks that have at least one stable assumption la-
belling (extension), it holds that each semi-stable assumption labelling (extension) is also
a stable assumption labelling (extension).

In the context of logic programming, a concept somewhat similar to semi-stable seman-
tics exists under the name of L-stable semantics (Eiter et al., 1997).

Definition 17. Let P be a logic program. We say that a 3-valued interpretation 〈T, F 〉 of
P is an L-stable model of P iff it is a 3-valued stable model of P where T ∪ F is maximal
among all 3-valued stable models of P .
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So where a semi-stable assumption labelling tries to minimize the set of assumptions
that are not labelled in or out, an L-stable model tries to minimize the set of atoms that
are not in T or F . Due to the similar formulation of these semantics and the fact that
L-stable models of a logic program coincide with semi-stable assumption labellings of the
associated ABA framework (Schulz & Toni, 2015), one might expect that the semi-stable
assumption labellings of an ABA framework F also coincide with the L-stable models of the
associated logic program PF . However, this turns out not to be the case, as is illustrated
by the following example.

Example 13. Let F = 〈L,R,A, 〉̄ be the ABA framework with A = {α, β, γ}, L = A ∪
{a, b, c, d}, α = a, β = b, and γ = c and R = {a ← β; b ← α; c ← γ; d ← b, c}. F has
three complete assumption labellings: Lab1 = 〈∅, ∅, {α, β, γ}〉, Lab2 = 〈{α}, {β}, {γ}〉, and
Lab3 = 〈{β}, {α}, {γ}〉. The last two of these are semi-stable assumption labellings. The
associated logic program PF is {a← not b; b← not a; c← not c; d← b, c}. PF has three
3-valued stable models: Mod1 = 〈∅, ∅〉, Mod2 = 〈{b}, {a}〉 and Mod3 = 〈{a}, {b, d}〉. Only
the last one is an L-stable model. Hence, we have that the semi-stable assumption labellings
of F do not coincide with the L-stable models of PF .

Although Example 13 illustrates that in general ABA under semi-stable semantics does
not coincide with logic programming under L-stable semantics, equivalence is restored when
the ABA framework is assumption-spanning, i.e. if each non-assumption is the contrary of
some assumption.

Definition 18. Let F = 〈L,R,A, 〉̄ be an ABA framework. We say that F is assumption-
spanning iff for each x ∈ L \ A there exists a χ ∈ A such that χ = x.

We first observe that the ABA framework of Example 13 is not assumption-spanning,
because there is no assumption that has d as its contrary. In the following example, we
make the ABA framework from Example 13 assumption-spanning.

Example 14. Let F ′ = 〈L,R,A, 〉̄ be the assumption-spanning ABA framework with
A = {α, β, γ, δ}, L = A ∪ {a, b, c, d}, α = a, β = b, γ = c, δ = d and R = {a ←
β; b← α; c← γ; d← b, c}. F ′ has three complete assumption labellings: 〈∅, ∅, {α, β, γ, δ}〉,
〈{α}, {β}, {γ, δ}〉, and 〈{β, δ}, {α}, {γ}〉. Only the last one is a semi-stable assumption la-
belling. The associated logic program PF ′ is {a← not b; b← not a; c← not c; d← b, c},
which is the same as PF from Example 13. PF ′ thus has the same three 3-valued stable
models as PF : 〈∅, ∅〉, 〈{b}, {a}〉 and 〈{a}, {b, d}〉. Again, only the last one is an L-stable
model. Hence, we observe that when we make the ABA framework F (from Example 13)
assumption-spanning (by adding an assumption δ with δ = d) semi-stable assumption la-
bellings of the resulting ABA framework F ′ coincide with the L-stable models of the associ-
ated logic program PF ′.

The fact that for an assumption-spanning ABA framework F , the semi-stable assump-
tion labellings of F coincide with the L-stable models of PF is not restricted to the particular
ABA framework of Example 14, but holds in general. To prove this, we need the following
lemma.
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Lemma 9. Let F = 〈L,R,A, 〉̄ be an assumption-spanning normal ABA framework, and
let PF be its associated logic program. Let Lab1 and Lab2 be complete assumption labellings
of F , let Mod1 = 〈T1, F1〉 be Lab2Mod(Lab1) and let Mod2 = 〈T2, F2〉 be Lab2Mod(Lab2).
It holds that undec(Lab1) ⊆ undec(Lab2) iff HBPF \ (T1 ∪ F1) ⊆ HBPF \ (T2 ∪ F2).

Proof. “⇒”: Suppose undec(Lab1) ⊆ undec(Lab2). Let x ∈ HBPF \ (T1 ∪ F1). From
the fact that F is assumption-spanning, it follows that there exists an assumption χ with
χ = x. As Lab1 = Mod2Lab(Mod1) (Theorem 2, point 3) it follows from the definition of
Mod2Lab that χ ∈ undec(Lab1). From the fact that undec(Lab1) ⊆ undec(Lab2) it then
follows that χ ∈ undec(Lab2). As Lab2 = Mod2Lab(Mod2) (Theorem 2, point 3) it follows
that undec(Lab2) = {ζ ∈ A | ζ ∈ HBPF \ (T2 ∪ F2)}, so from χ ∈ undec(Lab2) it follows
that x ∈ HBPF \ (T2 ∪ F2).
“⇐”: Suppose that HBPF \ (T1 ∪ F1) ⊆ HBPF \ (T2 ∪ F2). Let χ ∈ undec(Lab1). As
Lab1 = Mod2Lab(Mod1) (Theorem 2, point 3) it follows that undec(Lab1) = {ζ ∈ A |
ζ ∈ HBPF \ (T1 ∪ F1)} so from χ ∈ undec(Lab1) it follows that χ ∈ HBPF \ (T1 ∪ T2).
From HBPF \ (T1 ∪ F1) ⊆ HBPF \ (T2 ∪ F2) it then follows that χ ∈ HBPF \ (T2 ∪ F2). As
Lab2 = Mod2Lab(Mod2) (Theorem 2, point 3) it follows that χ ∈ undec(Lab2).

Note that Lemma 9 critically relies on the ABA framework being assumption-spanning.
For instance, in Example 13 undec(Lab2) ⊆ undec(Lab3), but HBPF \ T2 ∪ F2 * HBPF \
T3 ∪ F3, as F is not assumption-spanning.

Lemma 9 allows us to make the connection between the semi-stable assumption labellings
of an ABA framework and the L-stable models of its associated logic program (as long as
the ABA framework is assumption-spanning).

Theorem 10. Let F = 〈L,R,A, 〉̄ be an assumption-spanning normal ABA framework,
and let PF be its associated logic program. It holds that:

1. if Lab is a semi-stable assumption labelling of F then Lab2Mod(Lab) is an L-stable
model of PF

2. if Mod is an L-stable model of PF then Mod2Lab(Mod) is a semi-stable assumption
labelling of F

Proof. See Appendix A

Notice that when translating a logic program to an ABA framework (using LP2ABA)
the resulting ABA framework is always assumption-spanning. This allows us to obtain the
following result.

Theorem 11. Let P be a logic program and let FP − LP2ABA(P ) be its associated ABA
framework. It holds that:

1. if Mod is an L-stable model of P then Mod2Lab(Mod) is a semi-stable assumption
labelling of FP

2. If Lab is a semi-stable assumption labelling of FP then Lab2Mod(Lab) is an L-stable
model of P
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Proof. Let PFP
be the associated logic program of FP , i.e. PFP

= ABA2LP(FP ). From
FP = LP2ABA(P ) it follows that PFP

= ABA2LP(LP2ABA(P )). It then follows from Lemma 5
that PFP

= P .

1. Let Mod be an L-stable model of P . As P = PFP
it directly follows that Mod is an

L-stable model of PFP
. As FP is an assumption-spanning normal ABA framework, it

holds that (Theorem 10 point 2) Mod2Lab(Mod) is a semi-stable labelling of FP .

2. Let Lab be a semi-stable assumption labelling of FP . As FP is an assumption-spanning
normal ABA framework, it holds that (Theorem 10 point 1) Lab2Mod(Lab) is an L-
stable model of PFP

. As PFP
= P , it follows that Lab2Mod(Lab) is an L-stable model

of P .

Hence, the results by Schulz and Toni (2015, Thms. 4, 5) are subsumed by our results.

6. Discussion

In the current paper we re-examined the relationship between ABA and LP and found that
the most frequently studied fragment of ABA, namely flat ABA frameworks, does not only
subsume normal logic programming as previously shown (Bondarenko et al., 1997; Toni,
2007, 2008; Schulz & Toni, 2015), but that it is in fact also subsumed by normal logic
programming itself through a straightforward translation. That is, flat ABA can be seen as
LP with a slightly different syntax since the outcome that is yielded by a flat ABA framework
under common ABA semantics (that is: complete, grounded, preferred, stable and ideal)
is the same as the outcome yielded by its (syntactically nearly identical) associated normal
logic program under common LP semantics, and vice versa. The only difference is that in
ABA the outcome is defined in terms of assumptions (which correspond to NAF literals
in the associated logic program) whereas in logic programming the outcome is defined in
terms of all the literals in the logic program (NAF as well as non-NAF). However, since
the status of the non-NAF literals is determined solely by the status of the NAF-literals,
flat ABA and normal LP are semantically equivalent. Importantly, correspondence for our
novel translation does neither follow from existing results on the correspondence of ABA
and LP semantics nor from correspondence results between ABA and AA and between AA
and LP.

Although most of our formal results are restricted to flat ABA frameworks under com-
mon ABA semantics, their applicability is broader than that. For instance, as was explained
in Section 5, it is always possible to translate a multiple contraries ABA framework to an
equivalent single contrary ABA framework. Similarly, one could weaken the restriction
that the semantics has to be common and for instance apply semi-stable semantics. As
was observed in Section 5, for ABA frameworks that are assumption-spanning (i.e. every
non-assumption is the contrary of some assumption), ABA is still subsumed by logic pro-
gramming, even under semi-stable semantics. Overall, our results on translating ABA to
LP combined with existing ones on translating LP to ABA yield equivalence between (flat)
ABA and (normal) logic programming under every ABA semantics studied here.
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This equivalence allows not only to carry over techniques developed in the context of
ABA to the context of LP, but also to apply LP techniques for ABA, e.g. to apply the
computation of LP semantics for finding ABA labellings. Moreover, recent results on the
equivalence between ASPIC+ and ABA (Heyninck & Straßer, 2016) (which show that
ASPIC+ without argument preferences is subsumed by ABA) can be reapplied through our
translation from ABA to logic programming to show that ASPIC+ (without preferences)
is subsumed by logic programming.

A by-product of our work concerns the ideal semantics for ABA. When the ideal seman-
tics was first introduced for ABA (Dung et al., 2007), the authors were inspired by the idea
of the ideal scenario semantics for LP. Our correspondence results between ideal assumption
labellings and ideal models, along with the correspondence between ideal models and ideal
scenarios as proven in Appendix B, imply that the ideal semantics for ABA in fact coincides
with ideal scenario semantics for LP.13

We chose to apply the assumption labelling semantics (Schulz & Toni, 2014, 2017)
for ABA instead of the assumption extension semantics (Bondarenko et al., 1997) since
it classifies assumptions as accepted (in), unaccepted (out), and neither accepted nor
unaccepted (undec), rather than only as accepted and not accepted as done by assumption
extensions. This yields a straightforward relation with the three values a literal can be
assigned by a logic programming model.

Although (flat) ABA and (normal) logic programming are technically equivalent, there
is an important conceptual difference between them. Logic programming over the years
has evolved mostly into a formalism for “constraint satisfaction”, by expanding the (2-
valued) stable model semantics for normal logic programs to answer sets for logic programs
with strong negation, disjunction, and other constructs (so-called answer set programs),
as evidenced by the current popularity of answer set programming (e.g., Brewka, Eiter,
& Truszczynski, 2011; Calimeri, Ianni, Krennwallner, & Ricca, 2012; Calimeri, Gebser,
Maratea, & Ricca, 2016; Gebser, Kaufmann, Kaminski, Ostrowski, Schaub, & Schneider,
2011; Alviano, Dodaro, Leone, & Ricca, 2015; Leone, Pfeifer, Faber, Eiter, Gottlob, Perri,
& Scarcello, 2006; Liu, Janhunen, & Niemelä, 2012; Lin & Zhao, 2004). The idea is for a
particular problem (say, a sudoku puzzle) to be represented as an answer set program, so
that the resulting answer sets correspond to the solutions of the original problem. Also, if
the problem is such that no solutions exist, one would like to obtain no answer sets either.
This helps to explain the current popularity of (2-valued) stable model (or answer set)
semantics, as (unlike 3-valued stable, well-founded, regular, ideal or L-stable) it allows for
the absence of models. ABA, on the other hand, is concerned not so much with “constraint
satisfaction”, but with reasoning using rules of thumb or with other forms of imperfect
information, e.g. to model human-style reasoning and dialogue in artificial agents (e.g.,
Dung & Thang, 2009; Craven et al., 2012; Toni, 2012; Fan & Toni, 2014; Toni, 2014). In
this context, one would like to avoid having small imperfections causing a total collapse of
all entailment (the absence of any model or labelling). Hence, one would like to go beyond

13. The only related work that we are aware of regarding the ideal semantics in LP and argumentation is
by Nieves and Osorio (2016), who translate abstract argumentation frameworks to logic programs and
define two different types of ideal semantics for logic programs. However, their definition of ideal models
is completely different from ours and their translation from argumentation to LP is a lot more high-level
and explicitly encodes acceptability of arguments in the logic program.
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stable semantics, and apply for instance complete, grounded, preferred, ideal or semi-stable
semantics instead. Hence, although ABA and LP are technically equivalent, they differ in
the types of problems that they aim to deal with, as well as in the semantics that are most
appropriate for doing so.

There are two major lines for future work. Firstly, it will be interesting to see which
applications benefit most from our findings, in other words, which applications of both LP
and ABA benefit most when applying results from the other formalism. ABA methods have
already been successfully applied to LP, e.g. for explaining (Schulz & Toni, 2016) as well as
visualizing (Schulz, 2015) logic programs under certain semantics. LP methods which may
prove useful for ABA include computational methods (e.g., Ruiz & Minker, 1994; Janhunen,
Niemelä, Seipel, Simons, & You, 2006; Gebser et al., 2011). Secondly, we are planning to
investigate extensions of ABA and LP, for example ABA and LP with preferences (Toni,
2008; Cyras & Toni, 2016; Greco, Trubitsyna, & Zumpano, 2007; Heyninck, Pardo, &
Straßer, 2017), or non-flat ABA frameworks (Bondarenko et al., 1997).
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Appendix A. Proofs

Proposition 2

Proof. ΦAtms(P ) is the least fixed point of an “immediate consequence operator” Ψ and
ΦAtms(P ) can be obtained by iterating Ψ ω times, starting with the 3-valued interpretation
〈∅,Atms〉 (Przymusinski, 1990). We recall the definition of Ψ (Przymusinski, 1990).
For a 3-valued interpretation 〈T, F 〉 w.r.t. Atms ⊇ HBP , Ψ(〈T, F 〉) = 〈T ′, F ′〉 is the 3-
valued interpretation w.r.t Atms such that for every x ∈ Atms it holds that:

• x ∈ T ′ if there exists a rule x← y1, . . . , yn in P such that ∀i ∈ {1, . . . , n} : yi ∈ T or
yi = TRUE;

• x /∈ T ′ ∪ F ′ if

– there does not exists a rule x← y1, . . . , yn in P such that ∀i ∈ {1, . . . , n} : yi ∈ T
or yi = TRUE, and

– there exists a rule x ← y1, . . . , yn in P such that ∀i ∈ {1, . . . , n} : yi ∈ T or
yi /∈ T ∪ F or yi = TRUE or yi = UNDEFINED;

• x ∈ F ′ otherwise.

(∗) Note that for all x ∈ Atms \ HBP it holds that x ∈ F ′ since there exists no rule with
head x in P .

Let 〈T1, F1〉 = Ψ(〈∅,Atms〉) be the 3-valued interpretation w.r.t. Atms after the first
iteration and let 〈Ti+1, Fi+1〉 = Ψ(〈Ti, Fi〉) be the 3-valued interpretation w.r.t. Atms after
the i + 1-th iteration. Furthermore let 〈T, F 〉 be the least fixed point of Ψ, obtained by
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iterating ω times the operator Ψ (starting with 〈∅,Atms〉 and with respect to the standard
ordering of 3-valued interpretations where 〈T, F 〉 � 〈T ′, F ′〉 iff T ⊆ T ′ and F ′ ⊆ F ), so
Ψ(〈T, F 〉) = 〈T, F 〉 = ΦAtms(P ).
We recall that x ∈ HBP . “⇒”:

1. Proof by induction over the iterations of Ψ.
Basis: Let x ∈ T1. By definition of Ψ, there exists a rule with head x and either
empty body or only TRUE occurring in the body. Thus, there exists an argument for
x where every leaf node is labelled TRUE.
Induction Hypothesis: Let 〈Ti, Fi〉 = Ψ(〈Ti−1, Fi−1〉) and x ∈ Ti. Then there exists
an argument for x where every leaf node is labelled TRUE.
Inductive Step: Let x ∈ Ti+1. Then there exists a rule x ← y1, . . . , yn such that
∀j ∈ {1, . . . , n} : yj ∈ Ti or yj = TRUE, so yj ∈ HBP by (∗). By the Induction
Hypothesis, for every yj 6= TRUE there exists an argument for yj where every leaf node
is labelled TRUE, so there exists an argument for x where all leaf nodes are labelled
TRUE.

2. Proof of the contraposition by induction over the depth of the argument for x.
Basis: Let there be an argument for x with depth 1 such that no leaf node is labelled
FALSE. Then there exists a rule x ← or x ← y1, . . . , yn such that ∀j ∈ {1, . . . , n} :
yj = TRUE or yj = UNDEFINED. By definition of Ψ, in the first case x ∈ T , in the
second case x ∈ T (if all yj = TRUE) or x /∈ T ∪ F (if some yj = UNDEFINED). Thus,
x /∈ F .
Induction Hypothesis: If there exists an argument for x ∈ HBP with depth at most i
such that no leaf node is labelled FALSE, then x /∈ F .
Inductive Step: Let there be an argument for x with depth at most i + 1 such that
no leaf node is labelled FALSE. Then there exists a rule x ← y1, . . . , yn such that
∀j ∈ {1, . . . , n} : yj ∈ HBP or yj = TRUE or yj = UNDEFINED. Then for all yj ∈ HBP

there exists an argument for yj of depth at most i such that no leaf node is labelled
FALSE. By the Induction Hypothesis, yj /∈ F , so ∀j ∈ {1, . . . , n} : yj ∈ T or yj /∈ T∪F .
By definition of Ψ, x ∈ T (if all yj ∈ T ) or x /∈ T ∪ F (if some yj /∈ T ∪ F ), so x /∈ F .

“⇐”:

1. Proof by induction over the depth of the argument for x.
Basis: Let there be an argument for x with depth 1 where every leaf node is labelled
TRUE. Then there exists a rule x← or x← y1, . . . , yn such that ∀j ∈ {1, . . . , n} : yj =
TRUE. By definition of Ψ, in both cases x ∈ T .
Induction Hypothesis: If there exists an argument for x ∈ HBP with depth at most i
where every leaf node is labelled TRUE, then x ∈ T .
Inductive Step: Let there be an argument for x with depth at most i + 1 where
every leaf node is labelled TRUE. Then there exists a rule x ← y1, . . . , yn such that
∀j ∈ {1, . . . , n} : yj ∈ HBP or yj = TRUE. Thus, for all yj ∈ HBP there exists an
argument for yj of depth at most i where every leaf node is labelled TRUE. By the
Induction Hypothesis, yj ∈ T , so by definition of Ψ, x ∈ T .

2. Proof of the contraposition by induction over the iterations of Ψ.
Basis: Let x /∈ F1. By definition of Ψ there exists a rule x← or x← y1, . . . , yn such
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that ∀j ∈ {1, . . . , n} : yj = TRUE or yj = UNDEFINED. Thus, there exists an argument
for x such that all leaves are labelled TRUE or UNDEFINED, so no leaf is labelled FALSE.
Induction Hypothesis: If 〈Ti, Fi〉 = Ψ(〈Ti−1, Fi−1〉) and x /∈ Fi, then there exists an
argument for x such that no leaf node is labelled FALSE.
Inductive Step: Let x /∈ Fi+1. By definition of Ψ there exists a rule x← y1, . . . , yn such
that ∀j ∈ {1, . . . , n} : yj ∈ Ti or yj ∈ HBP \ (Ti∪Fi) or yj = TRUE or yj = UNDEFINED,
so yj /∈ Fi and yj ∈ HBP by (∗). Then by the Inductive Hypothesis, for all yj there
exists an argument such that no leaf node is labelled FALSE. Thus, there exists an
argument for x such that no leaf node is labelled FALSE.

Proposition 3. Let P be a logic program, possibly containing the special atoms TRUE, FALSE
and UNDEFINED. Let P ′ be the logic program derived from P by

• removing each occurrence of TRUE from the bodies of the rules

• removing each rule that contains FALSE in its body

• replacing each occurrence of UNDEFINED by a new atom u and adding a rule u← not u

It holds that Mod is a 3-valued stable (resp. well-founded, regular, 2-valued stable or ideal)
model of P iff Mod is a 3-valued stable (resp. well-founded, regular, 2-valued stable or
ideal) model of P ′.

Proof. We first prove equivalence under the 3-valued stable model semantics.
“⇒”: LetMod = 〈T, F 〉 be a 3-valued stable model of P . That is, ΦHBP

(P 〈T,F 〉) = 〈T, F 〉.
Let ΦHBP ′ (P

′〈T,F 〉) = 〈TP ′ , FP ′〉. We need to prove that 〈T, F 〉 = 〈TP ′ , FP ′〉.

1. Let x ∈ T . Then (Proposition 2) there exists an LP argument for x under P 〈T,F 〉 where
each leaf node is labelled TRUE. But then there also exists an associated LP argument
for x under P ′〈T,F 〉 where each leaf node is labelled TRUE. Hence (Proposition 2)
x ∈ TP ′ .

2. Let x ∈ TP ′ . Then (Proposition 2) there exists an LP argument for x under P ′〈T,F 〉

where each leaf node is labelled TRUE. But then there also exists an associated LP
argument for x under P 〈T,F 〉 where each leaf node is labelled TRUE. Hence (Proposition
2 x ∈ TP .

3. Let x ∈ F . Then (Proposition 2) each LP argument for x under P 〈T,F 〉 has at least one

leaf node that is labelled FALSE. But then also each LP argument for x under P ′〈T,F 〉

has at least one leaf node that is labelled FALSE. Hence (Proposition 2 x ∈ FP ′ .

4. Let x ∈ FP ′ . Then (Proposition 2) each LP argument for x under P ′〈T,F 〉 has at least
one leaf node that is labelled FALSE. But then also each LP argument for x under
P 〈T,F 〉 has at least one leaf node that is labelled FALSE. Hence (Proposition 2) x ∈ F .

“⇐”: This is similar to “⇒”.
As we just established, P and P ′ have the same 3-valued stable models. It then follows
that P and P ′ also have the same regular (resp. well-founded and 2-valued stable) models,
from which it follows that P and P ′ also have the same ideal model.
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Theorem 2

Proof. 1. Let Lab be a complete assumption labelling of F and let 〈T, F 〉 be Lab2Mod(Lab).
That is, 〈T, F 〉 = ΦHBPF

(P
〈T ′,F ′〉
F ) where T ′ = {χ | χ ∈ out(Lab)} ∩ HBPF and

F ′ = {χ | χ ∈ in(Lab)} ∩ HBPF . 〈T ′, F ′〉 is a well-defined 3-valued interpretation
of PF since T ′, F ′ ⊆ HBPF and T ′ ∩ F ′ = ∅, the latter following from the facts that
in(Lab)∩out(Lab) = ∅ and that two assumptions which have the same contrary have
the same label in Lab. It follows that also 〈T, F 〉 is a well-defined 3-valued interpre-
tation of PF .
We proceed to show that applying the Gelfond-Lifschitz reduct (w.r.t. 〈T ′, F ′〉) does
not change the status of any of the NAF literals in PF . Let “not x” be a NAF literal
in some rule of PF . We distinguish three cases:

(a) x ∈ T ′. Then there exists an assumption χ with χ = x and χ ∈ out(Lab). Since
Lab is a complete assumption labelling of F , there exists an ABA argument
Asms ` x with Asms ⊆ in(Lab). Moreover, as x is not an assumption, this
argument is non-trivial. It follows that there exists an LP argument for x under
PF where every leaf node is labelled TRUE or “not z”, where z ∈ F ′. Thus, there

exists an LP argument for x under P
〈T ′,F ′〉
F where every leaf node is labelled

TRUE. By Proposition 2, x ∈ T .

(b) x ∈ F ′. Then,there exists an assumption χ with χ = x and χ ∈ in(Lab). Since
Lab is a complete assumption labelling of F , for each ABA argument Asms ` x
(which has to be non-trivial) it holds that there is a ζ ∈ Asms with ζ ∈ out(Lab).
Then each LP argument for x under PF has a leaf node “not z” with z ∈ T ′.
Thus, each LP argument for x under P

〈T ′,F ′〉
F has a leaf node labelled FALSE. By

Proposition 2, x ∈ F .

(c) x ∈ HBPF \ (T ′ ∪ F ′).
Since x 6∈ T ′ for each assumption χ with χ = x it holds that χ 6∈ out(Lab). Since
Lab is a complete assumption labelling it follows from point 2 of Proposition 1
that there is no ABA argument Asms ` x with Asms ⊆ in(Lab). Hence, for each
ABA argument Asms ` x (which has to be non-trivial) there is a ζ ∈ Asms with
ζ 6∈ in(Lab). Then each LP argument for x under PF has a leaf node labelled

“not z” with z 6∈ F ′. Thus, each LP argument for x in P
〈T ′,F ′〉
F has a leaf node

that is not labelled TRUE. By Proposition 2, x 6∈ T .
Since x 6∈ F ′ there is no assumption χ with χ = x and χ ∈ in(Lab). That is,
for each assumption χ with χ = x it holds that χ 6∈ in(Lab). Since Lab is a
complete assumption labelling it follows from point 1 of Proposition 1 that there
exists an ABA argument Asms ` x (which has to be non-trivial) such that there
exists no ζ ∈ Asms with ζ ∈ out(Lab). Thus, there exists an LP argument for
x under PF without any leaf node that is labelled “not z” where z ∈ T ′. Then

there exists an argument for x in P
〈T ′,F ′〉
F without any leaf node that is labelled

FALSE. By Proposition 2, x 6∈ F .
Thus, x ∈ HBPF \ (T ∪ F ).
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So, overall we obtained that: if x ∈ T ′ then x ∈ T , if x ∈ F ′ then x ∈ F , and if
x ∈ HBPF \(T ′∪F ′) then x ∈ HBPF \(T∪F ). So 〈T ′, F ′〉 and 〈T, F 〉 agree on the NAF
literals of PF . It should be noted that whenever two 3-valued interpretations Mod1

and Mod2 of some logic program P agree on the NAF literals of P , the respective

reducts PMod1 and PMod2 are equal. Hence, we have that P
〈T ′,F ′〉
F = P

〈T,F 〉
F , so also

ΦHBPF
(P
〈T ′,F ′〉
F ) = ΦHBPF

(P
〈T,F 〉
F ). From ΦHBPF

(P
〈T ′,F ′〉
F ) = 〈T, F 〉 it then directly

follows that 〈T, F 〉 = ΦHBPF
(P
〈T,F 〉
F ), so 〈T, F 〉 = ΦHBPF

(P
〈T ′,F ′〉
F ) is a 3-valued stable

model of PF .

2. Let Mod = 〈T, F 〉 be a 3-valued stable model of PF (i.e. 〈T, F 〉 = ΦHBPF
(P
〈T,F 〉
F ))

and let Lab = Mod2Lab(Mod). Let χ ∈ A. We distinguish three cases:

(a) χ ∈ in(Lab). Then χ ∈ F or χ 6∈ HBPF .

i. χ ∈ F . Since 〈T, F 〉 = ΦHBPF
(P
〈T,F 〉
F ) it follows from Proposition 2 that

each LP argument for χ under P
〈T,F 〉
F has a leaf node labelled FALSE. Then

each LP argument for χ under PF has a leaf node labelled with some “not z”
where z ∈ T . Thus, for each ABA argument Asms ` χ it holds that Asms ∩
out(Lab) 6= ∅.

ii. χ 6∈ HBPF . That is, χ does not occur in any rule of PF , so also not in any
rule of F . Therefore, there is no ABA argument for χ. Hence, trivially, for
each ABA argument Asms ` χ it holds that Asms ∩ out(Lab) 6= ∅.

(b) χ ∈ out(Lab). Then χ ∈ T . Since 〈T, F 〉 = ΦHBPF
(P
〈T,F 〉
F ) it follows from

Proposition 2 there exists an LP argument for χ under P
〈T,F 〉
F where each leaf

node is labelled TRUE. Then there exists an LP argument for χ under PF where
each leaf node is labelled with TRUE or with some “not z” where z ∈ F . Thus,
there exists an ABA argument for χ where each leaf node is labelled with either
TRUE or with some assumption ζ with ζ ∈ in(Lab). That is, there exists an ABA
argument Asms ` χ with Asms ⊆ in(Lab).

(c) χ ∈ undec(Lab). Then χ ∈ HBPF \ (T ∪ F ).

Since χ 6∈ T and 〈T, F 〉 = ΦHBPF
(P
〈T,F 〉
F ), it follows from Proposition 2 that

there is no LP argument for χ under P
〈T,F 〉
F where each leaf node is labelled

TRUE. Then there is no LP argument for χ under PF where each leaf node is
labelled with TRUE or with some “not z” where z ∈ F . Thus, there is no ABA
argument Asms ` χ with Asms ⊆ in(Lab).
Similarly, since χ 6∈ F and 〈T, F 〉 = ΦHBPF

(P
〈T,F 〉
F ), it follows from Proposition

2 that there exists an LP argument for χ under P
〈T,F 〉
F that does not have any

leaf labelled FALSE, so there exists an LP argument for χ under PF that does
not have any leaf labelled “not z” where z ∈ T . Thus, there exists an ABA
argument Asms ` χ with Asms ∩ out(Lab) = ∅.

To sum up, we have observed that: if χ ∈ in(Lab) then for each ABA argument
Asms ` χ it holds that Asms ∩out(Lab), if χ ∈ out(Lab) then there exists an ABA
argument Asms ` χ with Asms ⊆ in(Lab), and if χ ∈ undec(Lab) then there is
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no ABA argument Asms ` χ with Asms ⊆ in(Lab) and there is an ABA argument
Asms ` χ with Asms ∩ out(Lab) = ∅. This means the conditions of Definition 3 are
satisfied, so Lab is a complete assumption labelling.

3. It suffices to prove that: if Lab is a complete assumption labelling then it follows
that Mod2Lab(Lab2Mod(Lab)) = Lab, and if Mod is is a 3-valued stable model then
Lab2Mod(Mod2Lab(Mod)) =Mod.
As for the first equivalence that has to be proved, let Lab be a complete assumption
labelling of F , and let χ ∈ A. Let 〈T, F 〉 = Lab2Mod(Lab) and T ′ and F ′ be as in the
definition of Lab2Mod (Definition 12). We distinguish four cases.

(a) χ ∈ in(Lab) and χ ∈ HBPF . Then, by definition of F ′ (w.r.t. Lab2Mod(Lab))
it follows that χ ∈ F ′. As we have observed earlier (in point 1 of the current
theorem) it holds that if the contrary of a particular assumption is in F ′, then it
is also in F . Hence, χ ∈ F . From the definition of Mod2Lab it then follows that
χ is labelled in by Mod2Lab(Lab2Mod(Lab)).

(b) χ ∈ in(Lab) and χ 6∈ HBPF . We first observe that, also in this case, Lab2Mod(Lab)
is well-defined. From the definition of Mod2Lab it then follows that χ is labelled
in by Mod2Lab(Lab2Mod(Lab)).

(c) χ ∈ out(Lab). From point 2 of Definition 3 it follows that there exists an ABA
argument for χ. Thus, there is an LP argument for χ under PF , so χ ∈ HBPF .
Then χ ∈ T ′. As we have observed earlier (in point 1 of the current theorem) it
holds that if the contrary of a particular assumption is in T ′ then it is also in T .
Hence, χ ∈ T . From the definition of Mod2Lab it then follows that χ is labelled
out by Mod2Lab(Lab2Mod(Lab)).

(d) χ ∈ undec(Lab). From point 3 of Definition 3 it follows that there exists an
ABA argument for χ under F . Thus, there is an LP argument for χ under PF , so
χ ∈ HBPF . Then χ 6∈ T ′ and χ 6∈ F ′. Hence, χ ∈ HBPF \ (T ′ ∪ F ′). As we have
observed earlier (in point 1 of the current theorem) it holds that if the contrary
of a particular assumption is in HBPF \(T ′∪F ′) then it is also in HBPF \(T ∪F ).
Hence, χ ∈ HBPF \ (T ∪F ). From the definition of Mod2Lab it then follows that
χ is labelled undec by Mod2Lab(Lab2Mod(Lab)).

So overall, we observe that if χ is labelled in (respectively out or undec) by Lab then
χ is labelled in (respectively out or undec) by Mod2Lab(Lab2Mod(Lab)). Further-
more, Mod2Lab(Lab2Mod(Lab)) does not assign any additional labels other than the
ones assigned by Lab. It can easily be verified that Lab and Mod2Lab(Lab2Mod(Lab))
label the same set of assumptions A. Then, since in(Lab)∪out(Lab)∪undec(Lab) =
A, it follows that Mod2Lab(Lab2Mod(Lab)) = Lab.
We now proceed to the second equivalence that has to be proved. Let Mod =

〈TMod, FMod〉 be a 3-valued stable model of PF , so 〈TMod, FMod〉 = ΦHBPF
(P
〈TMod,FMod〉
F ).

Let 〈T, F 〉 = Lab2Mod(Mod2Lab(Mod)) and T ′ and F ′ as in the definition of Lab2Mod
(w.r.t. Lab2Mod(Mod2Lab(Mod))). Let x ∈ HBPF . We distinguish three cases.

(a) x ∈ TMod. By Proposition 2, there is an LP argument for x under P
〈TMod,FMod〉
F

where each leaf node is labelled TRUE. Thus, there exists an LP argument for
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x under PF where each leaf node is labelled with TRUE or with “not z” where
z ∈ FMod. Then there exists an ABA argument for x under F where each
leaf node is labelled with TRUE or with some assumption ζ that is labelled in
by Mod2Lab(Mod). For each such ζ it holds that ζ ∈ F ′. Then there is an

LP argument for x under P
〈T ′,F ′〉
F where each leaf node is labelled TRUE. By

Proposition 2, x ∈ T .

(b) x ∈ FMod. By Proposition 2, each LP argument for x under P
〈TMod,FMod〉
F has

a leaf node labelled FALSE. Thus, each LP argument for x under PF has a leaf
node labelled with some “not z” where z ∈ TMod. Then each ABA argument
for x has a leaf node labelled with some assumption ζ that is labelled out by
Mod2Lab(Mod). It follows that for each such ζ it holds that ζ ∈ T ′. Then each

argument for x under P
〈T ′,F ′〉
F has at least one leaf node labelled FALSE. By

Proposition 2, x ∈ F .

(c) x ∈ HBPF \ (TMod ∪ FMod). From Proposition 2 (points 1 and 2) it follows that

(1) there is no LP argument for x under P
〈TMod,FMod〉
F where each leaf node is

labelled TRUE, and (2) there is an LP argument for x under P
〈TMod,FMod〉
F where

no leaf node is labelled FALSE.
By (1), each LP argument for x under P

〈TMod,FMod〉
F has a leaf node that is not

labelled TRUE. Then each LP argument for x under PF has a leaf node that
is labelled with “not z” where z 6∈ FMod. Thus, each ABA argument for x
has a leaf node that is labelled with an assumption ζ that is not labelled in by

Mod2Lab(Mod). Hence, ζ /∈ F ′. Then each LP argument for x under P
〈T ′,F ′〉
F

has a leaf node that is not labelled TRUE. By Proposition 2, x 6∈ T .

By (2) and the definition of P
〈TMod,FMod〉
F , there is an LP argument for x under

PF without any leaf being labelled with some “not z” with z ∈ TMod. Then
there exists an ABA argument for x without any leaf node being labelled with
some assumption that is labelled out by Mod2Lab(Mod). That is, there exists
an ABA argument for x where each assumption ζ is labelled in or undec by
Mod2Lab(Mod). For each such ζ, ζ 6∈ T ′. Hence, there exists an LP argument

for x under P
〈T ′,F ′〉
F without any leaf node labelled FALSE. By Proposition 2,

x 6∈ F .
So, overall we obtain that x ∈ HBPF \ (T ∪ F ).

Theorem 4

Proof. 1. Let Lab be a grounded assumption labelling of F , and letMod = Lab2Mod(Lab)
= 〈T, F 〉. By Theorem 2, Mod is a 3-valued stable model of PF . We prove that T
is minimal among all 3-valued stable models of PF . Let Mod∗ = 〈T ∗, F ∗〉 be an
arbitrary 3-valued stable model of PF . Suppose T ∗ ⊆ T . By Lemma 3, in(Lab∗) ⊆
in(Lab), with Lab∗ = Mod2Lab(Mod∗). Since Lab is a grounded assumption labelling
of F , in(Lab) is minimal among all complete assumption labellings of F . Hence,
in(Lab∗) = in(Lab), so in(Lab∗) ⊇ in(Lab). By Lemma 3, T ∗ ⊇ T , which together
with T ∗ ⊆ T implies that T ∗ = T . Hence, Mod is a well-founded model of PF .
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2. LetMod = 〈T, F 〉 be a well-founded model of PF , and let Lab = Mod2Lab(Mod). By
Theorem 2, Lab is a complete assumption labelling of F . We prove that in(Lab) is
minimal among all complete assumption labellings of F . Let Lab∗ be an arbitrary
complete assumption labelling of F . Suppose in(Lab∗) ⊆ in(Lab). By Lemma 3,
T ∗ ⊆ T , with 〈T ∗, F ∗〉 = Mod∗ = Lab2Mod(Lab∗). Since Mod is a well-founded
model of PF , T is minimal among all 3-valued stable models of PF . Hence, T ∗ = T , so
T ∗ ⊇ T . By Lemma 3, in(Lab∗) ⊇ in(Lab), which together with in(Lab∗) ⊆ in(Lab)
implies that in(Lab∗) = in(Lab). Hence, Lab is a grounded assumption labelling of
F .

3. Similar to point 1.

4. Similar to point 2.

5. Let Lab be a stable assumption labelling of F . Then (Definition 4) undec(Lab) = ∅ so
in(Lab) ∪ out(Lab) = A. Let T ′ and F ′ be as in Definition 12 w.r.t. Lab2Mod(Lab).
It then holds that for every NAF literal “not z”, either z ∈ T ′ or z ∈ F ′. Let

〈T, F 〉 = Lab2Mod(Lab) = ΦHBPF
(P
〈T ′,F ′〉
F ). Assume towards a contradiction that

T ∪ F 6= HBP . This means that there exists an x ∈ HBP such that x 6∈ T ∪ F .
The fact that x 6∈ T implies that (Proposition 2) there exists no LP argument for x

under P
〈T ′,F ′〉
F where each leaf node is labelled TRUE, so each LP argument for x under

P
〈T ′,F ′〉
F has a leaf node that is not labelled TRUE (so FALSE or UNDEFINED), so (1)

each LP argument for x under PF has a leaf node that is labelled “not z” for some
z 6∈ F ′. The fact that x 6∈ F implies that (Proposition 2) not each LP argument for x

under P
〈T ′,F ′〉
F has at least one leaf node that is labelled FALSE, so there exists an LP

argument for x under P
〈T ′,F ′〉
F that has no leaf node labelled FALSE, so (2) there exists

an LP argument for x under PF that has no leaf node labelled “not z” with z ∈ T ′.
From (1) and (2) together, it follows that there exists an LP argument for x under
PF that has a leaf node labelled “not z” with z 6∈ T ′ and z 6∈ F ′. Contradiction.
Therefore, T ∪ F = HBP . So 〈T, F 〉 is a 3-valued stable model (Theorem 2, point 1)
with T ∪ F = HBP , so a (2-valued) stable model.

6. LetMod = 〈T, F 〉 be a (2-valued) stable model of PF , and let Lab = Mod2Lab(Mod).
By Theorem 2, Lab is a complete assumption labelling of F . Since HBPF \(T∪F ) = ∅,
undec(Lab) = ∅, so Lab is a stable assumption labelling of F .

7. Let Lab be an ideal assumption labelling of F and letMod = Lab2Mod(Lab) = 〈T, F 〉.
By Theorem 2Mod is a 3-valued stable model of PF . Since for all preferred assump-
tion labellings Labpref of F it holds that in(Lab) ⊆ in(Labpref ), by Lemma 3 T ⊆ Treg
for allModreg = Lab2Mod(Labpref ) = 〈Treg, Freg〉. Furthermore, by Theorem 4 (point
3) allModreg are regular models of PF . Thus,Mod is a 3-valued stable model of PF
satisfying that for all regular models 〈Treg, Freg〉 of PF , T ⊆ Treg. To show that in
addition T is maximal among all 3-valued stable models of PF satisfying that for all
regular models 〈Treg, Freg〉 of PF , T ⊆ Treg, letMod∗ = 〈T ∗, F ∗〉 be a 3-valued stable
model of PF satisfying that for all regular models 〈Treg, Freg〉 of PF , T ∗ ⊆ Treg. Sup-
pose T ∗ ⊇ T . Since for every regular modelModreg = 〈Treg, Freg〉 of PF it holds that
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T ∗ ⊆ Treg, by Lemma 3 in(Lab∗) ⊆ in(Labpref ) where Lab∗ = Mod2Lab(Mod∗) and
Labpref = Mod2Lab(Modreg). Furthermore by Theorem 4 (point 4), all Labpref are pre-
ferred assumption labellings of F . Thus, for all preferred assumption labellings Labpref
of F , in(Lab∗) ⊆ in(Labpref ). By Lemma 3 also in(Lab∗) ⊇ in(Lab). Since in(Lab) is
maximal among all complete assumption labellings of F with in(Lab) ⊆ {in(Labpref
is a preferred assumption labelling of F}, it follows that in(Lab∗) = in(Lab), so
in(Lab∗) ⊆ in(Lab). By Lemma 3, T ∗ ⊆ T , which together with T ∗ ⊇ T implies that
T ∗ = T Hence, T is maximal among all 3-valued stable models of PF satisfying that
for all regular models 〈Treg, Freg〉 of PF , T ⊆ Treg, and thus Mod is an ideal model
of PF .

8. Let Mod = 〈T, F 〉 be an ideal model of PF and let Lab = Mod2Lab(Mod). By
Theorem 2, Lab is a complete assumption labelling of F . Since for all regular models
Modreg = 〈Treg, Freg〉 of PF it holds that T ⊆ Treg, by Lemma 3 in(Lab) ⊆ in(Labpref )
with Labpref = Mod2Lab(Modreg). By Theorem 4 (point 4), all Labpref are preferred
assumption labellings of F . Thus, Lab is a complete assumption labelling of F satis-
fying that for all preferred assumption labellings Labpref of F , in(Lab) ⊆ in(Labpref ).
To show that in addition in(Lab) is maximal among all complete assumption la-
bellings of F satisfying that for all preferred assumption labellings Labpref of F ,
in(Lab) ⊆ in(Labpref ), let Lab∗ be a complete assumption labelling of F satisfying
that for all preferred assumption labellings Labpref of F , in(Lab∗) ⊆ in(Labpref ).
Suppose in(Lab∗) ⊇ in(Lab). Since for every preferred assumption labelling Labpref
of F it holds that in(Lab∗) ⊆ in(Labpref ), by Lemma 3 T ∗ ⊆ Treg where Mod∗ =
〈T ∗, F ∗〉 = Lab2Mod(Lab∗) and Modreg = 〈Treg, Freg〉 = Lab2Mod(Labpref ). By The-
orem 4 (point 3), all Modreg are regular models of PF . Thus, for all regular models
〈Treg, Freg〉 of PF , T ∗ ⊆ Treg. By Lemma 3 also T ∗ ⊇ T . Since T is maximal among
all 3-valued stable models of PF satisfying that for all regular models 〈Treg, Freg〉 of
PF , T ⊆ Treg, it follows that T ∗ = T , so T ∗ ⊆ T . By Lemma 3, in(Lab∗) ⊆ in(Lab),
which together with in(Lab∗) ⊇ in(Lab) implies that in(Lab∗) = in(Lab). Hence,
in(Lab) is maximal among all complete assumption labellings of F satisfying that for
all preferred assumption labelling Labpref of F , in(Lab) ⊆ in(Labpref ), and thus Lab
is an ideal assumption labelling of F .

Theorem 8

Proof. 1. Let χ ∈ A. We distinguish two cases:

(a) χ ∈ L \ A. Then χ̃ = χ ∈ L \ A ⊆ L′ \ A.

(b) χ ∈ A. Then χ̃ = χ∗ ∈ L′ \ A.

2. “⇒”: Suppose Asms `F χ. We distinguish two cases:

(a) Asms `F χ is a trivial argument, i.e. Asms = {χ} and χ is an assumption.
Then χ̃ = χ∗ and there exists a rule χ∗ ← χ in R′. Thus, there is an argument
under F ′ that starts with assumption χ and applies the rule χ∗ ← χ to obtain
conclusion χ∗. So {χ} `F ′ χ∗. Since χ∗ = χ̃ it follows that {χ} `F ′ χ̃.
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(b) Asms `F χ is a non-trivial argument, i.e. χ is the consequent of a rule in R. As
F is flat, χ is not an assumption, so χ̃ = χ. Since R ⊆ R′, we can construct the
same argument under F ′, so Asms `F ′ χ. As χ = χ̃ it follows that Asms `F ′ χ̃.

“⇐”: Suppose Asms `F ′ χ̃. We distinguish two cases:

(a) χ̃ = χ. This means χ ∈ L \A, so the top rule used to construct the argument is
in R and therefore all sentences in the antecedent are in L. Thus all rules applied
to construct the arguments for the sentences in the antecedent are in R, and so
on. So each rule used in the construction of χ̃ = χ must be in R. Therefore,
the argument can also be constructed under F , so So Asms `F χ̃. As χ̃ = χ it
follows that Asms `F χ.

(b) χ̃ = χ∗. This means χ ∈ A. As χ∗ is not an assumption in F ′, it follows that
the argument has a top-rule χ∗ ← χ. As χ is an assumption and F ′ is flat, the
argument cannot have any other rules. Hence, Asms = {χ}. This means that
under F there exists an argument {χ} `F χ.

Theorem 10

Proof. 1. Let Lab be a semi-stable assumption labelling of F andMod = Lab2Mod(Lab) =
〈T, F 〉. By Theorem 2, Mod is a 3-valued stable model of PF . We prove that
HBPF \ (T ∪ F ) is minimal among all 3-valued stable models of PF . Let Mod∗ =
〈T ∗, F ∗〉 be an arbitrary 3-valued stable model of PF . Suppose HBPF \ (T ∗ ∪ F ∗) ⊆
HBPF \ (T ∪ F ). By Theorem 2 and Lemma 9, undec(Lab∗) ⊆ undec(Lab), with
Lab∗ = Mod2Lab(Mod∗). Since Lab is a semi-stable assumption labelling of F ,
undec(Lab) is minimal among all complete assumption labellings of F . Hence,
undec(Lab∗) = undec(Lab), so undec(Lab∗) ⊇ undec(Lab). By Theorem 2 and
Lemma 9, HBPF \(T ∗∪F ∗) ⊇ HBPF \(T∪F ), which together with HBPF \(T ∗∪F ∗) ⊆
HBPF \ (T ∪F ) implies that HBPF \ (T ∗ ∪F ∗) = HBPF \ (T ∪F ). Hence,Mod is an
L-stable model of PF .

2. Let Mod = 〈T, F 〉 be an L-stable model of PF , and let Lab = Mod2Lab(Mod). By
Theorem 2, Lab is a complete assumption labelling of F . We prove that undec(Lab)
is minimal among all complete assumption labellings of F . Let Lab∗ be an arbitrary
complete assumption labelling of F . Suppose undec(Lab∗) ⊆ undec(Lab). By
Theorem 2 and Lemma 9, HBPF \ (T ∗ ∪ F ∗) ⊆ HBPF \ (T ∪ F ), with 〈T ∗, F ∗〉 =
Mod∗ = Lab2Mod(Lab∗). Since Mod is an L-stable model of PF , HBPF \ (T ∪ F )
is minimal among all 3-valued stable models of PF . Hence, HBPF \ (T ∗ ∪ F ∗) =
HBPF \ (T ∪F ), so HBPF \ (T ∗ ∪F ∗) ⊇ HBPF \ (T ∪F ). By Theorem 2 and Lemma
9, undec(Lab∗) ⊇ undec(Lab), which together with undec(Lab∗) ⊆ undec(Lab)
implies that undec(Lab∗) = undec(Lab). Hence, Lab is a semi-stable assumption
labelling of F .
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Appendix B. Ideal Semantics

The ideal semantics for logic programs was first introduced by Alferes et al. (1993) in terms
of scenaria, i.e. as the union of a logic program and a set of NAF literals (from which
atoms can be derived using the TP operator), rather than in terms of models. We recall the
definition of scenaria.

Definition 19. Let P be a logic program and H ⊆ HBnot
P a set of NAF literals. `TP

denotes
derivation in the sense of the standard TP operator for logic programs when treating NAF
literals as atoms. Then14

• P ∪H is a scenario of P .

• P ∪H is consistent iff ∀not x ∈ H it holds that P ∪H 0TP
x.

• A NAF literal not x ∈ HBnot
P is acceptable w.r.t. P ∪H iff ∀H ′ ⊆ HBnot

P such that
P ∪H ′ `TP

x it holds that ∃not y ∈ H ′ such that P ∪H `TP
y. The set of all NAF

literals which are acceptable w.r.t. P ∪H is denoted Acc(H).

• P ∪H is an admissible scenario iff it is consistent and H ⊆ Acc(H).

• P ∪ H is the ideal scenario if H is the maximal (w.r.t. ⊆) set satisfying: For all
admissible scenaria P ∪H ′, P ∪H ′ ∪H is again an admissible scenario.

• P ∪H is a complete scenario iff it is consistent and H = Acc(H).

• P ∪H is a preferred extension iff it is a maximal (w.r.t ⊆) complete scenario.

For a set of atoms S ⊆ HBP , the set of all NAF literals corresponding to atoms in S is
denoted SHBnot = {not x | x ∈ S}. Conversely, for a set of NAF literals H ⊆ HBnot

P , the
set of all atoms corresponding to NAF literals in H is denoted HHB = {x | not x ∈ H}.
Given a scenario P ∪H, der(P ∪H) = {x | P ∪H `TP

x} denotes the set of atoms derivable
from P ∪H.

We prove in Theorem 22 that the ideal semantics for logic programs as originally defined
(Definition 19) is equivalent to the one given in Definition 9. The proof requires some further
results, presented in the following.

Note that ideal scenaria are defined to be unique, whereas ideal models do not have
a uniqueness condition in their definition. However, since the ideal semantics in ABA is
unique (Dung et al., 2007), it follows from the correspondence between ideal assumption
labellings and ideal models (see Theorems 4 and 7) that ideal models are unique.

Lemma 12. Let P be a logic program and let P ∪H1 and P ∪H2 be two scenaria.

1. If H1 ⊆ H2 then Acc(H1) ⊆ Acc(H2).

14. Note that these definitions are simplified from Alferes et al. (1993) since we only consider normal logic
programs without strong negation. Originally Mand(H) = {not x | P ∪ H ∪ {¬x′ → not x′|x′ ∈
HBP } `TP not x} is taken into consideration for all semantics, but since no strong negation occurs in
our logic programs, here ∀H ⊆ HBnot

P : Mand(H) = ∅. Furthermore, we do not need to make use of
the transformation of a logic program into an “intended logic program” to encode the relation between
strong negation and NAF.
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2. Acc(H1) ∪Acc(H2) ⊆ Acc(H1 ∪H2).

3. If P ∪ H1 and P ∪ H2 are admissible scenaria and P ∪ H1 ∪ H2 is consistent then
P ∪H1 ∪H2 is an admissible scenario.

Proof. 1. Let not x ∈ Acc(H1). Then ∀H ′ ⊆ HBnot
P with P ∪ H ′ `TP

x it holds that
∃not y ∈ H ′ such that P ∪H1 `TP

y. Since H1 ⊆ H2 it follows that P ∪H2 `TP
y, so

not x ∈ Acc(H2).

2. Let not x ∈ Acc(H1) ∪ Acc(H2), i.e. not x ∈ Acc(H1) or not x ∈ Acc(H2). In the
first case, ∀H ′ ⊆ HBnot

P with P ∪ H ′ `TP
x it holds that ∃not y ∈ H ′ such that

P ∪H1 `TP
y. Then P ∪H1 ∪H2 `TP

y, so not x ∈ Acc(H1 ∪H2). The same applies
in the second case.

3. Since P ∪H1 and P ∪H2 are admissible scenaria, H1 ⊆ Acc(H1) and H2 ⊆ Acc(H2).
Thus, H1 ∪H2 ⊆ Acc(H1)∪Acc(H2). By Lemma 12 (point 2), Acc(H1)∪Acc(H2) ⊆
Acc(H1∪H2), so H1∪H2 ⊆ Acc(H1∪H2). Since P ∪H1∪H2 is consistent, P ∪H1∪H2

is an admissible scenario.

Lemma 13. Let P be a logic program and P ∪H a scenario. P ∪H is a maximal (w.r.t.
⊆) complete scenario iff P ∪H is a maximal (w.r.t. ⊆) admissible scenario.

Proof. “⇒”: Let P ∪ H be a maximal complete scenario. Then P ∪ H is an admissible
scenario. Assume there exists a maximal admissible scenario P∪H ′ such thatH ( H ′. Since
P ∪H is a maximal complete scenario, P ∪H ′ is not a complete scenario, so H ′ 6= Acc(H ′),
which together with H ′ ⊆ Acc(H ′) implies that H ′ ( Acc(H ′). By the Fundamental Lemma
(Dung, 1991, 1995a), P ∪ Acc(H ′) is an admissible scenario, so P ∪ H ′ is not a maximal
admissible scenario. Contradiction, so P ∪H is a maximal admissible scenario.
“⇐”: Let P ∪H be a maximal admissible scenario. Assume that P ∪H is not a complete
scenario, so H 6= Acc(H), which together with H ⊆ Acc(H) implies that H ( Acc(H). By
the Fundamental Lemma (Dung, 1991, 1995a) P ∪ Acc(H ′) is an admissible scenario, so
P ∪H is not a maximal admissible scenario. Contradiction, so P ∪H is a complete scenario.
It is also a maximal complete scenario since any complete scenario P ∪H ′ with H ( H ′ is
also an admissible scenario, but P ∪H ′ is the maximal admissible scenario.

Lemma 14. Let P be a logic program and P∪H a scenario. P∪H is an admissible scenario
satisfying that for all preferred extensions P ∪ Hpref , H ⊆ Hpref , iff for all admissible
scenaria P ∪H ′, P ∪H ′ ∪H is again an admissible scenario.

Proof. “⇒”: Let P ∪H be an admissible scenario satisfying that for all preferred extensions
P ∪Hpref , H ⊆ Hpref , and let P ∪H ′ be an admissible scenario. By Theorem 1 in (Dung,
1991, 1995a), there exists a preferred extension P ∪Hpref such that H ′ ⊆ Hpref . We know
that H ⊆ Hpref , so H ′ ∪H ⊆ Hpref and therefore P ∪H ′ ∪H is consistent. By Lemma 12
(point 3), P ∪H ′ ∪H is an admissible scenario.
“⇐”: Let P ∪H be a scenario satisfying: For all admissible scenaria P ∪H ′, P ∪H ′ ∪H is
again an admissible scenario. Consider first the minimal admissible scenario, which is P ∪∅
as observed by Alferes et al. (1993, p. 339). Then P ∪ ∅ ∪H is an admissible scenario, so
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P ∪ H is an admissible scenario. Now consider the maximal admissible scenaria, i.e. by
Lemma 13 the preferred extensions. For all preferred extensions P ∪Hpref , P ∪Hpref ∪H has
to be an admissible scenario. Since P ∪Hpref is a maximal admissible scenario, it follows
that H ⊆ Hpref for all preferred scenaria P ∪ Hpref . Thus, for all preferred extensions
P ∪Hpref , H ⊆ Hpref .

Even though the definition of ideal scenaria states that it is unique, this property has
not been proven by Alferes et al. (1993).

Lemma 15. Let P be a logic program. There exists a unique ideal scenario P ∪H.

Proof. We first note that there exists a scenario P ∪H such that for all admissible scenaria
P ∪H ′, P ∪H ′ ∪H is again an admissible scenario, in particular P ∪ ∅ fulfils this property.
Thus, either P ∪∅ is the only scenario fulfilling this property, making it maximal (w.r.t. ⊆)
among all scenaria satisfying this property, or there exists some H 6= ∅ such that P ∪H is
maximal among all scenaria fulfilling this property.
Let P ∪H be a scenario which is maximal among all scenaria satisfying: For all admissible
scenaria P ∪H ′, P ∪H ′ ∪H is again an admissible scenario. Assume P ∪H1 (H 6= H1) is
also a scenario that is maximal among all scenaria satisfying this property. Then P ∪H and
P ∪H1 are admissible scenaria since P ∪∅∪H and P ∪∅∪H1 have to be admissible scenaria.
Furthermore, for all preferred extensions P ∪Hpref , P ∪Hpref ∪H and P ∪Hpref ∪H1 have
to be admissible scenaria, so H,H1 ⊆ Hpref since Hpref is a maximal admissible scenario.
Therefore, H ∪H1 ⊆ Hpref for every preferred extension P ∪Hpref and thus P ∪H ∪H1 is
a consistent scenario. By Lemma 12 (point 3), P ∪H ∪H1 is an admissible scenario. Since
for every admissible scenario P ∪H ′ there exists a preferred extension P ∪Hpref such that
H ′ ⊆ Hpref (Theorem 1 in (Dung, 1991, 1995a)) and since H ∪H1 ⊆ Hpref , it follows that
H ′ ∪ (H ∪ H1) ⊆ Hpref and therefore P ∪ H ′ ∪ (H ∪ H1) is a consistent scenario. Hence,
by Lemma 12 (point 3), P ∪H ′ ∪ (H ∪H1) is an admissible scenario (for every admissible
scenario P ∪H ′). Since P ∪H and P ∪H1 are maximal among all scenaria satisfying this
property, it follows that P ∪ H ′ ∪ (H ∪ H1) ⊆ P ∪ H and P ∪ H ′ ∪ (H ∪ H1) ⊆ P ∪ H1.
Then, P ∪H ′ ∪ (H ∪H1) = P ∪H and P ∪H ′ ∪ (H ∪H1) = P ∪H1, so P ∪H = P ∪H1

and therefore H = H1. Contradiction. Therefore, P ∪ H is the unique maximal scenario
among all scenaria satisfying that for all admissible scenaria P ∪H ′, P ∪H ′ ∪H is again
an admissible scenario.

Lemma 16 follows directly from Lemma 14 and Lemma 15.

Lemma 16. Let P be a logic program. There exists a unique admissible scenario P ∪ H
such that H is maximal (w.r.t. ⊆) among all admissible scenaria satisfying that for all
preferred extensions P ∪Hpref , H ⊆ Hpref .

The correspondence stated in the following corollary was mentioned by Alferes et al.
(1993) but not proven. It follows from Lemmas 14, 15, and 16.

Lemma 17. Let P be a logic program and P ∪H a scenario. P ∪H is the ideal scenario
according to Definition 19 iff P∪H is the admissible scenario such that H is maximal (w.r.t.
⊆) among all admissible scenaria satisfying that for all preferred extensions P ∪ Hpref ,
H ⊆ Hpref .
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Lemma 18. Let P be a logic program and P ∪ H a scenario. P ∪ H is an admissible
scenario such that H is maximal (w.r.t. ⊆) among all admissible scenaria satisfying that
for all preferred extensions P ∪ Hpref , H ⊆ Hpref , iff P ∪ H is a complete scenario such
that H is maximal (w.r.t. ⊆) among all complete scenaria satisfying that for all preferred
extensions P ∪Hpref , H ⊆ Hpref .

Proof. “⇒”: Let P ∪ H be an admissible scenario such that H is maximal among all
admissible scenaria satisfying that for all preferred extensions P∪Hpref , H ⊆ Hpref . Assume
that P ∪ H is not a complete scenario, so ∃not x ∈ Acc(H) such that not x /∈ H. Since
for every preferred extension P ∪ Hpref it holds that H ⊆ Hpref , by Lemma 12 (point 1)
not x ∈ Acc(Hpref ) for all P ∪Hpref . Since all preferred extensions are complete scenaria,
not x ∈ Hpref for all P ∪Hpref . Since not x ∈ Acc(H), P ∪H ∪ {not x} is an admissible
scenario by the Fundamental Lemma in (Dung, 1991, 1995a). Clearly, H ∪{not x} ⊆ Hpref

for all preferred extensions P ∪ Hpref , so H is not maximal. Contradiction, so P ∪ H is
a complete scenario. Furthermore, there cannot be a complete scenario P ∪ H ′ such that
H ( H ′ and H ′ ⊆ Hpref for all preferred extensions P ∪Hpref since every complete scenario
is an admissible scenario, so P ∪H ′ would also be an admissible scenario with H ( H ′ and
H ′ ⊆ Hpref for all preferred extensions P ∪Hpref . Contradiction, so P ∪H is a complete
scenario such that H is maximal among all complete scenaria satisfying that for all preferred
extensions P ∪Hpref , H ⊆ Hpref .
“⇐”: Let P ∪ H be a complete scenario such that H is maximal among all complete
scenaria satisfying that for all preferred extensions P ∪Hpref , H ⊆ Hpref . Then P ∪H is
an admissible scenario. Assume that there exists an admissible scenario P ∪H ′ such that
H ( H ′ and H ′ is maximal among all admissible scenaria satisfying that for all preferred
extensions P ∪ Hpref , H ′ ⊆ Hpref . Then P ∪ H ′ is not a complete scenario since H is
maximal among all complete scenaria satisfying that for all preferred extensions P ∪Hpref ,
H ⊆ Hpref . Thus, H ′ ( Acc(H ′), i.e. ∃not x ∈ Acc(H ′) such that not x /∈ H ′. By the
same reasoning as in the first part of this proof, H ′ ∪ {not x} is an admissible scenario
and H ′ ∪ {not x} ⊆ Hpref for all preferred extensions P ∪ Hpref . Contradiction, since
this implies that H is not maximal. Thus, P ∪H is an admissible scenario such that H is
maximal among all admissible scenaria satisfying that for all preferred extensions P ∪Hpref ,
H ⊆ Hpref .

Lemma 19. Let P be a logic program and let P ∪H1 and P ∪H2 be two complete scenaria.

1. H1 ( H2 iff der(P ∪H1) ( der(P ∪H2).

2. H1 = H2 iff der(P ∪H1) = der(P ∪H2).

Proof. 1. “⇒”: Let H1 ( H2. Then ∀not x1 ∈ H1 it holds that not x1 ∈ H2 and
∃not x2 ∈ H2 such that not x2 /∈ H1. Furthermore, ∀x ∈ der(P ∪ H1) it clearly
holds that x ∈ der(P ∪ H2), so der(P ∪ H1) ⊆ der(P ∪ H2). Since P ∪ H1 is a
complete scenario, not x2 /∈ Acc(H1) but not x2 ∈ Acc(H2). Thus, ∃H ⊆ HBnot

P

with P ∪H `TP
x2 and @not y ∈ H such that P ∪H1 `TP

y, but ∃not y′ ∈ H such
that P ∪H2 `TP

y′. Consequently, der(P ∪H1) ( der(P ∪H2).
“⇐”: If der(P ∪H1) ( der(P ∪H2) then Acc(H1) ⊆ Acc(H2). Since Acc(H1) = H1

and Acc(H2) = H2 it follows that H1 ⊆ H2. If H1 = H2 then clearly der(P ∪H1) =
der(P ∪H2) (contradiction). Thus, H1 ( H2.

818



On the Equivalence between ABA and LP

2. “⇒”: Trivial.
“⇐”: If der(P ∪H1) = (P ∪H2) then Acc(H1) = Acc(H2). Since Acc(H1) = H1 and
Acc(H2) = H2 it follows that H1 = H2.

Lemma 20. Let P be a logic program and P ∪ H a complete scenario. Then H ⊆ Hpref

for all preferred extensions P ∪ Hpref iff der(P ∪ H) ⊆ der(P ∪ Hpref ) for all preferred
extensions P ∪Hpref .

Proof. “⇒”: Let H ⊆ Hpref for all preferred extensions P ∪Hpref . By Lemma 19 it follows
that for all preferred extensions P ∪Hpref , der(P ∪H) ⊆ der(P ∪Hpref ).
“⇐”: Analogous to “⇒”

Lemma 21. Let P be a logic program and P ∪ H a complete scenario. H is maximal
(w.r.t ⊆) among all complete scenaria satisfying that for all preferred extensions P ∪Hpref ,
H ⊆ Hpref , iff der(P ∪H) is maximal (w.r.t ⊆) among all complete scenaria satisfying that
for all preferred extensions P ∪Hpref , der(P ∪H) ⊆ der(P ∪Hpref ).

Proof. “⇒”: Let H be maximal among all complete scenaria satisfying that for all preferred
extensions P ∪Hpref , H ⊆ Hpref . Then by Lemma 20, der(P ∪H) ⊆ der(P ∪Hpref ) for all
preferred extensions P ∪Hpref . Assume there exists a complete scenario P ∪H ′ such that
der(P∪H ′) ⊆ der(P∪Hpref ) for all preferred extensions P∪Hpref and der(P∪H) ( der(P∪
H ′). Then by Lemma 19, H ( H ′ and by Lemma 20 H ′ ⊆ Hpref for all preferred extensions
P ∪ Hpref . Contradiction since H is maximal among all complete scenaria satisfying this
condition. Thus, der(P ∪H) is maximal among all complete scenaria satisfying that for all
preferred extensions P ∪Hpref , der(P ∪H) ⊆ der(P ∪Hpref ).
“⇐”: Analogous to “⇒”

Theorem 22. Let P be a logic program.

1. If 〈T, F 〉 is an ideal model of P then P ∪ FHBnot is the ideal scenario of P with
T = der(P ∪ FHBnot ).

2. If P ∪H is the ideal scenario of P then 〈der(P ∪H), HHB 〉 is an ideal model of P .

Proof. 1. Let 〈T, F 〉 be an ideal model. By Definition 9, 〈T, F 〉 is a 3-valued stable model
such that T is maximal among all 3-valued stable models satisfying that for all regular
models 〈Treg, Freg〉, T ⊆ Treg. By Theorem 2.1 in (You & Yuan, 1995), 〈Treg, Freg〉
is a regular model iff P ∪ FregHBnot is a preferred extension where Treg = der(P ∪
FregHBnot ). Furthermore, by Theorem 3.1 in (Przymusinski, 1991) and Corollary 4.16
in (Brogi et al., 1992), P ∪ FHBnot is a complete scenario with T = der(P ∪ FHBnot ).
Assume there exists a complete scenario P ∪H such that for all preferred extensions
P ∪ Hpref , der(P ∪ H) ⊆ der(P ∪ Hpref ) and FHBnot ( H. Then by Lemma 19,
der(P∪FHBnot ) ( der(P∪H). By Theorem 3.1 in (Przymusinski, 1991) and Corollary
4.16 in (Brogi et al., 1992) 〈der(P∪H), HHB 〉 is a 3-valued stable model. Furthermore,
der(P ∪H) ⊆ Treg for all regular models 〈Treg, Freg〉. Contradiction since 〈T, F 〉 with
T = der(P ∪ FHBnot ) is a 3-valued stable model such that T is maximal among all
3-valued stable models satisfying that for all regular models 〈Treg, Freg〉, T ⊆ Treg.
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Thus, P ∪FHBnot is a complete scenario such that der(P ∪FHBnot ) is maximal among
all complete scenaria satisfying that for all preferred extensions P ∪ Hpref , der(P ∪
FHBnot ) ⊆ der(P ∪ Hpref ). By Lemma 21, P ∪ FHBnot is a complete scenario such
that FHBnot is maximal among all complete scenaria satisfying that for all preferred
extensions P ∪ Hpref , FHBnot ⊆ Hpref . By Lemma 18, P ∪ FHBnot is an admissible
scenario such that FHBnot is maximal among all admissible scenaria satisfying that for
all preferred extensions P ∪Hpref , FHBnot ⊆ Hpref . By Lemma 16 P ∪ FHBnot is the
unique admissible scenario satisfying this property. Then by Lemma 17, P ∪ FHBnot

is the ideal scenario.

2. Let P ∪ H be the ideal scenario. By Lemma 17, P ∪ H is the admissible scenario
such that H is maximal among all admissible scenaria satisfying that for all preferred
extensions P ∪Hpref , H ⊆ Hpref . Then by Lemma 18, P ∪H is a complete scenario
such that H is maximal among all complete scenaria satisfying that for all preferred
extensions P∪Hpref , H ⊆ Hpref . By Lemma 21, P∪H is a complete scenario such that
der(P ∪H) is maximal among all complete scenaria satisfying that for all preferred
extensions P ∪Hpref , der(P ∪H) ⊆ der(P ∪Hpref ). By Theorem 3.1 in (Przymusinski,
1991) and Corollary 4.16 in (Brogi et al., 1992), 〈der(P ∪H), HHB 〉 is a 3-valued stable
model. Furthermore, by Theorem 2.1 in (You & Yuan, 1995), 〈Treg, Freg〉 is a regular
model iff P ∪ FregHBnot is a preferred extension where Treg = der(P ∪ FregHBnot ).
Thus, 〈der(P ∪ H), HHB 〉 is a 3-valued stable model satisfying that for all regular
models 〈Treg, Freg〉, der(P ∪H) ⊆ Treg. Assume there exists a 3-valued stable model
〈T, F 〉 satisfying that for all regular models 〈Treg, Freg〉, T ⊆ Treg and der(P ∪H) ( T .
By Theorem 3.1 in (Przymusinski, 1991) and Corollary 4.16 in (Brogi et al., 1992),
P ∪FHBnot is a complete scenario with T = der(P ∪FHBnot ). Furthermore, FHBnot ⊆
der(P ∪ Hpref ) for all preferred extensions P ∪ Hpref . By Lemma 19, H ( FHBnot .
Contradiction since H is maximal among all admissible scenaria satisfying that for
all preferred extensions P ∪ Hpref , H ⊆ Hpref . Thus, 〈der(P ∪ H), HHB 〉 is a 3-
valued stable model such that der(P ∪ H) is maximal among all 3-valued stable
models satisfying that for all regular models 〈Treg, Freg〉 , der(P ∪H) ⊆ Treg. Thus,
〈der(P ∪H), HHB 〉 is an ideal model.
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