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ABSTRACT

Time series and case-crossover methods are often viewed as competing alternatives in

environmental epidemiologic studies. Several recent studies have compared the time

series and case-crossover methods. In this paper, we show that case-crossover using

conditional logistic regression is a special case of time series analysis when there

is a common exposure such as in air pollution studies. This equivalence provides

computational convenience for case-crossover analyses and a better understanding of

time series models. Time series log-linear regression accounts for over-dispersion of

the Poisson variance, while case-crossover analyses typically do not. This equivalence
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also permits model checking for case-crossover data using standard log-linear model

diagnostics.

Keywords : air pollution; case-crossover design; environmental epidemiology;

log-linear model; Poisson regression; time series
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1 INTRODUCTION

The case-crossover design was introduced in epidemiology fifteen years ago as a

method for studying the effects of a risk factor on a health event using only cases

(Maclure, 1991). The idea is to compare a case’s exposure immediately prior or during

the case-defining event with that same person’s exposure at otherwise similar “refer-

ence” times. Each person’s exposure values comprise a matched set with a single case

exposure during the event interval. Conditional logistic regression is typically used

to estimate an odds ratio as the measure of association (e.g. Bateson and Schwartz,

1999). The case-crossover design is attractive because it only involves cases and each

case is compared to himself, thereby controlling for time-invariant personal factors.

Maclure originally proposed that only the intervals before the one in which the

event occurred can be used for reference (Maclure, 1991). Greenland (1996) and

Navidi (1998) pointed out that this choice produces a biased odds ratio estimate

in the presence of a secular trend. As an alternative, Navidi (1998) proposed the

“full-stratum” design such that all intervals other than the event interval can be used

for reference. Bateson and Schwartz (1999) suggested a “symmetrical bidirectional”

reference window that uses control intervals equidistant shortly before and after the

event to control for bias induced by long-term and seasonal trends. Lumley and Levy

(2000) and Janes et al. (2005b) have shown that in the bidirectional design, condi-

tional logistic regression gives “overlap” biased estimates of the odds ratio because

the reference windows are not chosen independently of the event time. They favor

the use of pre-specified reference windows or “time-stratified designs”.

The substantial statistical interest in case cross-over designs reflects its common

application in many subspecialties of epidemiology including cardiovascular disease
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(e.g. Koton et al., 2004), HIV (e.g. Schneider et al., 2005), accidents (Hagel et al.,

2005) and health service quality assessment (e.g. Polevoi et al., 2005). The number

of papers per year that include “case-crossover” in their title or keywords as identified

in a Science Citation Index (SCI) search has grown more than ten-fold since 1993.

This work is motivated by our group’s research on the effects of air pollution

on morbidity or mortality where the case-crossover method is especially popular.

(e.g. Dominici et al., 2004, 2006; Wellenius et al., 2005; Zanobetti and Schwartz,

2005). Case-crossover methods are used to estimate the relative rate of events per

unit increase in exposure, controlling for potential confounding variables through

matching. For example, Zanobetti and Schwartz (2005) applied conditional logistic

regression to data from each of 21 regions to study the relative risk of emergency

room admission for myocardial infarction associated with PM10 exposure (particulate

matter 10 microns or smaller in aerodynamic diameter). This application and many

others like it are characterized by the fact that the exposure for a given day is assumed

to be the same for all persons.

An alternative approach to the analysis of daily exposure and case only data is

time series analysis (e.g. Diggle, 1990). Here, log-linear regression models express

the expected total number of events on each day as a function of the exposure level

and potential confounding variables. In time series analyses of air pollution, smooth

functions of time and weather are the main confounders. The smooth function of

time is typically modelled using a flexible parametric or non-parametric curve to

represent longer-term trends in the outcome due to changes in the population, its

health behaviors and services and to represent seasonality. Zeger et al. (2006) and

Bell et al. (2004) present overviews of time series methods in general and with

application to air pollution epidemiology specifically.
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The current understanding is that case-crossover methods control for potential

confounding “by design” while time series methods control by modeling ( Bateson

and Schwartz, 2001; Janes et al., 2005b; Mittleman, 2005; Zanobetti and Schwartz,

2005). The case-crossover idea is to control for personal variation in baseline risk

by matching each case with himself and to control for time-varying confounders by

matching each event period with reference periods that have the same value of time-

varying confounders. In this way, case-crossover analysis apparently avoids the need

to control through statistical modelling.

The relative merits of time series and case-crossover studies have been discussed

by several recent papers in the environmental epidemiology literature. For example,

Checkoway et al. (2000) selected the case-crossover approach as an alternative to time

series methods in order to make causal inferences about air pollution effects. Bateson

and Schwartz (1999; 2001) demonstrated that strong confounding by seasonality could

be controlled by design in the case-control approach.

In this paper, we demonstrate that when exposure is common to the cohort at

each time as in air pollution studies, the case-crossover approach is an application of

log-linear time series analysis rather than an alternative approach. This equivalence

has previously been noted in special cases by Levy et al. (2001) and by Janes et

al. (2005a). We show how the choice of reference intervals in the case-crossover

design is synonymous with the choice of estimator for the confounding function of

time in the time series analysis. Given this correspondence, we offer an alternate

perspective on bias of inferences from case-crossover designs. We show that inferences

from case-crossover designs based upon conditional logistic regression do not account

for over-dispersion as is routinely done in time series analyses. The connection of

case-crossover and time series analyses also sheds some new light on the time series
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applications.

Section 2 reviews the general framework for case-crossover and time series methods

and demonstrates their equivalence and connects choice of reference window with an

estimator of the smooth function of time in the time series case. Section 3 illustrates

the bias in case-crossover designs and time series estimators when the smooth function

of time is misspecified. Section 4 performs a simple data analysis with model checking

and is followed by discussion.

2 GENERAL FRAMEWORK

Let Xit be the exposure for person i in interval t, t = 1, . . . , T and let Yit indicate

whether subject i has the event in interval t (1 - event; 0 - not). Assume that the

outcome Yit = 1 is rare and that the probability that subject i fails in interval t is

given by the relative risk model:

λi(t, Xit) = λ0it exp(βXit) = λ0i exp(βXit + γit). (2.1)

Each subject is assumed to have his own baseline risk λ0it at time t consisting of two

parts; λ0i is a constant frailty for person i and exp(γit) is the effect of unmeasured

time-varying factors on his risk. The exposure Xitis assumed to have a common effect

on each individual as quantified by the log relative risk β.

For air pollution and other similar studies, the population is assumed to have

common exposure during each interval so that Xit = Xt.
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2.1 Time series analysis

Denote the population from which cases arise by I, the observed number of events

Yt in interval t is just Yt =
∑

i∈I Yit. The expected number of events is given by the

sum over the entire population of the individual risks:

µt =
∑
i∈I

λi(t,Xt) = exp(βXt)
∑
i∈I

λ0it = exp(βXt + St), (2.2)

where exp(St) =
∑

i∈I λ0it. The target of inference is the regression coefficient β,

the common log relative rate of the event per unit change in the exposure. St is

the log of the total population risk on day t. The total risk integrates across the

population the individual baseline risks and behaviors such as exercise, smoking and

health care seeking. It also represents factors that affect the population as a whole

such as influenza epidemics or improved medical services. In time series analysis,

St is assumed to be a smooth function of time and is modeled with parametric or

non-parametric curves such as regression or smoothing splines (e.g. Kelsall et al.,

1997). Because St is not the scientific focus, most time series investigators examine

the sensitivity of inferences about the exposure relative risk β to the choice of model

for St (e.g. Dominici et al., 2004).

To estimate the log relative risk parameter β, we assume Yt follows a log linear

model with mean E(Yt) = µt and V ar(Yt) = φµt. The following Poisson estimating

equation is solved for the estimate β̂

U(β) =
T∑

t=1

Xt(Yt − eβXt exp(Ŝt(β))) =
T∑

t=1

Xt(Yt − µ̂t(β)), (2.3)

where µ̂t(β) will depend on the estimate of the nuisance function Ŝt(β). We choose the
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estimate of β that makes the observed number of events Yt on each day t on average

equal to the model-based predicted value µ̂t(β). Inferences about β are made robust

to the Poisson assumption by allowing the variance of the data to exceed its mean

using the method of “quasi-likelihood” or by using a robust variance estimator(Liang

and Zeger, 1986; McCullagh and Nelder, 1989; White, 1982; Zeger, 1988).

2.2 Case-crossover design

In the case-crossover approach, the exposure of cases in interval ti is compared to

the exposures from a set of reference periods. We denote the event interval by ti

and the set of reference periods by W (ti). For example for day 10, W (10) might

be {8, 9, 10, 11, 12} indicating we use the two days before and after the event day as

the reference intervals. The key assumption of a case-crossover design is that the

time-varying effect γij is constant for all j within the reference window W (ti).

Conditional on an individual being a case within a pre-specified reference window

W (ti), the probability piti that subject i fails at time ti is

piti = P (Ti = ti|X, W (ti),
T∑

m=1

Yim = 1) =
P (Ti = ti,

∑T
m=1 Yim = 1|X,W (ti))∑

j∈W (ti)
P (Ti = j,

∑T
m=1 Yim = 1|X, W (ti))

=
λi exp(βXiti + γiti)∑

j∈W (ti)
λi exp(βXij + γij)

=
exp(βXiti)∑

j∈W (ti)
exp(βXij)

, (2.4)

which is free of the time-constant effect λi and time-varying effects γij.

As Janes et al. (2005b) have pointed out, this probability is not correct if the

reference window depends on t, e.g. in the symmetric bidirectional design. However,

equation (2.4) can still be used to construct an estimating equation for β.
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If we assume subjects are independent, the likelihood function is

L(β) =
n∏

i=1

piti =
n∏

i=1

[
exp(βXiti)∑

j∈W (ti)
exp(βXij)

]
. (2.5)

The estimating equation for β is

U(β) =
n∑

i=1

Ui(β) =
n∑

i=1


Xiti −

∑

m∈W (ti)

Xim
exp(βXim)∑

j∈W (ti)
exp(βXij)


 . (2.6)

This estimating equation is the sum over subjects of the difference between each

subject’s exposure at the index time ti and a weighted average of exposures at all times

in the reference window W (ti) (Janes et al., 2005a). By solving (2.6), we estimate β

by the value that on average makes the relative-risk weighted average of exposures

on reference days equal to the exposure on the event days.

If we assume common exposure, Xit = Xt, (2.6) can be rewritten as (see appendix

I)

U(β) =
T∑

t=1

Xt


Yt − eβXt

∑

m∈R(t)

Ym∑
j∈W (m) exp(βXj)




=
T∑

t=1

Xt

[
Yt − eβXt+Ŝt

]
=

T∑
t=1

Xt

(
Yt − µ̂

(cc)
t

)
. (2.7)

Here, R(t) is the set of days containing day t in their reference window. For the sym-

metric bidirectional and time-stratified designs, this set is identical to the reference

set for day t itself, that is R(t) = W (t). But this is not true for other designs so the

distinction between R(t) and W (t) is essential.
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In equation (2.7), Ŝt is the weighted average of number of events across days that

have day t in their reference window. The weight for Ym is the probability of having

event on day t given the reference window W (m), where day m has day t in its

reference window W (m).

The case-crossover equation (2.7) is a special case of the time series equation (2.3)

in which St is estimated by a weighted average of the observed numbers of events for

those intervals m that include interval t in their reference windows. The weights are

determined by the conditional probabilities that an event occurs in t given it occurs

within the window.

Two special cases are worth considering further: time-stratified design (TSD) and

symmetric bidirectional design (SBD). For TSD, time is a priori divided into strata

s(t) = 1, . . . , S. The reference window for day t is the set of days in its stratum

(Lumley and Levy, 2000). Levy et al. (2001) previously pointed out that the time-

stratified case-crossover design leads to the same estimate as obtained from a Poisson

regression with dummy variables indicating the strata. The score equation can be

written as

n∑
i=1

Ui(β) =
T∑

t=1

Xt

[
Yt − eβXt

∑
m∈s(t) Ym∑

j∈s(t) exp(βXj)

]
=

T∑
t=1

Xt

(
Yt − µ̂

(a)
t

)
, (2.8)

where µ̂
(a)
t = eβXt

P
t∈g(t) YtP

t∈g(t) exp(βXt)
is the expected number of events on day t. Note that

exp(Ŝs(t)) =
P

t∈g(t) YtP
t∈g(t) exp(βXt)

is the maximum likelihood estimator (MLE) of exp(Ss(t)).

The smooth function of time is assumed to be a step function with a separate level of

population baseline risk for each pre-specified stratum. Whether to expect the total

baseline risk to change abruptly at each stratum boundary as assumed in this design

is a question specific to each application. However, if it does not, assuming St is a
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step function may introduce bias in the estimator or the pollution log relative risk β.

In the symmetric bidirectional design, symmetric control days close to the event

time are used. As the simplest example, define the controls as the days immediately

before and after the event day. Then the score equation can be written as

n∑
i=1

Ui(β) =
T∑

t=1

Xt

[
Yt − eβXt

∑
m=t−1,t,t+1

Ym

eβXm−1 + eβXm + eβXm+1

]
=

T∑
t=1

Xt

(
Yt − µ̂

(b)
t

)
,

This is equivalent to using a locally weighted running-mean smoother to estimate St

in time series analysis.

3 BIAS IN CASE-CROSSOVER OR TIME SE-

RIES METHODS

There are several papers that investigate the bias associated with case-crossover de-

signs using conditional logistic regression (Lumley and Levy, 2000; Janes et al., 2005a;

2005b). However, each one assumes that the time-varying confounders γit do not vary

within the reference window. In this section, we give a standard expression for the

asymptotic bias from the perspective that a true St exists and it can be mismodelled

with either a case-crossover or time series approach. We then evaluate the actual bias

in an air pollution mortality example via simulation.

Assume the true model is log µt = Xtβ + St. The expectation of the estimating

11
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equation for the case-crossover design can be written as

E[U(β)] =
T∑

t=1

Xte
βXt


exp(St)−

∑

m∈R(t)

exp(βXm + Sm)∑
j∈W (m) exp(βXj)




=
T∑

t=1

Xte
βXt

[
exp(St)− E[exp(Ŝt(β))]

]

=
T∑

t=1

Xte
βXt∆eSt(β), (3.1)

where ∆eSt(β) is the difference between true exp(St) and the expectation of the

estimated exp(Ŝt(β)). The estimating equation will be unbiased if E[exp(Ŝt(β))] =

exp(St) for all t, i.e. ∆eSt(β) = 0 for all t, and its solution β̂ will be asymptotically

unbiased (given regularity conditions).

For case-crossover design, we know that

∂U(β)

∂β
= −

T∑
t=1

Xte
βXt

∑

m∈R(t)

Ym


 Xt∑

j∈W (m) exp(βXj)
−

∑
j∈W (m) Xj exp(βXj)[∑

j∈W (m) exp(βXj)
]2


 .

(3.2)

We can obtain

E

[
∂U(β)

∂β

]
= −

T∑
t=1

Xte
βXt

∑

m∈R(t)

eβXm+Sm


 Xt∑

j∈W (m) exp(βXj)
−

∑
j∈W (m) Xj exp(βXj)[∑

j∈W (m) exp(βXj)
]2


 .

(3.3)
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The asymptotic bias in β̂ is given by

−
{

E

[
∂U(β)

∂β

]}−1

β

E [U(β)] = −
{

E

[
∂U(β)

∂β

]}−1

β

T∑
t=1

Xte
βXt∆eSt(β), (3.4)

which is a function of ∆eSt(β). The finite sample bias can be evaluated using simu-

lation. The finite sample bias and the asymptotic bias will be very similar when the

number of days in the data set are large enough.

3.1 Simulation study

We report a brief simulation study to quantify the bias in β̂ for an air-pollution-

mortality example. We use the daily average PM10 in Chicago from January 1st,

1995 to December 31st, 1996 as the exposure Xt. We simulated Yt, daily mor-

tality, from a Poisson(µt), where log µt = βXt + St. We let β be 0, 1, 2, and

5 percent change in daily mortality per 10 µg/m3 increase in PM10 and use the

following true functions St. Data and software for this simulation are available at

http://www.ihapss.jhsph.edu/data/data.htm.

Scenario A: St is constant over time, St=4.10, which equals to the natural log-

arithm of mean daily mortality for people 75 years and older in Chicago for our two

years of exposure.

Scenario B: St is a combination of a linear function of time and a cosine function

with period equaling one year (St = 4.10 + 0.0001(t− 365) + 0.1 cos(2πt/365)). Here

we assume that the base line risk increases over time, and there exists a seasonal

trend that peaks in winter.
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Scenario C: Scenario C is Scenario B plus a day of the week effect Sdow,t
for

Monday through Sunday: 0, 0.002, 0.01, 0.008, 0.005, 0.008, and −0.005, respectively.

Four models were estimated for each scenario.

Model 1: the symmetric bidirectional case-crossover design (SBD) using 14 and

7 days before and after event day as control days.

Model 2: a time-stratified case-crossover design (TSD) using the days with the

same day of the week in the same month and year of the event day as control days.

Model 3: time series with log µt = βXt + dowt × ns(t, df = 12 per year), where

ns is natural spline, and dowt is the 7 level factor for day of the week. Model 3 has

similar degrees of freedom as Model 2 but allows the day of week effect to vary as a

smooth function over time.

Model 4: time series with log µt = βXt + dowt × ns(t, df = 4 per year). Model

4 has the same form as Model 3 with less degrees of freedom in smoothing than the

other three models.

In this simulation study, the exposures are considered fixed. We used 1000 repli-

cates. The estimated bias and ratio of mean squared error (MSE) relative to Model

4 were reported.

The standard deviations for the estimates are roughly constant across the 3 as-

sumed scenarios and 4 values of β for the same model. The order of the standard

deviations for β̂ are: Model 4 < Model 1< Model 2 < Model 3. The biases for β̂ vary

across scenarios and β values, but the magnitude of the bias is usually much smaller

than the standard deviation, hence the standard deviation dominates the MSE. Model

14

http://biostats.bepress.com/jhubiostat/paper101



4 has the smallest MSE (Table 1).

The bias results are shown in Table 2. For Scenario A, the symmetric bidirectional

case-crossover method (SBD) performs the worst, while the other three models have

similar bias. This demonstrates the previous finding that SBD suffers overlap bias

(Janes et al., 2005a, 2005b; Levy et al., 2001; Lumley and Levy, 2000). TSD seems to

have slightly smaller bias than the two time series models when the true St is constant,

since the assumption that St is a step function is correct. For Scenario B and C, the

time series method have much smaller bias than the case-crossover methods. When

the true St has a trend, seasonality, and day of the week effects, the case-crossover

methods can not capture the smoothness of St, producing some bias.

4 DATA ANALYSIS

We illustrate the connection of the case-crossover and time series methods with an

analysis of mortality for persons over 75 and PM10 data from Chicago for the two

years 1995-6. These data are typical of the air pollution time series problems that

motivated the use of case-crossover designs. The data were analyzed using Models 2

and Model 4 as defined in the simulation study. Temperature would be included in

an actual time series analysis. It is omitted here to demonstrate the value of a time

series formulation of the case-crossover analyses.

The estimates of β are 1.09 (SE 0.35) and 0.69 (SE 0.45) for Model 2 (case-

crossover )and Model 4 (time series), respectively. Note that for Model 2, the con-

ditional logistic regression does not take into account of the over-dispersion in the

Poisson variance.

15
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To empirically demonstrate the equivalence of case-crossover and time series method

proven here, we have fit Model 2 using both the conditional logistic regression and

the Poisson regression programmed in R. The estimated β coefficients agree to 6

significant digits. The variance estimates are different if we allow over-dispersion in

the Poisson regression. The estimated over-dispersion parameter of 1.92 for the case-

crossover Model 2 indicates that there is greater variation in the numbers of deaths

within matching strata than can be explained by the model. Much of this could be

explained by including a non-linear function of temperature.

An important idea is to use the time series formulation of the case-crossover

analysis and perform model checking using standard log-linear model diagnostics.

Figure 1 illustrates the predicted daily mortality for Mondays, where Model 2 assumes

a step function for St while Model 4 uses a natural spline.

Figure 2 shows the Dffits of Model 2 and Model 4. The Dffits statistic is a scaled

measure of the change in the predicted value for the ith observation when it is omitted

from the regression. Large absolute values of Dffits indicate influential observations.

The top two graphs in Figure 2 indicate that the Dffits are mostly in the range of

(−1.5, 1.5) for Model 2 and (−1, 1) for Model 4. There are several points with high

Dffits for both models. We can set aside the influential points and refit both models,

then check the Dffits again. After two rounds of checking, the influential points are

identified as July 14th through 18th in 1995, when high daily mortality occurred

due to the unusually high temperatures. After deleting these points, the estimates

of β are 0.87 (SE 0.35) and 0.79 (SE 0.33) for Model 2 and Model 4, respectively.

The estimate for Model 2 changes greater because the original Ŝt for Model 4 had

a wider band width than did the Model 2 estimate, and was less influenced by the

local pertubation in mortality. After removing highly influential points, the estimated
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over-dispersion parameter for Model 2 decreases to 1.08. The bottom two graphs in

Figure 2 are the Dffits after refitting the models.

Figure 3 shows the Q-Q plots of the standardized residuals for Models 2 and 4

before and after removing influential points. The standardized residuals (Yt−µ̂t)/
√

µ̂t

are approximately Gaussian (0, 1) if the model is correctly specified because of the

large Poisson mean. Figure 3 suggests that the standardized residuals are quite skewed

to the right before removing influential points, indicating a of violation of the Poisson

assumptions. After removing the influential points, the standardized residuals are

very close to the Gaussian distribution for both models.

5 SUBJECT-SPECIFIC EXPOSURES

In the previous sections, we emphasized intervals with common exposures across

individuals. We often have subject-specific exposures. In this section, we consider

the connection between case-crossover and time series methods for subject-specific

exposure data.

Let Xit be the exposure for person i in interval t, t = 1, . . . , T and let Yit indicate

whether subject i has the event in interval t (1 - event; 0 - not) as described above in

the general framework.
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We can rewrite equation (2.6) as (see appendix II)

U(β) =
n∑

i=1

Ui(β)

=
n∑

i=1


Xiti −

∑

m∈W (ti)

Xim
exp(βXim)∑

j∈W (ti)
exp(βXij)




=
T∑

t=1

[(
n∑

i=1

Yit

) ∑n
i=1 XitYit∑n

i=1 Yit

]
−

T∑
t=1

n∑
i=1


Yit

∑

m∈W (t)

Xim
exp(βXim)∑

j∈W (t) exp(βXij)




=
T∑

t=1

YtX̄t −
T∑

t=1

X̄t

{
n∑

i=1

[
Yit

∑
m∈W (t) Xim exp(βXim)∑

j∈W (t) exp(βXij)
/X̄t

]}

=
T∑

t=1

X̄t

[
Yt −

n∑
i=1

[
YitX̄

(W (t))
i (β)/X̄t

]]

=
T∑

t=1

X̄t

(
Yt − µ̂

(ccs)
t

)
, (5.1)

where Yt =
∑n

i=1 Yit, X̄t =
Pn

i=1 XitYitPn
i=1 Yit

, X̄
(W (t))
i (β) =

P
m∈W (t) Xim exp(βXim)P

j∈W (t) exp(βXij)
. Here, X̄t is

the average exposure for day t, averaged across all subjects whose event is on day t.

Here, X̄
(W (t))
i (β) is the weighted average exposure for subject i within the reference

window of day t. We can consider µ̂
(ccs)
t to be the expected number of events on day

t given the exposures on days in its reference window and β.

This time series formulation of the case-crossover design with subject-specific ex-

posures can be used to perform model checking similar to what we described in the

previous section.

If the Poisson assumption is valid, the standardized residuals r̂t = (Yt − µ̂t)/
√

µ̂t

should have mean 0 and variance 1. The plot of r̂t vs. µ̂t can detect violations from

this assumption. If the mean for the Poisson variable Yt is large, r̂t will approximately

follow a standardized Gaussian distribution that can be checked using a Q-Q plot.
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We can calculate the over-dispersion parameter φ using φ̂ = 1
T

∑T
t=1

(
Yt−µ̂t√

µ̂t

)
and rely

upon a robust variance estimator when φ̂ > 1. We can check influential data points

using Dffits as described before.

6 DISCUSSION

This paper has shown that the conditional logistic regression estimating equation

used to obtain the case-crossover estimate of relative risk is a special case of the

time series log-linear model estimating equation when exposure is common across

subjects in each interval. Time series and case-crossover analyses simply offer different

parameterizations for St.

The time-stratified case-crossover design is equivalent to Poisson regression with

indicator variables for strata (Levy et al., 2001). The estimated smooth function

of time Ŝt is assumed to be a step function with different levels of total population

baseline risk for each stratum. The symmetric bidirectional case-crossover design is

equivalent to Poisson regression using a locally weighted running-mean smoother for

St.

The equivalence of the case-crossover and time series methods improves our un-

derstanding of both methods and provides computational convenience. Most case-

crossover analyses use conditional logistic regression (CLR) for estimation. When the

number of time intervals and the number of controls for each case are large (e.g. full-

stratum design), standard CLR is computationally inefficient and Poisson regression

software is computationally less expensive.

Each case-crossover design corresponds to a model (or estimator) for St. The
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equivalence of case-crossover and time series methods permits model checking for

case-crossover data using standard log-linear model diagnostics tools (McCullagh and

Nelder, 1989).

Despite the equivalence of estimates from time series and case-crossover analyses,

they can give different standard errors. This is because time series analysis allows

for over-dispersion of the Poisson variance, while case-crossover design uses the exact

Poisson variance to calculate the standard error. In many applications, the Poisson

assumption is not valid.

This connection also informs our interpretation of time series analysis. For exam-

ple, in Dominici et al. (2004), time series models are used to estimated a PM effect

on daily mortality. The degrees of freedom to estimate St with a regression spline are

allowed to vary nine folds from 2.3 to 21 degrees of freedom per year, yet the standard

error of the pollution effect changes little. For matched case-control studies, there is

little gain in efficiency when the number of controls per case is beyond roughly four

(McCullagh and Nelder, 1989). In a case-crossover design, this corresponds to four

control days per event day or equivalently 90 degrees of freedom per year, which is

much greater than the entire range included by Dominici et al. (2004).

In this paper, we focused on exposures common to all subjects. In many appli-

cations of the case-crossover design, exposures vary among subjects. We have shown

how our approach extends to the case with subject-specific exposures. Further work

on this topic is of interest.
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APPENDIX I

If we again assume common exposure, i.e., Xit = Xt, the score equation (2.6) can be

written as

n∑
i=1

Ui(β) =
n∑

i=1


Xiti −

∑

m∈W (ti)

Xim
exp(βXim)∑

j∈W (ti)
exp(βXij)




=
n∑

i=1


Xti −

∑

m∈W (ti)

Xm
exp(βXm)∑

j∈W (ti)
exp(βXj)




=
T∑

t=1

Yt


Xt −

∑

m∈W (t)

Xm
exp(βXm)∑

j∈W (t) exp(βXj)




=
T∑

t=1

YtXt −
T∑

t=1


Yt

∑

m∈W (t)

Xm
exp(βXm)∑

j∈W (t) exp(βXj)




=
T∑

t=1

YtXt −
T∑

t=1

T∑
m=1

YtXm
I[m ∈ W (t)] exp(βXm)∑T
j=1 I[j ∈ W (t)] exp(βXj)

=
T∑

t=1

YtXt −
T∑

m=1

T∑
t=1

YtXm
I[m ∈ W (t)] exp(βXm)∑T
j=1 I[j ∈ W (t)] exp(βXj)

=
T∑

t=1

YtXt −
T∑

m=1

[
Xm

T∑
t=1

Yt
I[m ∈ W (t)] exp(βXm)∑T
j=1 I[j ∈ W (t)] exp(βXj)

]

=
T∑

t=1

YtXt −
T∑

t=1

[
Xt

T∑
m=1

Ym
I[t ∈ W (m)] exp(βXt)∑T

j=1 I[j ∈ W (m)] exp(βXj)

]

=
T∑

t=1

Xt

[
Yt −

T∑
m=1

Ym
I[t ∈ W (m)] exp(βXt)∑T

j=1 I[j ∈ W (m)] exp(βXj)

]

=
T∑

t=1

Xt


Yt −

∑

m∈R(t)

Ym
exp(βXt)∑

j∈W (m) exp(βXj)




=
T∑

t=1

Xt


Yt − eβXt

∑

m∈R(t)

Ym∑
j∈W (m) exp(βXj)




=
T∑

t=1

Xt

(
Yt − µ̂

(cc)
t

)
,
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where R(t) is the set of days containing day t in their reference window. For each day

m ∈ R(t), the reference window for day m is W (m), which contains day t. The prob-

ability of having event on day t given the reference window W (m) is exp(βXt)P
j∈W (m) exp(βXj)

.

Given the number of events Ym on day m, the expected number of events on day

t is Ym
exp(βXt)P

j∈W (m) exp(βXj)
. Only the days m ∈ R(t) will have contribution to µ̂

(cc)
t ,

because we assume m will have similar baseline risk as t. Hence we can consider

µ̂
(cc)
t =

∑
m∈R(t) Ym

exp(βXt)P
j∈W (m) exp(βXj)

as the expected number of events on day t, given

the number of events Ym for all m ∈ R(t).
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APPENDIX II

If we don’t assume common exposure, then the score equation can be written as

n∑
i=1

Ui(β) =
n∑

i=1


Xiti −

∑

m∈W (ti)

Xim
exp(βXim)∑

j∈W (ti)
exp(βXij)




=
T∑

t=1

∑

i s.t.ti=t


Xit −

∑

m∈W (t)

Xim
exp(βXim)∑

j∈W (t) exp(βXij)




=
T∑

t=1

n∑
i=1



Yit


Xit −

∑

m∈W (t)

Xim
exp(βXim)∑

j∈W (t) exp(βXij)








=
T∑

t=1

[(
n∑

i=1

Yit

) ∑n
i=1 XitYit∑n

i=1 Yit

]
−

T∑
t=1

n∑
i=1


Yit

∑

m∈W (t)

Xim
exp(βXim)∑

j∈W (t) exp(βXij)




=
T∑

t=1

YtX̄t −
T∑

t=1

X̄t

{
n∑

i=1

[
Yit

∑
m∈W (t) Xim exp(βXim)∑

j∈W (t) exp(βXij)
/X̄t

]}

=
T∑

t=1

X̄t

[
Yt −

n∑
i=1

[
YitX̄

(W (t))
i /X̄t

]]

=
T∑

t=1

X̄t

(
Yt − µ̂

(ccs)
t

)
,

where Yt =
∑n

i=1 Yit, X̄t =
Pn

i=1 XitYitPn
i=1 Yit

, X̄
(W (t))
i =

P
m∈W (t) Xim exp(βXim)P

j∈W (t) exp(βXij)
.
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Table and Figure Captions

Table 1. Ratio of MSE vs. Model 4 from the simulation study.

Table 2. Bias of the estimate ×1000 from the simulation study.

Figure 1. The predicted Monday mortality vs. calender day in Chicago for persons

75 years and older. Model 2 (denoted as solid line) is a time-stratified case-crossover

design (TSD) using the days with the same day of the week in the same month and

year of the event day as control days. Model 4 (denoted as dashed line) is a time

series method using a natural spline with 8 degrees of freedom.

Figure 2. The Dffits statistics of Model 2 and Model 4 before (top )and after

(bottom) removing influential points. Model 2 is a time-stratified case-crossover

design (TSD) using the days with the same day of the week in the same month and

year of the event day as control days. Model 4 is a time series method using a

natural spline with 8 degrees of freedom.

Figure 3. The Q-Q plot of standardized residuals for Model 2 and Model 4 before

(top) and after (bottom) removing influential points. Model 2 is a time-stratified

case-crossover design (TSD) using the days with the same day of the week in the

same month and year of the event day as control days. Model 4 is a time series

method using a natural spline with 8 degrees of freedom.
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Tables and Figures

Table 1: Ratio of MSE vs. Model 4 from the simulation study.
MSE ratio Model 1 Model 2 Model 3
Scenario A β=0 1.1805 1.2520 1.3077

β=1 1.1502 1.2252 1.2736
β=2 1.1298 1.2055 1.2370
β=5 1.2962 1.2106 1.2491

Scenario B β=0 1.1801 1.3093 1.3564
β=1 1.2173 1.2457 1.2885
β=2 1.2155 1.2642 1.3473
β=5 1.5108 1.3570 1.4450

Scenario C β=0 1.2480 1.3357 1.3540
β=1 1.2012 1.3274 1.3223
β=2 1.2339 1.2792 1.2545
β=5 1.3389 1.2342 1.2400

Table 2: Bias of the estimate ×1000 from the simulation study.
Bias Model 1 Model 2 Model 3 Model 4

Scenario A β=0 −12.0 −1.2 3.7 −7.8
β=1 −38.8 −8.0 −5.0 −11.7
β=2 −43.6 9.6 11.7 9.7
β=5 −122.9 −0.4 −3.5 −3.0

Scenario B β=0 −40.7 −32.1 −2.6 −4.6
β=1 −85.4 −60.2 −24.3 −24.9
β=2 −71.3 −18.3 7.5 10.7
β=5 −147.3 −32.4 5.1 0.5

Scenario C β=0 −53.6 −40.7 −13.9 −12.6
β=1 −57.1 −27.5 6.4 4.8
β=2 −91.3 −40.6 −4.5 −8.2
β=5 −144.8 −30.0 3.1 −2.9
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