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On the equivalence of classes of hybrid systems: 
Mixed logical dynamical and complementarity 

systems 

W.P.M.H. Heemels .. t and B. De Schutter* 

Abstract 

We establish the equivalence of five classes of hybrid dynamical systems: mixed logical 
dynamical systems, linear complementarity systems, extended linear complementarity 
systems, piecewise affine systems and max-min-plus-scaling systems. 

Keywords: hybrid systems, complementarity systems, piecewise affine systems, equivalent 
models 

1 Introd uction 

Hybrid dynamical systems are systems that contain both analog (continuous) and logical 
(discrete) components. Recently, these systems have received a lot of attention from both the 
computer science and the control community (Antsaklis et al., 1999; Grossman et aL, 1993; 
Henzinger and Sastry, 1998; Maler, 1997; Alur et al., 1996; Vaandrager and van Schuppen, 
1999; Pnueli and Sifakis, 1995; Antsaklis and Nerode, 1998; Morse et al., 1999). As tractable 
methods to analyze general hybrid systems are not available, several authors have focused 
on special subclasses of hybrid dynamical systems for which efficient analysis and/or control 
design techniques are currently being developed. Some examples of such tractable subclasses 
are: linear complementarity systems (Heemels et al., 1999; van der Schaft and Schumacher, 
1996; Van der Schaft and Schumacher, 1998; van cler Schaft and Schumacher, 2000; Heemels 
et al., 2000), mixed logical dynamical systems (Bemporad and Morari, 1999; Bemporad et al., 
1999), first order linear hybrid systems with saturation (De Schutter, 1999), piecewise affine 
systems (Sontag, 1981; Sontag, 1996), and so on. In this paper we will show that several 
of these subclasses are in fact conceptually equivalent. These results enable the transfer of 
knowledge from one class to another, they show that more applications belong to these classes 
and moreover, they imply that for the study of a particular hybrid system one can choose the 
modeling framework that is most suitable. 
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GA Delft, The Netherlands, tel: +31-15-278.51.13, fax: +31-15-278.66.79, email: b.deschutter@its.tudelft.nl 
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2 Classes of hybrid systems 

2.1 Mixed logical dynamical systems 

In (Bemporad and Morari, 1999) Bemporad and Morari have introduced a class of hybrid 
systems in which logic, dynamics and constraints are integrated. This lead to a description 
of the form 

x(k + 1) Ax(k) + BIU(k) + B20(k) + B3Z(k) 

y(k) = Cx(k) + D1u(k) + D20(k) + D3Z(k) 

EIX(k) + E2U(k) + E30(k) + E4Z(k) ~ e5, 

(Ia) 

(lb) 

(Ic) 

where x(k) = [x7(k) XbT(k) jT E lRnr x {O,I}nb is the state of the system at time k, y(k) = 
[y7(k) YbT(k)]T E ]Rlr X {O,I}lb is the output, u(k) = [urT(k) UbT(k) f E lRmr x {O,l}mb 

is the input, and z(k) E ]Rrr and 6(k) E {O,IYb are auxiliary variables. The inequalities 
(lc) have to be interpreted componentwise. Systems that can be described by the model 
(1) are called mixed logical dynamical (MLD) systems. The time-evolution of the system is 
determined by solving c5(k) and z(k) from the linear inequalities (lc) once x(k) and u(k) are 
specified. Subsequently, this can be used to obtain the new state x(k + 1) and the current 
output y(k). A new input u(k + 1) can now be specified after which the cycle is repeated. 

Remark 2.1 In the formulation of the time-evolution of the system, it is assumed that for all 
x(k) with xr(k) E ]Rnr and xb(k) E {O, I}%, all u(k) with ur(k) E lRmr and ub(k) E {O, I}mb, 
all z(k) E lRrr and all c5(k) E {O, IYb satisfying (lc) it holds that x(k+l) and y(k) determined 
from (!a)-(1b) are such that xb(k + 1) E {O,I}nb and Yb(k) E {O,I}lb. This assumption is 
without loss of generality, since otherwise it is possible to include additional inequalities in 
(lc) to guarantee this property. Indeed, if Yb(k) E {O, I}lb is not implied by the equations, 
we introduce an additional binary variable 6y (k) E {O, 1}lb and the inequalities 

[Cx(k) + DIU(k) + D20(k) + D3Z(kl]b - oy(k) < ° 
[-Cx(k) DIU(k) - D20(k) - D3Z{k)]b + 6y(k) < 0, 

(2a) 

(2b) 

which sets oy(k) equal to Yb(k). The notation [ ]b is used to select the last lb rows of the 
expression (lb), i.e. the rows that correspond to the binary part of y(k). In a similar way, we 
can deal with xb(k + 1) E {O, l}nb. 0 

Remark 2.2 In (Bemporad and Morari, 1999) the system matrices in the model (1) were 
allowed to be time-varying. For sake of simplicity of notation we do not explicitly include the 
time-dependence of the system matrices for the classes of hybrid systems considered in this 
paper, i.e. we consider time-invariant systems. Note however that all the results presented in 
this paper also hold for time-varying systems. 0 

In (Bemporad and Morari, 1999) it has been shown that the class of MLD systems includes 
piece-wise linear dynamic systems, linear hybrid finite state machines, linear systems, 
linear systems with discrete inputs, bilinear systems, etc. 

2 



2.2 Piecewise affine systems 

Piecewise affine (PWA) systems (Sontag, 1981; Sontag, 1996) are described by 

x(k + 1) 
y(k) = 

AiX(k) + BiU{k) + Ii 
Cix(k) + DiU(k) + gi [

X(k)] 
for u(k) E Oil (3) 

where Oi are convex polyhedra (i.e. given by a finite number of inequalities) in the input/state 
space. The variables u(k) E ]Rm, x(k) E]Rn and y(k) E]R1 denote the input, state and output, 
respectively, at time k. In this model description Ii and gi are constant vectors. 

PWA systems have been studied by several authors (see (van Bokhoven, 1981; Johansson, 
1999; Johansson and Rantzer, 1998; Leenaerts and van Bokhoven, 1998; Pettit, 1995; Sontag, 
1981; Sontag, 1996; Vandenberghe et al., 1989; van Bokhoven and Leenaerts, 1999) and the 
references therein) as they form the "simplest" extensions of linear systems and can still 
approximate any non-linear system arbitrarily close. 

2.3 Linear complementarity systems 

Linear complementarity (LC) systems are studied in e.g. (Reemels et al., 1999; van der Schaft 
and Schumacher, 1996; van der Schaft and Schumacher, 1998; Reemels et al., 2000; van der 
Schaft and Schumacher, 2000). In discrete time these systems are given by the equations 

x(k + 1) 
y(k) 

v(k) 
o :::;v(k) 

Ax(k) + BIU(k) + B2W(k) 

= Cx(k) + Dp.£(k) + D2W(k) 

EIX(k) + E2U(k) + E3W(k) + e4 

-L w(k) ~ 0 

(4a) 

(4b) 

(4c) 

(4d) 

in which u(k) E ]Rm, x(k) E ]Rn and y(k) E IFtl denote (again) the input, state and output, 
respectively, at time k, and where -L denotes the orthogonality of vectors (Le. v(k)-Lw(k) 
means that v T (k)w(k) = 0). We call v(k) E]R8 and w(k) E]Rs the complementarity variables. 
The dynamics evolves as follows. Once x(k) and u(k) have been specified, one has to solve 
w(k) and v(k) from (4c)-(4d) (which is a standard Linear Complementarity Problem (Cottle 
et al., 1992» after which the new state x(k+ 1) and the current output y(k) can be computed 
from (4a)-(4b). 

2.4 Extended linear complementarity systems 

In (De Schutter and De Moor, 1999; De Schutter, 1999; De Schutter and van den Boom, 
2000) we have shown that several types of hybrid systems can be modeled as extended linear 
complementarity (ELC) systems: 

x(k + 1) = Ax(k) + BIU(k) + B2d(k) 

y(k) = Cx(k) + DIU(k) + D2d(k) 

EIX(k) + E2U(k) + E3d(k) :::; e4 

3 
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where x(k) E lRn is the state at time k, y(k) E lRl is the output, u(k) E lRm is the input, and 
d(k) E IRT is an auxiliary variable. Note that condition (5d) is equivalent to 

II (e4 EIX(k) - E2U(k) - Ead(k))j 0 for each i E {I, 2, ... ,p} (6) 
jE¢i 

due to the inequality conditions (5c). This implies that (5c) (5d) can be considered as a 
system of linear inequalities (i.e. (5c)) where there are p groups of linear inequalities (one 
group for each index set cPi) such that in each group at least one inequality should hold 
with equality. The motion of an ELC system can be determined as follows. Given the current 
input u(k) and the current state x(k), first the system (5c) - (5d) is solved (this is an Extended 
Linear Complementarity Problem (De Schutter and De Moor, 1995)). This yields d(k). Next 
the new state x(k + 1) and the output y(k) can be determined from (Sa) - (5b). 

Remark 2.3 Note the following differences between LC systems and ELC systems. For ELC 
systems inequalities of the form (Ic) can be incorporated directly, whereas in LC systems 
these inequalities have to be transformed into a (void) complementarity condition by using 
slack variables (see also the proof of Proposition 3.1). For LC systems products consisting 
of more than 2 factors (such as e.g. uI(k)U2(k)'I.t3(k) 0) are not allowed (directly) while in 
ELC systems products of 3 or more factors are possible. 0 

In (De Schutter and De Moor, 1999; De Schutter, 1999; De Schutter and van den Boom, 2000) 
we have shown that the class of ELC systems encompasses max-pIus-linear systems (Baccelli 
et al., 1992), first order linear hybrid systems subject to saturation (De Schutter, 1999), and 
unconstrained max-min-plus-scaling systems (which will be introduced in the next section). 

2.5 Max-min-plus-scaling systems 

In (De Schutter and van den Boom, 2000) we have introduced a class of discrete event systems 
that can be modeled using the operations maximization, minimization, addition and scalar 
multiplication. Expressions that are built using these operations are called max-min-plus­
scaling (MMPS) expressions. 

Definition 2.4 (Max-min-plus-scaling expression) A max-min-plus-scaling expression 
f of the variables Xl, X2, ... ,xn is defined by the gram marl 

(7) 

with i E {I, 2, ... ,n}) Q E IR, and where Ik and fl are again MMPS expressions. 

Some examples of MMPS expressions are Xl + 2X2 3, max(min(xl, -3X2),XI + 8X3), and 
Xl -5 max(xl -4x2+7x3, Xl -min(xl -X2 -X3, max(Xl -6X2, Xl +X2-X3))). Note that the min 
operation is in fact not explicitly needed in (7) since we have min(lk, Ii) = - max ( - Ik, - II). 

N ow we consider systems that can be described by state space equations of the following 
form: 

x(k + 1) = MxC:Y(k), n(k), d(k» (8a) 

lThe symbol I stands for OR and the definition is recursive; so an MMPS expression is a single variable, 
a constant, the maximum, minimum or sum of two ['lIMPS expressions, or a scalar multiple of an !v1MPS 
expression. 

4 



3.1 

3.7 

3.9 

Figure 1: Graphical representation of the links between the classes of hybrid systems consid­
ered in this paper. An arrow going from class A to class B means that A is a subset of B. 
The number next to each arrow corresponds to the proposition that states this relation and 
that specifies the conditions, if any, under which the relation holds. 

y(k) My(x(k), u(k), d(k) C8b) 

together with the constraint 

Mc(x(k),u(k),d(k» :s: c, (Sc) 

where Mx, My and Me are MMPS expressions in terms of the state x(k) at time k, the input 
u(k) and the auxiliary variables d(k), which are all real-valued. Systems that can be described 
by models of the form (8) will be called constrained MMPS systems. If the inequalities (8c) 
are absent, we speak of unconstrained MMPS systems. The dynamics of an MMPS can be 
determined by solving (8c) for d(k) when the current state x(k) and input u(k) are given. 
Next, x(k + 1) and y(k) can be computed from (8a) and (Bb). 

The model (8a) - (8b) is a generalized framework that encompasses several special sub­
classes of hybrid and discrete-event systems such as max-plus-linear discrete event systems 
(Baccelli et al., 1992), max-min-plus systems (Gunawardena, 1994; Olsder, 1994), and max­
plus-polynomial systems (De Schutter and van den Boom, 2000). 

3 The equivalence of MLD, LC, ELC, PWA and MMPS sys­
tems 

In this section we show that MLD, LC, ELC, PWA and MMPS systems are equivalent (al­
though in some cases this requires additional assumptions). Figure 1 shows how these equiv­
alences are proved in this paper. 

Proposition 3.1 Every MLD system can be written as an LC system. 
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Proof: To rewrite (1) as an LC system we have to realize that o(k) and z(k) follow from the 
inequality constraints (lc) once x(k) and u(k) have been specified. To rephrase the condition 
o(k) E {O,lYb in complementarity terms, we note that oi(k) E {O, I} is equivalent to 0 ::; 
Oi (k) 1.. 1 - Oi (k) 2: O. By introd ueing the auxiliary vector VI (k) this gives in vector notation 
vI(k) = e - o(k) together with 0::; 8(k) l.. vI(k) 2: 0, where e denotes the vector for which all 
entries are equal to one. Next the inequality constraints in (lc) are modeled by introducing 
the auxiliary vectors w2(k) and v2(k). Define v2(k) = e5 -EIX(k) - E2U(k) -E38(k) - E4Z(k). 
It is clear that v2(k) 2: 0 implies the existence of an w2(k) (take w2(k) = 0) such that 

(9) 

Vice versa, if (9) is satisfied, it is obvious that v2(k) 2: O. Since w2(k) does not influence 
any other relation, it follows that v2(k) 2: 0 can be replaced by (9) (see also Remark 2.3). 
Combining all the relations obtained so far yields the system description 

x(k + 1) = Ax(k) + BIU(k) + B28(k) + B3Z(k) (lOa) 

y(k) Cx(k) + DIU(k) + D28(k) + D3Z(k) (lOb) 

(VI (k») 
v2(k) (e5 - EIX(k) - ;2U(k) - E4Z(k») + (-~3 0) ( 8(k) ) 

o w2(k) 
(lOc) 

'-v--' ---......--.. 
=:v(k) =:w(k) 

0 ::; v(k)l..w(k) 2: 0, (lOd) 

where I denotes the identity matrix. Hence, in case additional auxiliary variables (like z(k) 
in (la)-(lb) and d(k) in (5a)-(5b» are allowed in the right-hand sides of (4a)-(4c), the proof 
would be complete. However, the description of LC systems is more special in the sense that 
only complementarity variables w(k) are allowed in the right-hand sides of (4a)-(4b). Hence, 
w(k) in (4a)-(4b) must include z(k) in some way. This can be achieved by splitting z(k) in 
its "positive" and "negative part" as 

(11) 

with 

z+(k) = max(O, z(k» and z-(k) = max(O, -z(k». (12) 

In complementarity terms this leads to 

By collecting all equations, replacing z(k) by z+(k) - z-(k), setting v3(k) 
v4(k) = z+(k) we obtain the LC system 

(13) 

z-(k) and 

x(k + 1) = Ax(k) + BIU(k) + [B2 0 B3 -B3]W(k) 

y(k) = Cx(k) + DIU(k) + [D2 0 D3 -D3lw(k) 

(~:!~l) = (+) x(k)+ (+) 1l(k)+ (-~~ ~ -:. 

v4(k) 0 0 0 0 I 
'-v-" 

=:v(k) 

6 

(14a) 

(14b) 

~4) (;;~~») + (ee5) (14c) 
I z+(k) 0 
o z-(k) 0 
~ 

=:w(k) 



o < v(k)1-w(k) 2': O. (14d) 

o 

Remark 3.2 We would like to emphasize that if additional real auxiliary variables would 
be allowed in the right-hand sides of (4a)-(4c) (like z(k) in (la)-(lb) and d(k) in (5a)-(Sb» a 
description like (10) is easily obtained. However, in the LC formulation this is not possible. 

Determining the evolution of an LC system requires solving a Linear Complementarity 
Problem (LCP) (Cottle et al., 1992) of the form 0 ~ v(k) = q(k) + Mw(k) 1- w(k) 2': 0 each 
time step. The matrix M is fixed here, while the vector q(k) is time-varying and determined 
by x(k) and u(k) only. Many efficient techniques are available for solving LCPs (Cottle et al., 
1992). 

The splitting of the variable z(k) in its positive and negative part and the translation 
of the inequality constraints in the MLD model as complementarity conditions may seem 
artificial and may not result in the most efficient models. In many cases such tricks can be 
avoided (see e.g. the example in Section 4), but they are convenient to show that "MLD ~ 
LC" holds in general. 0 

Proposition 3.3 Every LC system can be written as an ELC system. 

Proof: It can easily be verified that (4) can be rewritten as 

x(k + 1) = Ax(k) + BIU(k) + B2 w(k) 
'-.-' 
=d(k) 

y(k) Cx(k) + DIU(k) + D2W(k) 

ElX(k) E2U(k) - E3W(k) ~ e4 

w(k) ~ 0 

(e4 + ElX(k) + E2U(k) + E3W(k»j(w(k»j O. 

(15a) 

(15b) 

(lSc) 

(15d) 

(15e) 

Hence, the sets 4>i contain typically two elements (see also Remark 2.3). To be specific, 
4>i = {i, i + s} for i 1,2, ... , s, where s is the dimension of w(k). 0 

A PWA system of the form (3) is called (completely) well-posed, if (3) is uniquely solvable 
in x(k + 1) once x(k) and u(k) are specified. The following result proven in (Bemporad and 
Morari, 1999) can now be stated. 

Proposition 3.4 Every well-posed PWA system can be rewritten as an MLD system assum­
ing that the set of feasible states and inputs is bounded2 . 

The reverse statement has been established in (Bemporad et al., 1999) under the condition 
that the MLD system is completely well-posed, which means that x(k + I), y(k), 8(k) and 
z(k) are uniquely specified by (I), when x(k) and 1.L(k) are given (Bemporad and Morari, 
1999, Def. 1). 

rewriting a PWA system as an !VILD model the authors of (Bemporad and Morari, 1999) replace strict 
inequalities like x(k) < 0 by x(k) :::; -Ii: for some Ii: > 0 (typically the machine precision) and assume that 
-Ii: < x(k) < 0 cannot occur due to the finite number of bits used for representing real numbers. See (Bemporad 
and Morari, 1999) for more details and Section 4 for an example. Maybe one should be more careful in stating 
the inclusion in this proposition and replace "rewritten" by "approximately rewritten." 
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Proposition 3.5 A completely well-posed MLD system can be rewritten as a PWA system. 

Proposition 3.6 The classes of (constrained) MMPS and ELC systems coincide. 

Proof: Consider a constrained MMPS system of the form (8). Let us now show that this 
system can be recast as an ELC system. This will be done by showing that each of the 6 
basic constructions for MMPS expressions fit in the ELC framework: 

• Expressions of the form f = Xi, f 0:, f fk+!l and f f3fk (or their combinations) 
result in linear equations of the form (5a) (5b) or in inequalities of the form (5c)3 . 

• An expression of the form f max(Jk, fz) = mine - fk, - fz) can be rewritten as 

f-fk20 
f !l20 
(J - fk)(J Il) 0, 

which is an expression of the form (5c) - (5d). 

This implies that by introducing additional dummy variables if necessary, any MMPS expres­
sion can be recast as an ELC expression. Furthermore, if is easy to verify that two or more 
ELC systems can be combined into one large ELC system. As a consequence, every MMPS 
system can be rewritten as an ELC system. 

Now we consider an ELC system of the form (5) and we show that it can be written in the 
form (8). Clearly, (5a) and (5b) are MMPS expressions (albeit without max or min) of the 
form (8a) and (8b), respectively. Furthermore, since by (5c) we have 

for each j (16) 

and since the sum of nonnegative numbers is 0 if and only if each of the numbers is equal to 
0, the condition (5d) can be rewritten as 

II (e4 - EIX(k) E2U(k) E3d(A:))j 0 for i = 1,2, ... ,p 
jE<Pi 

(ef. (6)), or equivalently: 

Vi E {I, 2, ... ,p}: 3j E <Pi such that (e4 - EIX(k) o . 

If we combine this with (16) we obtain 

min(e4 - EIX(k) E2U{k) E3d(k)). = 0 for i = 1,2, ... ,p, (17) 
JE<Pi ) 

which are all MMPS constraints of the form (8c). The conditions in (16) for which j does not 
belong to some ¢i can be bundled as 

3Recall that a condition of the form CI! = /3 is equivalent to the conditions Q ::; {3 and -CI! ::; -{3. 
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where \]! {j E {I, 2, ... ,q} I Vi E {I, 2, ... ,p}:j rt <pd and where q is the dimension of the 
vector e4. This condition can be rewritten as 

%a:(E1x(k)+E2u(k)+E3d(k)-e4)j::; 0 (18) 

which is again an MMPS constraint of the form (8c). So the constraints (5c) (5d) are 
equivalent to the MMPS constraints (17) - (18). Hence, every ELC system can be written as 
an MMPS system. 0 

Proposition 3.7 Every MLD system can be rewritten as an ELC or an MMPS system. 

Proof: If we make an abstraction of the range of the variables then (la) - (lc) coincide with 
(5a) (5c) with d(k) [oT(k) zT(k) JT. Furthermore, a condition of the form oi(k) E {O, I} is 
equivalent to the ELC conditions -oi(k) ~ 0, oi(k) ~ 1, oi(k)(1 - !SiCk)) = 0. So every MLD 
system can be rewritten as an ELC system and thus also as an MMPS system (by Proposition 
3.6). 0 

Remark 3.8 Note that the condition oi(k) E {O, I} is also equivalent to the MMPS constraint 
max( -oi(k),Oi(k) 1) 0 or min(oi(k),l- !Si(k)) = O. 0 

Proposition 3.9 Consider an ELC (or an MMPS) system. If the set X of feasible inputs, 
states and auxiliary variables of the ELC system is bounded, then the ELC system can be 
rewritten as an MLD system. 

Proof: Consider an ELC system that can be modeled by (5). Clearly, (5a) and (5b) fit the 
MLD framework. Recall that (5d) is equivalent to 

II (e4 - EIX(k) - E2u(k) - E3d(k)) j = ° 
jErPi 

(19) 

for i = 1,2, ... ,po Now we consider a set <Pi for some i. By introducing auxiliary variables 
Cl:j(k) E lR and oj(k) E {O, I}, we find that condition (19) in combination with (5c) is equivalent 
to 

(EIX(k) + E2U(k) + E3d(k)) j + OJ (k)Qj(k) = (e4) j 

Qj(k) ~ 0 

oj(k) E {O, I} 

I:: oj(k) ~ mj 1, 
jEt/>i 

for each j E <Pi 

for each j E <Pi 

for each j E <Pi 

(20) 

(21) 

(22) 

(23) 

where mi is the number of elements in <Pi. Note that (23) implies that at least one of the 
oj(k)'s equals 0, so that equality is reached in (20) for at least one index j with OJ (k)Qj'(k) = 0, 
which implies that (19) holds. Equations (21) - (23) fit the MLD framework. However, (20) 
does not fit the MLD framework due to the occurrence of the bilinear slack term oj(k)Qj(k). 
Now we use a reasoning similar to the one used in (Bemporad and Morad, 1999) to transform 
(20) into a system of equations that fit the MLD framework. First we define 

Mj = max (e4 - ElX(k) - E27t(k) - E3d(k)) . 
(x(k),lI(k),d(k))EX J 
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for each j E 4Ji. Note that the boundedness of X implies that all the Mj's are finite. Fur­
thermore, the definition of Mj implies that 0::; oj(k)O:j(k) ::; M j . Note that we may assume 
without loss of generality that the following constraint is added to the system (20) - (23): 

o:(k) < M· J - J for each j E 4>i. (24) 

This clearly holds if oj(k) 1, and for oj(k) = 0 the value of O:j(k) does not influence (20)­
(23) and hence we may take any arbitrary value for O:j(k) (e.g. satisfying (24». Now we 
introduce extra variables Vj (k) such that 

0::; vj(k) ::; Mjoj(k) 

O:j(k) Mj(l dj(k»::; vj(k) ::; O:j(k) 

for each j E 4Ji 
for each j E 4Ji. 

(25) 

(26) 

Note that these conditions do not contain any bilinear terms and that they fit in the MLD 
framework. Let us now show that the conditions (25)-(26) imply that vj(k) = t5j (k)O:j(k) . 

• If t5j (k) = 0, then (25) implies that vj(k) = O. Hence, vj(k) = 0 oj(k)O:j(k). Moreover, 
for t5j (k) = 0 (26) leads to O:j(k) Mj ::; vj(k) ::; O:j(k), which holds since 0::; O:j(k) ::; 
Mj and thus O:j(k) Mj ::; 0 = vj(k) ::; O:j(k) . 

• If oj(k) = 1, then (26) leads to vj(k) = O:j(k). Hence, vj(k) O:j(k) = t5j (k)O:j(k). 
Furthermore, in case oj(k) = 1 (25) results in 0::; vj(k) ::; Mj, which also holds due to 
vj(k) = O:j(k), (21) and (24). 

Hence, (25)-(26) imply that vj(k) 8j (k)o:JCk) for each j E 4Ji. As a consequence, (20) is 
equivalent to 

for each j E 4Ji (27) 

with the additional conditions (24) (26). The conditions (24) (27) all fit in the MLD frame­
work. As a consequence, the ELC system can be rewritten as an MLD system. 0 

Corollary 3.10 Every LC system (4) for which E3 is a P-matrix4 can be written as an 
unconstrained MMPS system. 

Proof: See (van Bokhoven and Leenaerts, 1999, Thm. 2). o 

4 Example 

To demonstrate the equivalences proven above, we consider an example taken from (Bemporad 
and Morari, 1999) which is given as follows: 

with x(k), u(k) E JR.. 

x(k + 1) = { O.Sx(k) + u(k) 
-O.Sx(k) + u(k) 

if x(k) 2:: 0 
if x(k) < 0 

(28) 

In (Bemporad and Morad, 1999) additional assumptions are needed to rewrite this PWA 
system into the MLD framework. First of all, one assumes that the state x(k) is bounded 

4 A matrix ME ]R" Xn. is said to be a P-matrix if all its principal minors are positive (Cottle et aI., 1992). 
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by m ::; x(k) ::; M for all times k. Second, one replaces the strict inequality x(k) < 0 by 
x(k) ::; -1£, where 1£ > 0 is a small number (typically the machine precision). Under these 
conditions one shows that (28) is equivalent to 

x(k + 1) -O.8x(k) + u(k) + L6z(k) 

together with the linear inequalities 

-m5(k) < x(k) - m 

(M + c)8(k) < -x(k) e 

z(k) < Mo(k) 

z(k) > moCk) 
z(k) < x(k) - m(l - t5(k) 

z(k) ~ x(t) - M(l o(k» 

and the condition o(k) E {O, I}. 

(29a) 

(29b) 

(29c) 

(29d) 

(2ge) 

(29f) 

(29g) 

One can easily verify that (28) can be rewritten as the (unconstrained) MMPS model 

x(k + 1) -O.8x(k) + 1.6 max(O, x(k» + u(k) , 

as the LC formulation 

x(k + 1) = -O.8x(k) + u(k) + L6z(k) 

w(k) = -x(k) + z(k) 

o < w(k)..L z(k) ~ 0 , 

and as the ELC representation 

x(k + 1) = -O.8x(k) + u(k) + 1.6d(k) 
-d(k) < 0 

x(k) d(k) < 0 

o = (x(k) - d(k»)(-d(k)) 

(30) 

(3la) 

(3Ib) 

(3Ic) 

(32a) 

(32b) 

(32c) 

(32d) 

without having to impose any assumptions as was done in (Bemporad and Morari, 1999). 
Note that we only need one max-operator in (30) and one complementarity pair in (31). 

If we would transform the MLD system (29) into e.g. the LC model as indicated by the 
equivalence proof of Proposition 3.1, this would require seven complementarity pairs. Hence, it 
is clear that the proofs only show that the system representations are conceptually equivalent, 
but do not result in the most efficient models. 

5 Conclusions and topics for future research 

We have shown the equivalence of five classes of hybrid systems: mixed logical dynamical 
systems, linear complementarity systems, extended linear complementarity systems, piecewise 
affine systems and max-min-plus-scaling systems. For some of the transformations additional 
conditions like boundedness of the state and input variables or well-posedness had to be made. 
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An important topic for future research is a further investigation of the links between 
these different subclasses of hybrid systems. These links enable the transfer of techniques for 
analysis and synthesis from one class of hybrid systems to another. Moreover, it is interesting 
to study which modeling framework is most appropriate for solving specific control problems 
related to e.g. well-posedness, controllability and stability of hybrid dynamical systems. From 
a computational point of view, one might pose the question which canonical representation 
leads to the most efficient numerical algorithms for obtaining and analyzing control strategies. 

As a specific example, consider model predictive control (MPC) for MLD systems (Bem­
porad and Morari, 1999) (using mixed integer quadratic programming) or for (unconstrained) 
MMPS systems (De Schutter and van den Boom, 2000) (using the Extended Linear Com­
plementarity Problem and non-linear programming with real-valued variables). The main 
difference between MPC for MLD systems and MPC for ELC (and MMPS) systems is that 
in the latter case all optimization variables are real-valued, which may ease the computa­
tional burden. In fact, under certain additional assumptions the MPC problem for MMPS 
systems can be recast as a convex optimization problem (De Schutter and van den Boom, 
2000). Hence, the links revealed in this paper give the possibility to choose between sev­
eral modeling frameworks, which all indicate different directions for solving the (related) 
optimization/ control problems. The development of efficient algorithms for MPC for these 
generic classes of hybrid systems will be a topic for future research. 
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