On the Equivalence of Recursive and
Nonrecursive Datalog Programs

Surajit Chaudhuri* Moshe Y. Vardi'
Database Tech. Department Department of Computer Science
Hewlett Packard Laboratories Rice University
1501 Page Mill Road Houston, TX 77005-1892
Palo Alto, CA 94304 E-mail: vardi@cs.rice.edu

E-mail: chaudhuri@hpl.hp.com URL: http://www.cs.rice.edu/~vardi

Abstract: We study the problem of determining whether a given recursive Datalog
program is equivalent to a given nonrecursive Datalog program. Since nonrecursive Dat-
alog programs are equivalent to unions of conjunctive queries, we study also the problem
of determining whether a given recursive Datalog program is contained in a union of con-
junctive queries. For this problem, we prove doubly exponential upper and lower time
bounds. For the equivalence problem, we prove triply exponential upper and lower time
bounds.

1 Introduction

It has been recognized for some time that first-order database query languages are lacking
in expressive power [AU79, GMT78, Z176]. Since then, many higher-order query languages
have been investigated [AV89, CH80, Ch81, CH82, Im86, Va82]. A query language that
has received considerable attention recently is Datalog, the language of logic programs
(known also as Horn-clause programs) without function symbols [K90, Ul89], which is
essentially a fragment of fixpoint logic [CH85, Mo74]. (See [UI88] for a detailed discussion
of Datalog.)

The gain in expressive power does not, however, come for free; evaluating Data-
log programs is harder than evaluating first-order queries [Va82]. Recent works have
addressed the problems of finding efficient evaluation methods for Datalog programs
([BR86] is a good survey on this topic) and developing optimization techniques for Dat-
alog (see [MP91, Na89bh, NRSUS89]). The techniques to optimize evaluation of queries

*Work done while this author was at Stanford University and was supported by ARO grant DAALO03-
91-G-0177, NSF grant IRI-87-22886, Air Force grant AFOSR-88-0266, and a grant of IBM Corp.
"Work done while this author was at the IBM Almaden Research Center.

are often based on the ability to transform a query into an equivalent one that can be
evaluated more efficiently [RSUV93]. Therefore, determining equivalence of queries is one
of the most fundamental optimization problems. Naturally, the problem of determining
equivalence of Datalog programs has received attention. Unfortunately, Datalog program
equivalence is undecidable [Shm87].

Since the source of the difficulty in evaluating Datalog programs is their recursive
nature, the first line of attack in trying to optimize such programs is to eliminate the
recursion. The following example is from [Na89a].

Example 1.1: Consider the following Datalog program II;:

buys(X,Y) : —likes(X,Y).
buys(X,Y) :—trendy(X), buys(Z,Y).

It can be shown that I1; is equivalent to the following nonrecursive program.

buys(X,Y) : —likes(X,Y).
buys(X,Y) :—trendy(X),likes(Z,Y).

Consider, on the other hand, the following Datalog program Ily:

buys(X,Y) : —likes(X,Y).
buys(X,Y) : —knows(X,Z), buys(Z,Y).

It can be shown that Il is not equivalent to the following nonrecursive program:

buys(X,Y) : —likes(X,Y).
buys(X,Y) :—knows(X,Z7),likes(Z,Y).

In fact, II; is inherently recursive, i.e., it is not equivalent to any nonrecursive program.

Thus, a problem of special interest is that of determining the equivalence of a given
recursive Datalog program to a given nonrecursive program, i.e., a Datalog program
where the dependency graph among the predicates is acyclic.

This problem is the main focus of this paper. Note that this problem is different from
that of determining whether a given recursive Datalog program is equivalent to some
nonrecursive program. The latter problem, called the boundedness problem, is known
to be undecidable [GMSV93] and has been studied extensively (see [KA89] for a survey
and [HKMV91, HKMV95] for recent results)

A nonrecursive program can be rewritten as a union of conjunctive queries. Thus,
containment of a nonrecursive program in a recursive program can be reduced to the
containment of a conjunctive query in a recursive program. The latter problem was

shown to be decidable; in fact it is EXPTIME-complete [CK86, CLM81, Sa88b]. Thus,

2

what was left open is the other direction, i.e., the problem of determining whether a
recursive program is contained in a nonrecursive program. We attack this problem by
investigating the containment of recursive programs in unions of conjunctive queries. Our
main result is that containment of recursive programs in unions of conjunctive queries
is decidable. Therefore, ilt follows that equivalence of two given programs is decidable
when one is recursive and the other nonrecursive.

We first prove that the decidability of the containment problem follows from a power-
ful general decidability result due to Courcelle [Cou91]. Unfortunately, while Courcelle’s
result yields the decidability of the containment problem, it provides only nonelementary
time-bounds [Cou90]. The main body of the paper is dedicated to a detailed study of
the computational complexity of containment and equivalence.

For upper bounds, we use the automaton-theoretic approach advocated in [Va92]. The
key idea is that a recursive program can be viewed as an infinite union of conjunctive
queries. These conjunctive queries can be represented by proof trees, and the set of
proof trees corresponding to a given recursive program can be represented by a tree
automaton. This representation enables us to reduce containment of recursive programs
in unions of conjunctive queries to containment of tree automata, which is known to
be decidable in exponential time [Se90]. The size of the tree automata obtained in
the reduction is exponential in the size of the input; as a result, we obtain a doubly-
exponential time upper bound for containment in unions of conjunctive queries. These
bounds turn out to be optimal; by a succinct encoding of alternating exponential-space
Turing machines, we prove a matching doubly-exponential time lower bound. A case
of special interest is that of linear programs, i.e., programs in which each rule contains
at most one recursive subgoal [CK86, UV88]. In this case, the corresponding set of
proof trees can be represented by word automata, for which containment is known to
be decidable in polynomial space [MS72]. As a result, we obtain an exponential space
upper bound for the containment problem for linear programs, which is also matched by
a lower bound.!

We then note that expressing a nonrecursive program as a union of conjunctive queries
may involve an exponential blow-up in size. Thus, our upper-bound technique for con-
tainment yields a triply-exponential time upper bound for containment in nonrecursive
programs (doubly-exponential space upper bound for linear programs). We show that
the succinctness of nonrecursive programs is inherent, by proving a matching triply-
exponential time lower bound (doubly-exponential space lower bound for linear pro-
grams). Finally, we observe that these results also yield the same complexity bounds for
equivalence to nonrecursive programs. Thus, while equivalence to nonrecursive programs
is decidable, it is highly intractable. We note that one has to be careful in interpret-
ing lower bounds for query containment. While containment of conjunctive queries in

recursive program is complete for EXPTIME [CK86, CLM81, Sa88b], this complexity

1Our upper bounds follow also from van der Meyden’s results on recursively indefinite databases

[Mey93, Theorem 5.7].

is simply the expression complexity of evaluation Datalog programs [Va82]. In fact, if
attention is restricted to programs of bounded arity, we get NP-completeness instead of
EXPTIME-completeness. In contrast, our lower bounds here imply “real” intractability,
and they hold even for programs of bounded arity.

2 Preliminaries

2.1 Conjunctive Queries and Datalog

A conjunctive queryis a positive existential conjunctive first-order formula, i.e., the only
propositional connective allowed is A and the only quantifier allowed is 4. Without loss

of generality, we can assume that conjunctive queries are given as formulas 0(xq, ..., zy)
of the form (Jy1,...,ym)(a1 A ...a,) with free variables among x1,...,x), where the
a;’s are atomic formulas of the form p(z1,...,z;) over the variables @y, ... &5, y1,. .., Ym-

For example, the conjunctive query (Jy)(E(x,y) A E(y, z)) is satisfied by all pairs (x, z)
such that there is a path of length 2 between = and z. The free variables are also called
distinguished variables. We distinguish between variables and occurrences of variables in a
conjunctive query, but we only consider occurrences of variables in the atomic formulas of
the query. For example, the variables @ and y have each two occurrences in (Jy)(E(x, y)A
E(y,z)). An occurrence of a distinguished variable in a conjunctive query is called a
distinguished occurrence. A union of conjunctive queries is a disjunction

S

\/ (92'(1'1, . ,l’k)

=1
of conjunctive queries.

A union of conjunctive queries ©(x1,...,2;) can be applied to a database D. The
result

O(D) ={(a1,...,a)|D E O(aq,...,ax)}

is the set of k-ary tuples that satisfy © in D. If © has no distinguished variables, then
it is viewed as a Boolean query; the result is either the empty relation (corresponding to
false) or the relation containing the 0-ary tuple (corresponding to true).

A (Datalog) program consists of a set of Horn rules. A Horn rule consists of a single
atom in the head of the rule and a conjunction of atoms in the body, where an atom is a
formula of the form p(z1, .., z;) where p is a predicate symbol and z;..z; are variables. The
predicates that occur in head of rules are called intensional (IDB) predicates. The rest
of the predicates are called extensional (EDB) predicates. Let II be a Datalog program.
Let Q&(D) be the collection of facts about an IDB predicate @ that can be deduced from
a database D by at most ¢ applications of the rules in II and let Q7 (D) be the collection
of facts about () that can be deduced from D by any number of applications of the rules
in II, that is,

Qv (D) = U @n(D).

i>0

4

We say that the program II with goal predicate) is contained in a union of conjunctive
queries O if Qi (D) C O(D) for each database D. It is known (cf. [MUV84, Na89a])
that the relation defined by an IDB predicate in a Datalog program II, i.e., Q7 (D), can
be defined by an infinite union of conjunctive queries. That is, for each IDB predicate ()
there is an infinite sequence g, 1, . . . of conjunctive queries such that for every database

D, we have Q77 (D) = U2, @i(D). The ¢;’s are called the expansions of Q.

A predicate P depends on a predicate () in a program II, if () occurs in the body
of a rule r of Il and P is the predicate at the head of r. The dependence graph of 11
is a directed graph whose nodes are the predicates of I, and whose edges capture the
dependence relation, i.e., there is an edge from) to P it P depends on P. A program II
is nonrecursive if its dependence graph is acyclic, i.e., no predicate depends recursively
on itself. It is well-known that a nonrecursive program has only finitely many expansions
(up to renaming of variables). Thus, a nonrecursive program is equivalent to a union of
conjunctive queries.

2.2 Containment of Conjunctive Queries

Let O(xq,...,2x) and ¢(xq,...,25) are two conjunctive queries with the same vector of
distinguished variables. We say that 6 is contained in ¢ if §(D) C (D) for each database

D, i.e., if the following implication is valid
Vay .. Vap(0(z, ... 2p) — (2, ..., 2k))

Definition 2.1: A containment mapping from a conjunctive query @ to a conjunctive
query 6 is a renaming of variables subject to the following constraints: (a) every distin-
guished variable must map to itself, and (b) after renaming, every literal in ¢» must be
among the literals of 4. 11

Conjunctive-query containment can be characterized in terms of containment map-

pings (cf. [UI89]).

Theorem 2.2: A conjunctive query 6(xq,...,x) is contained in a conjunctive query
(&1, ..., x5) iff there is a containment mapping from i to 0.

It will be convenient to view a containment mapping h from 1 to § as a mapping
from occurrences of variables in 1 to occurrences to variables in §. Such a mapping has
the property that v; and vy are occurrences of the same variable in ¢, then h(vq) and
h(vsg) are occurrences of the same variable in 6.

Sagiv and Yannakakis [SY81] extended Theorem 2.2 to the case where queries are
unions of conjunctive queries.

Theorem 2.3: If ® = U;p; and ¥ = U;3); are union of conjunctive queries, then ® is
contained in ¥ (i.e., (D) C W(D) for every database D) iff each @; is contained in

some ; , t.e., there is a containment mapping from ; to ¢;.

2.3 Expansion Trees

Expansions can be described in terms of expansion trees. The nodes of an expansion tree
for a Datalog program II are labeled by pairs of the form («, p), where « is an IDB atom
and p is an instance of a rule r of II such that the head of p is . The atom labeling a
node z is denoted «a, and the rule labeling a node x is denoted p,. In an expansion tree
for an IDB predicate (), the root is labeled by a ()-atom. Consider a node z, where «,
is the atom R(t), p, is the rule

R(t) : =Ry (t"), ..., R (t™),

and the IDB atoms in the body of the rule are R;, (t"),..., R; (t*). Then z has children
zl,...,xllabeled with the atoms R;, (t"),..., B; (t%). In particular, if all atoms in p,, are
EDB atoms, then x must be a leaf. The query corresponding to an expansion tree is the
conjunction of all EDB atoms in p, for all nodes z in the tree, with the variables in the
root atom as the free variables. Thus, we can view an expansion tree 7 as a conjunctive
query. Let trees(Q,Il) denote the set of expansion trees for an IDB predicate @ in II.
(Note that trees(@, 1) is an infinite set.) Then for every database D, we have

Qi) = U (D).

T€trees(Q,I)

It follows that II is contained in a conjunctive query § if there is a containment mapping
from 6 to each expansion tree 7 in trees(Q, 1), i.e., a mapping, which maps distinguished
variables to distinguished variables and maps the atoms of § to atoms in the bodies of
rules labeling nodes of 7.

Of particular interest are expansion trees that are obtained by “unfolding” the pro-
gram II.

Definition 2.4: An expansion tree 7 of a Datalog program II is an unfolding expansion
tree if it satisfies the following conditions: (a) the atom labeling the root is the head of
a rule in II, and (b) if a node x is labeled by (o, p;), then the variables in the body of
p either occur in «a, or they do not occur in the label of any node above z. 1

Intuitively, an unfolding expansion tree is obtained by starting with a head of a rule in
IT as the atom labeling the root, and then creating children by unifying an atom labeling
a node with a “fresh” copy of a rule in II. Note that if a variable v occur in the atom
labelling a node x but not in the atoms labeling the children of z, then v will not occur
in the label of any descendant of z.

We denote the collection of unfolding expansion trees for an IDB predicate () in a
program Il by u_trees(@,11). It is easy to see that every expansion tree can be obtained
by renaming variables in an unfolding expansion tree. Thus, every expansion tree, viewed
as a conjunctive query, is contained in an unfolding expansion tree.

PV, pOLY) = e(2), P(Z,Y) p(x,v), p(X, V) :- e(X,2), p(Z,Y)

Y

p(Z,Y), p(Z,Y) :- e(Z,X), p(X,Y)

Y

p(Z,Y), p(Z,Y) :- e(Z,W), p(W,Y)

Y 4

P(X:Y): P(X:Y) o e)(X:Y) p(W,Y), p(W,Y) M e’(W,Y)

(a) (b)

Figure 1: (a) Expansion Tree (b) Unfolding Expansion Tree

Example 2.5: Figure 1 shows expansion trees for the IDB predicate p in the following
transitive closure program.

rl: p(X,Y) :— e X,2),p(Z,Y)
r0: p(X,Y) :— €(X,Y)

Note that the variable X is re-used in the child of the root of the expansion tree, while a
new variable W is used instead of X in the child of the root of the unfolding expansion
tree. I

The following proposition follows immediately.

Proposition 2.6: Let Il be a program with a goal predicate (). For every database D,

Qv = U D).

TEu_trees(Q,II)

we have

3 Decidability

We can view a conjunctive query ¢(xq,..., ;) with free variables among x1,...,z) as
a 2-sorted relational structure A,. The sorts V and F', denote the set of variables and
atomic formulas in ¢, respectively. For each [-ary predicate symbol P in the vocabulary of
0, we have a predicate symbol P’ in the vocabulary of A, of type I x V'. The vocabulary
of A, also has constant symbols xq,...,x;. These constant and predicate symbols are
interpreted in A, as follows. First, the constant symbol x; is interpreted as x;. Second,
if the atomic formula a; is P(z1,...,2) in ¢, then we have a tuple (a;,z1,...,2) in the
interpretation of P’. (Note that ¢ can have multiple occurrences of the same atomic
formula, which explains why we need the sort F'in A,.)

7

Since a conjunctive query ¢ can be viewed as a 2-sorted relational structure A, we
can view u_trees(@,1l) as a set of 2-sorted relational structures, which we denote as
str(@,10). If @ is k-ary, then we can assume that all conjunctive queries in u_trees(Q@, 1)
have free variables among x1,...,x,. Thus, all structures in str(@,II) have the same
vocabulary, denoted vocab(Q),Il). We can now express properties of Datalog program in
terms of properties of the associated collection of 2-sorted structures. If ¢ is a 1st-order

formula over vocab(Q), II), then we say that the program II with goal predicate Q) satisfies
 if ¢ holds in all structures in str(Q, 11).

As an example, consider the property of strong nonredundancy. We say that a Datalog
program Il with goal predicate () is strongly nonredundant if no unfolding expansion
tree contains two distinct occurrences of the same EDB atom. It is easy to see that this
property can be expressed as a first-order property of the structures in str(Q,1I). For
simplicity assume that there is a single EDB predicate P, which happens to be k-ary.
Then the desired property holds if the program II with goal predicate () satisfies the
sentence

(Voy, 29 € F) Yy, -y yn € V(P (21,9155 Yk)
/\Pl(x%ylv . 7yk) = 1 = 1’2).

First-order logic gives us a very powerful language to describe properties of Datalog
queries in terms of the associated set of structures. It is not clear, a priori, whether such
properties can be effectively tested. After all, to check whether a Datalog program II
with a goal () satisfies a first-order sentence 1> we have to check in principle the infinitely
many structures in str(Q),Il). The following powerful result by Courcelle asserts that,
nevertheless, first-order properties of Datalog programs can be effectively tested.?

Theorem 3.1: [Cou90, Cou9l] There is an algorithm to decide, given a Datalog program
I with goal predicate Q) and a first-order sentence ¥ over vocab(Q, I1), whether Il satisfies

.

The decidability of containment in nonrecursive programs follows now from Theo-
rem 3.1.

Theorem 3.2: Containment of recursive Datalog programs in nonrecursive Datalog pro-
grams is decidable.

Proof: Let us assume that Il is a recursive Datalog program with the goal predicate ().
Let © be an arbitrary nonrecursive program. Assume that © has already been rewritten
as a finite union

\/ i1, ..., xL)
=1

ZCourcelle’s result applies also to monadic second-order logic, which is a powerful extension of first-
order logic.

of conjunctive queries. Let @;(x1,...,2%) be (Fy1,...,ym)(a1 A ... A a,) with free vari-

ables among x1,...,x), where a; is an atomic formula p;(z1,...,2;) over the variables
Tlyeeo s Thy Y1y oy Ym. Define @b to be the sentence (Jy1,...,ym € V)(Jar,...,a, €
F)(d} N ... dl), where a! is the atomic formula pl(a;,z7,...,2]), and z{,...,z] are ob-
tained from z, ...,z by substituting x; for z;.

We claim that II is contained in © iff II satisfies @, where ©" is \/I_; ¢!. Assume
that II is contained in @. Then, from Theorem 2.3, it follows that for every expansion
T(21,...,2) € utrees(Q,Il), there exists some ¢; = (Fy1, ..., ym)(@1 /... Aay,) such that
there is a containment mapping from ; to 7. Let 7(xy,...,xx) be Iz1, ..., 2. (b1 AL . Aby).
Let the corresponding tuples in A; be b}, ..., .. Consider any a, where 1 < ¢ < n. Since
there is a containment mapping from ¢; to 7, it follows that ¢, maps to some b; where the
distinguished variables are preserved. Therefore, there is a substitution for the variables
in a; such that it corresponds to the literal 0. Therefore, ¢} holds over A,. Thus, I
satisfies ©'.

Let us now assume that II satisfies ®’. Let 7 be an expansion of Il that corresponds
to an unfolding expansion tree, and let A, be the corresponding structure. Since II
satisfies @, it follows that some ¢! must hold over A,. Therefore, there is an assignment
of variables, such that a literal a) of ¢} corresponds to a tuple b. Moreover, such a
mapping ensures that the distinguished variables map to themselves. Thus, 7 is contained
in ©. This completes our proof. I

Corollary 3.3: Equivalence of Datalog programs to nonrecursive programs is decidable.

Unfortunately, Theorem 3.1 yields a very high upper bound; the algorithm described
in [Cou90] is of nonelementary time complexity, i.e., its time complexity cannot be
bounded by any finite stack of exponentials. There is, however, a possible way around
this difficulty. While Courcelle’s algorithm for arbitrary first-order properties of Datalog
programs has a nonelementary time complexity, more efficient algorithms may exist for
specific properties. The crux of Courcelle’s result is the well known connection between
monadic second-order logic and tree automata (cf. [TW68, Ra69]). It is conceivable
that by using automata-theoretic techniques directly we might be able to obtain more
feasible algorithms for the equivalence problem. A similar strategy of using automata
theory directly rather than monadic second-order logic was demonstrated successtully for
decision problems in the area of program verification (cf. [VW86, EJ88]).

4 Automata on Words and Trees

In this section, we review some of the relevant results from automata theory on emptiness
and containment of automata. We will use these results for proving the upper-bound on
the complexity of deciding containment of a Datalog predicate in a union of conjunctive
queries. The material in this section is quoted from [Va92].

4.1 Automata on Words

An automaton A is a tuple (X, 5,50, 6, F'), where ¥ is a finite alphabet, S is a finite set
of states, So C S is the set of initial states, F' C S is the set of accepting states, and
6185 x Y — 2%is a transition function. Note that the automaton is nondeterministic,
since it may have many initial states and the transition function may specify many
possible transitions for each state and letter.

A runr of A over a word w = ag, ..., 0,1 € Y™ is a sequence 80,---,8, € Sn ! such
’ ’ q ’ ’
that

® Sg € 507
® 31 € 0(s;,a:) for 0 <o < n.

The run r is accepting it s, € F. The word w is accepted by A if A has an accepting run
over w. The language of A, denoted L(A), is the set of words accepted by A.

An important property of automata is their closure under Boolean operations.

Proposition 4.1: [RSH9] Let Ay, Ay be a automata over an alphabet . Then there are
automata As, A4, and As such that L(As) = ¥* — L(Ay), L(A4) = L(A1) N L(Az), and

The constructions for union and intersection involve only a polynomial blowup in the
size of the automata. In contrast, complementation may involve an exponential blow-up
in the size of the automaton [MFT71].

The nonemptiness problem for automata is to decide, given an automaton A, whether
L(A) is nonempty.

Proposition 4.2: [Jo75, RS59] The nonemptiness problem for automata is decidable in
nondeterministic logarithmic space.

Proof: Let A = (¥,5, 5,6, F) be the given automaton. Let s,¢ be states of S. Say
that s is directly connected to t if there is a letter @ € ¥ such that ¢t € é(s,a). Say
that s is connected to t if there is a sequence sq,...,58,,, m > 1, of states such that
s1 = s, s, = t, and s; is directly connected to s;11 for 1 < ¢ < m. It is easy to see that
L(A) is nonempty iff there are states s € Sy and ¢ € F' such that s is connected to t.
Thus, automata nonemptiness is equivalent to graph reachability, which can be tested in
nondeterministic logarithmic space. 1

A problem related to nonemptiness is the containment problem, which is to decide,
given automata A; and A,, whether L(A;) C L(Az). Note that L(A;) C L(A,) iff
L(Ay) N L(Ay) = 0. Thus, by Proposition 4.1, the containment problem is reducible to
the nonemptiness problem, though the reduction may be computationally expensive.

Proposition 4.3: [MS72] The containment problem for automata is PSPACE-complete.

10

4.2 Automata on Trees

Let N denote the set of positive integers. The variables x and y denote elements of N*.
A tree 7 is a finite subset of N*, such that if 27 € 7, where x € N* and ¢ € N, then also
x € 7 and and if ¢ > 1 then also x(: — 1) € 7. The elements of 7 are called nodes. If x
and x7 are nodes of 7, then x is the parent of v and w7 is the child of x. The node x is a
leaf if it has no children. By definition, the empty sequence ¢ is a member of every tree;
it 1s called the root.

A Y-labeled tree, for a finite alphabet ¥, is a pair (7, 7), where T isatreeand 7 : 7 — X
assigns to every node a label. Labeled trees are often referred to as trees; the intention
will be clear from the context. The set of Y-labeled trees is denoted trees(X).

A tree automaton A is a tuple (¥,5, 5,06, F), where ¥ is a finite alphabet, S is
a finite set of states, Sy C S is a set of initial states, F' C S is a set of accepting
states, and 6 : S x X — 95" is a transition function such that 6(s,a) is finite for all
s€ Sanda € . Arunr:7 — S of Aon a Y-labeled tree (7,7) is a labeling of
T by states of A, such that the root is labeled by an initial state and the transitions
obey the transition function 6; that is, r(¢) € Sp, and if @ is not a leaf and x has k
children, then (r(x1),...,r(ak)) € 6(r(x),n(x)). If for every leaf = of 7 there is a tuple
($1,...,81) € 6(r(z),nm(x)) such that {s1,...,s} C F, then r is accepting. A accepts
(7,7) if it has an accepting run on (7, 7). The tree language of A, denoted T'(A), is the
set of trees accepted by A.

An important property of tree automata is their closure under Boolean operations.

Proposition 4.4: [CosT2] Let Ay, Ay be a automata over an alphabet 2. Then there are
automata As, A4, and As such that L(As) = ¥* — L(Ay), L(A4) = L(A1) N L(Az), and

As in word automata, the constructions for union and intersection involve only a poly-
nomial blowup in the size of the automata, while complementation may involve an ex-
ponential blow-up in the size of the automaton.

The nonemptiness problem for tree automata is to decide, given a tree automaton A,
whether T'(A) is nonempty.

Proposition 4.5: [Do70, TW68] The nonemptiness problem for tree automata is decid-
able in polynomial time.

Proof: Let A = (X,9,50,6, F) be the given tree automaton. Let accept(A) be the
minimal set of states in S such that

o F C accept(A), and

e if s is a state such that there are a letter ¢ € ¥ and a transition (sy,...,s;) €
6(s,a) N accept(A)*, then s € accept(A).

11

It is easy to see that T'(A) is nonempty iff So N accept(A) # 0. Intuitively, accept(A)
is the set of all states that label the roots of accepting runs. Thus, T(A) is nonempty
precisely when some initial state is in accept(A). The claim follows, since accept(A) can
be computed bottom-up in polynomial time. 1

We note that using techinques such as in [Be80], the nonemptiness problem for tree
automata is decidable in linear time.

A problem related to nonemptiness is the containment problem, which is to decide,
given tree automata A; and As, whether T'(A;) C T(Az). As for word automata, the
containment problem is reducible to the nonemptiness problem, though the reduction
may be computationally expensive.

Proposition 4.6: [Se90] The containment problem for tree automata is EXPTIME-
complete.

5 Containment in Union of Conjunctive Queries

5.1 Proof Trees

The basic idea behind proof trees is to describe expansion trees using a finite number
of labels. We bound the number of labels by bounding the set of variables that can
occur in labels of nodes in the tree. If r is a rule of a Datalog program II, then let
var_num(r) be the number of variables occurring in IDB atoms in r (head or body). Let
var_num(Il) be twice the maximum of var_num(r) for all rules r in II. Let var(Il) be
the set {xq,... ,l’vm_num(n)}. A proof tree for Il is simply an expansion tree for II all of
whose variables are from var(Il). We denote the set of proof trees for a predicate @) of a
program Il by p_trees(Q,11).

The intuition behind proof tree is that variables are re-used. In an unfolding expansion
tree, when we “unfold” a node x we take a “fresh” copy of a rule r in II. In a proof tree,
we take instead an instance of r over var(Il). Since the number of variables in var(1l)
is twice the number of variables in any rule of II, we can instantiate the variables in the
body of r by variables different from those in the goal «,.

Example 5.1: Figure 2 describes an unfolding expansion tree and a proof tree for the
IDB predicate p in the transitive-closure program of Example 2.5. In the proof tree,
instead of using a new variable W, we re-use the variable X. I

A proof tree represents an expansion tree where variables are re-used. In other words,
the same variable is used to represent a set of distinct variables in the expansion tree.
Intuitively, to reconstruct an expansion tree for a given proof tree, we need to distinguish
among occurrences of variables.

12

PV, pOLY) = e(2), P(Z,Y) p(x,v), p(X, V) :- e(X,2), p(Z,Y)

Y

p(Z,Y), p(Z,Y) :- e(Z,W), p(W,Y)

Y

p(Z,Y), p(Z,Y) :- e(Z,X), p(X,Y)

Y 4

P(W:Y): P(W:Y) o e)(w:Y) p(X,Y), p(X,Y) M e)(X,Y)

(a) (b)

Figure 2: (a) Unfolding Expansion Tree (b) Proof Tree

Definition 5.2: Let x; and x5 be nodes in a proof tree 7, with a lowest common ancestor
x, and let v; and vy be occurrences, in x; and x,, respectively, of a variable v. We say
that vy and vy are connected in 7 if the goal of every node, except perhaps for x, on the
simple path connecting x; and x5 has an occurrence of v. We say that an occurrence v
of a variable v in 7 is a distinguished occurrence if it is connected to an occurrence of v
in the atom labeling the root of 7. I

From the definition above, it follows that connectedness is an equivalence relation and
it partitions the occurrences of variables in the proot tree. We denote the equivalence
class of an occurrence v of a variable v in a proof tree 7 by [v],. We will omit 7 when it
is clear from the context.

Example 5.3: Consider the proof tree in Figure 2. The occurrences of the variable Y in
the root and in the interior node are connected. Both occurrences of Y are distinguished.
The occurrences of the variable X in the root and in the leaf are not connected. The
occurrence of X in the root is distinguished, but the occurrence of X in the leaf is not
distinguished. I

Every proof tree corresponds to an expansion tree and hence to an expansion. We
want to define containment mappings from conjunctive queries to proof trees such that
there is a containment mapping from a conjunctive query to a proof tree iff there is a
containment mapping from the conjunctive query to the expansion corresponding to the
proof tree. The definition should force a variable in the conjunctive query to map to a
unique variable in the expansion corresponding to the proof tree.

Definition 5.4: A strong containment mapping from a conjunctive query 6 to a proof
tree 7 is a containment mapping h from 6 to 7 with the following properties:

13

e 7 maps distinguished occurrences in # to distinguished occurrences in 7, and

e if v; and vy are two occurrences of a variable v in 6, then the occurrences h(vy) and
h(vg) in 7 are connected.

We now relate containment of programs and strong containment mappings.

Proposition 5.5: Let 0 be a conjunctive query and and let 11 be a program with goal
predicate Q. If 11 is contained in 0, then, for every proof tree 7 € p_tree(Q,11), there is
a strong containment mapping from 0 to T.

Proof: Assume that II is contained in 6, and let 7 € p_tree(Q,1l). Rename every
occurrence v of a variable v in 7 by an occurrence of a new variable vy, i.e., connected
occurrences vy and vy of a variable v are replaced by occurrences vi and v} of vy,] (note
that [v1] = [va]). Denote this renaming, which is a mapping on occurrences (not on
variables), by A. It is easy to prove that the result of this renaming is an expansion tree;
call it 7. Since Il is contained in @, there is a containment mapping A’ from 6 to 7’.

We now define a containment mapping h from 6 to 7 as follows. Let u be an occurrence
of a variable v in 6, and suppose that 2'(u) is A(v), where v is an occurrence of the variable
vin 7, i.e., A'(u) is an occurrence of vy in 7'. Define h(u) = v.

We have to show that A is also a mapping on variables. Consider now two occurrences
up and uy of a variable w in @. Then h’(uy) and h'(uz) are occurrences of some variables
vjyq and vy in 7', where v/ and v” are occurrences in 7. But v, and v, must be the
same variable, since A’ is a containment mapping from 6 to 7/, so va,] and vf\’,,,] coincide,
as well as [v/] and [v"]. It follows that ~(uq) and h(uz) are connected occurrences of the
same variable. A similar argument shows that A maps distinguished occurrences in 8 to
distinguished occurrences in 7. It follows that & is a strong containment mapping from
Otor. 1

Proposition 5.6: Let 0 be a conjunctive query and and let 11 be a program with goal
predicate Q). 1If, for every proof tree 7 € p_tree(Q,1Il), there is a strong containment
mapping from 0 to T, then 1l is contained in 0.

Proof: Assume that, for every proof tree 7/ € p_tree(Q, 1), there is a strong containment
mapping from 0 to 7’. Let 7 be an unfolding expansion tree of II. We obtain a proof
tree 7/ from 7 by renaming of variables in a top-down fashion. Let x be a node of 7 that
was not yet relabeled and that is labeled in 7 by (ay, p;). The variables in the body of
p. either occur in «, or they do not occur in the label of any node above . We rename
the variables in the body of p, that do not occur in «, by variables from var(Il) that do
not occur in «,; distinct variables in the body of p, are renamed by distinct variables of

14

var(Il). This renaming can be done, since the number of variables in var(1l) is at least
twice the number of variables in any rule of II. Denote this renaming, which is a mapping,
by A. Note that the distinguished variables of 7" are not renamed by this process. It is
also easy to verify that if vi = A(uy) and vo = A(uz) are connected occurrences in 7/,
then u; and u, must be occurrences of the same variable in 7.

Since 7' is a proof tree, by assumption, there is a strong containment mapping A’
from 0 to 7/. We use A’ to define a containment mapping h from 6 to 7. We define s on
occurrences of variables. Let u, v, and w be occurrences of variables u, v, and w in 7, 7/,
and 0, respectively. If h’/(w) = v and v = A(u), then we take h(w) = u. We claim that A
can also be viewed as a mapping on variables, i.e., h(w) = u. Indeed, suppose that w,
and wy are both occurrences of w in §. Since b’ is a strong containment mapping, h'(w;)
and h'(wy) must be connected in 7/. But then, as observed above, there are occurrences
up and ug of w in 7 such that 2'(wy) = A(uy) and h'(wsy) = A(uz). A similar argument
shows that h maps distinguished variables in § to distinguished variables in 7. Thus, A
is indeed a containment mapping. i

The propositions above yield the following characterization of containment.

Corollary 5.7: Let Il be a program with goal predicate (), and let 0 be a conjunctive
query. Then II is contained in 0 if and only if there are strong containment mappings
from 0 to all proof trees in p_trees(Q,1I).

Since we are also interested in containment in union of conjunctive queries, we need
the following characterization

Theorem 5.8: Let Il be a program with goal predicate (), and let © = U;0; be a union
of conjunctive queries. Then 11 is contained in O if and only if for every proof tree
T € ptrees(Q,I1) there is a strong containment mappings from some 6; to 7.

Proof: Theorem 2.3 tells us that if & = U;p; and ¥ = U;2; are union of conjunctive
queries, then @ is contained in ¥ (i.e., ®(D) C V(D) for every database D) iff each ¢; is
contained in some ;. It follows that II is contained in © iff each expansion tree (resp.
unfolding expansion tree) is contained in some 6;. The claim now follows by repeating
the arguments in the proofs of Propositions 5.5 and 5.6. 11

We will use the characterization above to obtain optimal upper bound for containment
of programs in conjunctive queries.

5.2 Upper Bounds

The main feature of proof trees, as opposed to expansion trees, is the fact that the
numbers of possible labels is finite; it is actually exponential in the size of II. Because
the set of labels is finite, the set of proof trees p_trees(Q,1l), for an IDB predicate @) in
a program II, can be described by a tree automaton.

15

Proposition 5.9: Let Il be a Datalog program with a goal predicate (). Then there is

p_trees pirees

an automaton Ay ™", whose size is exponential in the size of 11, such that T(Agy ") =
p-trees(Q,11).

Proof: We describe the construction of the automaton
Agﬁees = (X,Z U {accept}, Iy, 6, {accept})

The state set 7 is the set of all IDB atoms with variables among var(Il). The start-state
set is the set of all atoms Q(s), where the variables of s are in var(Il). The alphabet
Y =7 x R where R is the set of instances of rules of II over var(Il). The transition
function 6 is constructed as follows:

o Let p be a rule instance
R(t) : —Ry(th), ..., R (t7),

in R, where the IDB atoms in the body of the rule are R;, (t9),..., R, (t"). Then
(R, (£7),..., R (81)) € 6(R(t), (F(t), p)).

o Let p be a rule instance
R(t) : —Ry(th), ..., R (t7),

in R, where all atoms in the body of the rule are EDB atoms. Then (accept) €
O(R(t), (K(t),p)).

It follows that T(Agjtﬁees) = p_trees(Q,II). It is easy to see that the number of states
and transitions in the automaton is exponential in the size of 1. I

We now show that strong containment of proof trees in a conjunctive query can be
checked by tree automata as well.

Proposition 5.10: Let Il be a Datalog program 11 with goal predicate (), and let 0 be
a conjunctive query. Then there is an automaton A%ﬂ, whose size is exponential in the
size of I and 0, such that T(Azgﬂ) is the set of proof trees T in p_trees(Q),1l) where there
is a strong containment mapping from 6 to T.

Proof: We describe the construction of A%ﬂ, and then prove its correctness.

We view 6 as a set of atoms. Every state of the automaton includes a subset of atoms
of # that have not yet been strongly mapped to 7. Such unmapped atoms may share
variables with atoms that have already been mapped. Therefore, also included in the
state description is a partial mapping that indicates the images of the mapped variables.
A transition on an input symbol («,p) results in mapping of zero or more unmapped

16

atoms to the body of p. The remainder of the unmapped atoms are partitioned among
the sequence of states prescribed by the transition.

The automaton A%ﬂ is (X, S U{accept}, Sg,6,{accept}). Thesets T and ¥ =7 x R
are as in the proof of Proposition 5.9. We assume that the conjunctive query 6 has a set
of variables V;. The state set S is the set T x 27 x 2Vexver(D) The second component in
S represents the collection of subsets (of atoms) of 6 and the final component contains
the set of partial mappings from Vi to var(ll). The start-state set Sg consists of all
triples (Q(s), 0, Mys), where the variable of s are in var(ll) and My is a mapping of the
distinguished variables of 6 into the variables of s. The transition function is constructed
as follows:

o Let p be a rule instance
R(t) : =Ry (t"), ..., R (t™),
in R, where the IDB atoms in the body of the rule are R; (t%),..., R;(t"). Then

<(RZ1 (til)v B, M/) SRR (Ril(til)v B, M/)> S 5((R(t)7 3, M)v (R(t)v P))
if the following hold:

1. B can be partitioned into 3, 8y,..., 8;, where 3’ is mapped to atoms in the
body of p by a mapping Mg that is consistent with M,

2. M’ is a partial mapping that extends M and is consistent with Mg
3. B; and fy can share a variable only if this variable is in the domain of M’ and
its image 1s in both t% and t'».
4. If a variable occurs in 8; and it is in the domain of M’, then its image is in
t.
o Let p be a rule instance

R(t) : =Ry (th), ..., R (t™),

in R, where all atoms in the body of the rule are EDB atoms. Then (accept) €
O((R(t), 3, M), (R(t),p)) if there is a mapping that extends M and maps all literals
in 3 to atoms in the body of p.

It is easy to see that the number of states and transition in the automaton is expo-
nential in the size of II and §. We now show the correctness of our construction. First,
we show that if there is a strong containment mapping h from 6 to 7, then 7 is accepted
by A%ﬂ. We prove acceptance by showing the existence of an accepting run r.

We show that our definition of r satisfies the inductive property that if R(t) is the
goal labeling a node x, then r(x) = (R(t), 5, M), where M is consistent with A, and h

maps 3 to atoms in bodies of rules labeling = or nodes below z.

17

The run starts with r(e) = (Q(s), 0, Mys), where Q(s) be the atom labeling the root
of 7 and My is the restriction of A to the distinguished variables of 0; the range of My
are the variables of s. Since & is a strong containment mapping from 6 to 7, it follows
that all literals in # are mapped in 7. Thus, the specification of the root of 7 satisfies the
inductive property.

Suppose now that x is not a leaf node and has [children. Assume that 7(z) =
(R(t),p). We know that p must be an instance of a recursive rule in R:

R(t) : =Ry (th), ..., R (t™),

where the IDB atoms in the body of the rule are R (t%),..., R, (t*%). Thus, = has
[children, labeled by the IDB atoms in the body of p. By inductive hypothesis, let
r(x) = (R(t), 3, M) where h maps 3 to atoms in rules labeling nodes below . We can
partition 3 into subsets 3, 51,..., 3, where 3’ is mapped by h to atoms in the body of
p, and 3; is mapped by h to atoms in bodies labeling the node zj or nodes below xj.
We obtain M’ from M by adding to M the pairs consisting of variables in 3" and their
corresponding images in h. Also, suppose that 3; and fj; share a variable. Since h is
strong, it must maps the occurrences of this variable in 3; and 3, to occurrences in t% and
t'. In that case, we add the pair consisting of this variable and its image (in k) to M’. We
now define r(xj) = (R;;(t;;), 3;, M'). Note that our construction ensures that r(¢) € So
and if # is an internal node with children «1, .., zl, then (r(x1),..,r(zl)) € 6(r(zx), 7(x)).

Finally, if « is a leaf-node, then 7(2) = (R(t), p), where p is instance of a nonrecursive
rule. Our inductive property ensures that r(z) = (R(t), 3, M), where all literals in 3 map
to literals in p that is consistent with h. Therefore, from the description of the automaton,
it follows that accept € 6(r(x), w(x)). Thus, r is an accepting run.

Second, we show that if 7 is accepted by A%ﬂ, then there is a strong containment
mapping h from 6 to 7. Let r be an accepting run. The proof is by bottom-up induction
on the tree. The inductive hypothesis is that if r(z) = (R(t), 8, M), then R(t) is the goal
labeling x, and there is a mapping h, that is consistent with M and maps f to atoms
in bodies of rules labeling = or nodes below x. Furthermore, h, is a strong mapping; it
maps occurrences of the same variable in 3 to connected occurrences in 7. Suppose first
that x is a leaf. Since r is an accepting run, x is labeled by (R(t), p), where p is a rule
instance

R(t) : =Ry (th), ..., R (t™),

in R and all atoms in the body of the rule are EDB atoms, and there is a mapping h,
that extends M and maps all literals in 3 to atoms in the body of p. Thus, the inductive
hypothesis holds for leaves.

Suppose now that = is not a leaf, and let x1,...,xl be the children of . Then x is
labeled by (R(t), p), where p is a rule instance

R(t) : —Ri(th), ..., R, (t™),

18

in R, and the IDB atoms in the body of the rule are R, (t"),..., R; (t). Thus, we have
r(zj) = (R(tY),5;, M), 1 < j <1, where 3, 51,..., 3 is a partition of 3 that satisfies
the conditions in the definition of 6. By the inductive hypothesis, for j = 1,...,/, and
there is a mapping h; that is consistent with M’ and maps 3; to atoms in bodies of rules
labeling xj or nodes below xj. The definition of 6 guarantees that the ;’s are consistent
with each other and that there is a mapping Mz that maps 5’ to atoms in the body of p,
and M’ is an extension of Mg. Thus, the union of the h;’s with Mg is a partial mapping
h, that is consistent with M and maps 3 to atoms in the bodies of rule labeling = or
nodes below z. Furthermore, the definition of 6 guarantees that h, is strong.

Now let r(e) = (Q(s), 0, Mys). By the induction hypothesis (s) is the goal labeling
the root of 7, and there is a strong mapping h that extends My¢ and maps 5 to atoms

in bodies of rules labeling nodes in 7. Thus, & is a strong containment mapping from 6
to7. 1

We can now reduce the containment problem for Datalog programs in unions of
conjunctive queries to an automata-theoretic problem.

Theorem 5.11: Let II be a program with goal predicate (), and let © = U;0; be a union
of conjunctive queries. Then 11 is contained in O if and only if

A5y S UT(AG).

Proof: By Theorem 5.8, II is contained in © if and only if for every proof tree 7 €
p-trees(Q,11) there is a strong containment mappings from some §; to 7. By Proposi-
tions 5.9 and 5.10, the latter condition is equivalent to

(A5 S UT(AG).

Theorem 5.12: Containment of a recursive Datalog program in a union of conjunctive

queries is in 2EXPTIME (EXPSPACE for linear programs).

Proof: By Propositions 4.1 and 4.4, we can obtain an automaton Agﬂ, whose size is
exponential in the size of II and O, such that

T(AS,H) = U T(Ag,n)-

Thus, by Theorem 5.11, containment in a union of conjunctive queries can be reduced
to containment of tree (resp. word) automata of exponential size. Since containment of
tree automata can be decided in exponential time (Proposition 4.6), and containment of
word automata can be decided in polynomial space (Proposition 4.3), the result follows.

19

Remark 5.13: The automata-theoretic technique used here is closely related to the
automata-theoretic techniques used in [CGKV88] to prove the decidability of bounded-
ness of monadic programs. The result here, however, is more robust since it applies to
programs of arbitrary arity. In contrast, boundedness is undecidable for binary programs

[Va88, HKMV95). 1

Remark 5.14: So far, we have assumed that neither the recursive program nor the
union of conjunctive queries contain constants. However, this restriction is easily relaxed
by redefining the containment mapping (Defintion 2.1). The proof of Theorem 5.12
then extends in a straight-forward fashion. In the presence of constants, a containment
mapping from a conjunctive query 1 to a conjunctive query 6 is a renaming of variables
subject to the following constraints: (a) every distinguished variable must map to itself,
and (b) every nondistinguished variable must map to either a variable or a constant in 6
and (c) after renaming, every literal in ¢» must be among the literals of 6. 11

5.3 Lower Bounds

Theorem 5.12 provides a doubly exponential time (resp., exponential space) upper bound
for containment of (resp. linear) Datalog programs in a union of conjunctive queries. We
now show that these bounds are optimal. We accomplish this via a succinct encoding of
alternating (resp., deterministic) exponential-space Turing machines. It is known that
alternating exponential-space machines have the same computational power as doubly-
exponential-time Turing machines [CKS81]; thus, deciding if an alternating Turing ma-
chine accepts the empty tape using space 2" is complete for doubly exponential time.

We focus first on linear programs and exponential-space Turing machines. A configu-
ration of an exponential-space Turing machine M can be described by a string of length
2". The symbols of the string are either symbols of the input alphabet or composite
symbols. A composite symbol is a pair (s,a), where s is a state of M and « is an input
symbol. Such a composite symbol denotes the fact that M is in state s and is scanning
the symbol a. An important feature of Turing machine computations is the locality of
the transitions, i.e., the succession relation between configurations depends only on local
constraints. We can associate with M a 4-ary relation R on symbols that characterizes
the transitions of M. Suppose that a = ay...a, and b = b;...b,, are two configura-
tions, m = 2", Then b is a successor configuration of a only if (a;_1,a;, a;41,b;) € Ry
for 1 < i < m. We also need to associate with M two 3-ary relations R, and R}, on
symbols that characterize the transitions at the left and right end of the configuration,
i.e., (a1, as,b1) € Ry and (a1, am,b,) € Ry,

The idea of our encoding is that the unfolding expansions of the recursive program Il
correspond to a sequence of configurations ending with an accepting configuration. The
role of the union O of conjunctive queries is to check whether the sequence corresponds
to an accepting computation. If an expansion 7 does not correspond to an accepting
computation, then we will have that 7 C ©. Thus, we will have that II C O if and

20

only if the machine M does not accept. In order to check that an expansion 7 does not
correspond to an accepting computation, we have to compare corresponding positions
on successive configurations. To do that, we address each position in a configuration;
we need n bits for each address. In our encoding, each rule unfolding will describe one
address bit. Thus, each position in a configuration will be encoded by n rule unfoldings.

Ifa=a,...aq0 and b = 3, ... are two n-bit numbers, then b =a+ 1 (mod 2")
precisely when the following hold: for 1 < ¢ < n, we have that o; = 3; iff a; = 0 for some
1 <y < 2. Since this condition is not local, we encode carry bits in addition to address
bits. Now b =a+ 1 (mod 2") if and only if there is an n-bit carry ¢ = =, ...~ such
that vy = 1, 7,01 = 1 precisely when o, =1l and v, =l for 1 <:<n—1,and 3, =0
precisely when either both a; = 0 and v; = 0 or both a; = 1 and ~; =1, for 1 < < n.
Thus, succession of addresses also has the locality property if the carry bits are available.

We encode configurations in the following manner. Let Buity,..., Bit, be 5-ary IDB
predicates and let Ay,..., A, be 8-ary EDB predicates:

o The first two arguments of A; act as the constants 0 and 1,

o the 3rd and 4th arguments of A; encode address and carry bits, respectively
o the Hth and 6th arguments of A; link successive bits, and

o the Tth and 8th arguments of A; link successive configurations.

For 1 <: <n —1, we have in II the following rules:
B@:ti(x,y,z,u,v) : —Bz:ti+1(:1;,y,z’,u,v),Ai(x,y,x,x,z,z’,u,v \
Biti(x,y,z,u,v) : —Bitiq(x,y, 2" u,v), Al
Biti(x,y,z,u,v) : —Bitiq(x,y, 2" u,v), Al
Biti(x,y,z,u,v) :—Bitiq(x,y, 2" u,0), Adx,y,y,y, 2, 2 u, v).

)
x? y? x? y? Z? Zl? u? v)?
)

!
T x7y7y7x72727u7v b

The intuition is that each unfolding of a rule for a Bit; predicate describes one address
bit. The variable z can be thought as a pointer to an address bit, while 2z’ points to
the next bit. Note the four possible combinations of variables in the third and fourth
arguments of body EDB predicate A. Fach combination encodes two bits of information,
an address bit and a carry bit. Intuitively, and y, which are persistent variables, i.e.,
they appear both in the head atom and in the recursive body atom, act as the constants
0 and 1. That is, the third argument being x, or y corresponds to the address bit being 0
or 1, respectively. Similarly, the fourth argument being z, or y corresponds to the carry
bit being 0 or 1, respectively. The carry bits encode the carry obtained when the previous
address is incremented by 1. Note that the variables u and v are also persistent in the
above rules; this persistence connects nodes that belong to the same configuration.

The rules for Bit, encode also the symbol pointed to by the n-bit address. For each
symbol a of the machine M we have a unary EDB predicate (),. The symbol in a
configuration position is encoded by rules of the form:

Bty (z,y,z,u,v) —=Bity(x,y, 2" u,v), An(a,y, v, 0,2, 2w, v), Qu2).

21

(The 3rd and 4th arguments of A, could also be the pair x,y, the pair y,x, or the pair

y,y-)

So far the rules encode a sequence of address bits and tape symbols. To encode the
start of the computation, we use the 0-ary goal predicate C, a 1-ary EDB predicate Start,
and the rule

C: —Biti(z,y,z,u,v), Start(z).

To encode the end of the computation, we use rules of the form:
Bit,(z,y,z,u,v) @ —Au (v, y,x,x, 2,2 u,0), Qu(2),

for symbols @ that correspond to accepting states. (The 3rd and 4th arguments in A,
could also be the pair z,y, the pair y, x, or the pair y,y.)

Finally, to encode the transition from configuration to configuration, we use rules of
the form

Bit,(x,y,z,u,v) @ —=Bity(x,y, 2" v’ u), Ap(e,y, v, 0,2, 2w, v), Qu2).

(The 3rd and 4th arguments in A, could also be the pair x,y, the pair y,x, or the pair
y,y.) Notice that u persists but changes position, but v does not persist (only 2 and y
persist along nonsuccessive configurations). Intuitively, u’s role is to connect successive
configurations.

We now have to show how the conjunctive queries in © find errors in encoding of
computations. The queries in © have no distinguished variables. We describe each
disjunct of O by listing its atomic formulas. We use dots to denote variables with unique
occurrences.

The first thing that we need to check is that the address bits indeed act as an n-bit
counter. That is, the first address is 0,...,0 and two adjacent addresses are successive.
Thus, one possible error is that the first address is not 0,...,0. Such an error can be
found by the following conjunctive query:

Start(z1), A(x, Y, .oy 21, 22, U, 0)y oo A, Y, Y, oy Ziy Zig1, U, U).

Here the third argument of A; is y, expressing the fact that the :-th address bit is 1.

The other errors that can prevent adjacent addresses from being successive are:

1. the first carry bit is 0,

2. the ¢-th address bit and the i-th carry bit are 1, but the (¢ + 1)-st carry bit is 0,
3. the ¢-th address bit or the i-th carry bit is 0, but the (¢ + 1)-st carry bit is 1,

4. the i-th address bit and the ¢-th carry bit are 0, but the (¢ + 1)-st address bit is 1,

5. the i-th address bit and the ¢-th carry bit are 1, but the (¢ 4+ 1)-st address bit is 1,

22

6. the i-th address bit is 1 and the ¢-th carry bit is 0, but the (¢ + 1)-st address bit is
0,

7. the i-th address bit is 0 and the ¢-th carry bit is 1, but the (¢ + 1)-st address bit is
0,

We show how errors of, for example, type (2) can be discovered; the other errors can
be handled similarly. Such errors are found by the following conjunctive query:

Ai(xvyvyv 9 Ziy Zitls ')7

Ai-l-l(xvyv 50y Bidly Zi42s oy ')7 .. '7An(x7y7 50y Zmy Bntls ')7
AT Y oy ey Zngds Znd 2y es e)y e e -

Ai(xv Yy Yy Zntis Znditls ')7

Ai-l-l(xv Yy s Ty Zntitls Bntit2s -)

The y’s in the third argument on the first A; atom and the fourth argument of the second
A; atom mean that the ¢-th address bit and the i-th carry bit are 1. The x in the fourth
argument of the A;; atom means that the (¢ + 1)-st carry bit is 0. Note that when the
first n atoms refer to an address, the following ¢ + 1 atoms refer to the next address.

Next, we note that that every sequence of 2" addresses starting with 0,...,0 has
to describe a single configuration, that is, we have to ensure that configuration change
exactly when the address is 1,...,1. Thus, there are two types of error here: (1) a
configuration change when the address is not 1,...,1,, and (2) a configuration does not
change when the address is 1,...,1. For example, error of the first type are found by the
following conjunctive query:

Ai(x,y, 2, 20 Zig1, U, 1),
An(l',y,) -vaZn-H,u,v),

/
Al(l',y, vy oy Rntly Rnt2, U ,u).

The y’s in the third argument of the first A; atom means that the ¢-th address bit is 0.
Thus, the addressisnot 1,...,1. The fact that the variable v moved from the 7Tth position
in the A, atom to the 8th position in the second A; atom indicates a configuration change.

We have so far ensured that we have a sequence of configurations of length 2" with the
proper sequence of addresses. We now have to enure that these sequence of configuration
indeed represent a legal computation of the machine M. The first type possible error
here is when the first configuration does not correspond to the empty tape with the head
scanning the leftmost symbol. If — is the blank symbol and s is the initial state, then
the first configuration is (s, —)—2"7"1. To ensure that the first symbol is indeed (s, —),
the query

Start(z1), A1(x,y, .., 21, 22, U, V)4 .. -,
An(@, Y, oy Zns Zng1, U, 0), Qul20)

23

checks whether the first symbols is not a, for each a # (s,—). Note that the variables
Z1, ..., 2, ensure that this query checks the first symbol in the first configuration. Sim-
ilarly, to ensure that the rest of the symbols in the first configuration are blank, the
query

Start(z), A1(x, Y, .y 2y ey, U, 0),

A, Y, Y, oy Ziy Zig1, Uy U)oy

An(@, Y, sy Zny Zng1, U, 0), Qal20),
checks that the first symbols is not a, for each a # —. Because of the variable z, the first
Ay atom must map to the first configuration. The variables u, v then ensures that the
atoms Ay, ..., A, also map to the first configuration. The fact that the 3rd argument of
A; 1s y means that the query does not check the first symbol, since one of the address
bits is 1.

Another type of errors is between corresponding symbols in two successive configura-
tions, i.e., when such symbols do not obey the restrictions imposed by the relations Ry,
RY;, and Rj;. For example, a violation of Rys will be found by conjunctive queries of the
following form:

Az, y, 81,21, 22, U, V), . .,

An(@, Y, Sny vy Zny Zng1, U, 0), Qul20),

A1(T, Y, Sntts o Zndls Znd2, Uy U)y e ey

An(@, Y, S2my <y 220y Z2n41, U, ©)Qp(220),

A1(T, Y, S2m41y o Z2n41s 22042, Uy U)y e ooy

An(2, Y, 30y -+, 230y 23041, U, ©)Qe(230),

A1(Z, Y, Spts - Zant1y Zanta, U U), .,

An(@,y, S2ms + Z5ms Z5nt1, U 1), Qa(255).
The pattern of the z;’s variables and the u, v variables ensures that the first three blocks
of Ay,..., A, atoms are mapped to three successive positions on the same configuration.
The patern of the variables u,v,u’ enures that the last block of Ay,..., A, atoms is
mapped to the next configuration. Finally, the reuse of the variables s,11, ..., sy, ensures

the the second block and the last block refer to the same address and therefore are
mapped to corresponding positions on successive configurations. Here a, b, ¢, d are such
that (a,b,c,d) & R.

By adding to © conjunctive queries corresponding to all possible errors in the expan-
sions of II — there are O(n) such errors, we reduce the acceptance problem for exponential-
space Turing machines to containment of linear programs in unions of conjunctive queries.

We now sketch how this encoding can be extended to alternating exponential-space
machines. An alternating machine M has existential and universal states. Without loss
of generality, we can assume that (1) the machine always alternates between existential
and universal states and (2) every configuration of M have two possible successors, a left
successor and a right successor. The latter can be captured by M having two transition
relations, one for left successors and one for right successors. An accepting computation
of M is a tree of configurations, where each configuration is a successor of its parent, a

24

universal configuration (i.e., a configuration on which M is in a universal state) has both
its successors as children, and all leaves are accepting configurations.

To encode a computation tree, we add to the Bit; and A; predicates two additional
arguments. The rule

Biti(x,y,z,u,v) —Biti(a,y, 2 u,v), Ale,y, x, 2, 2,2 u, v)
will be replaced by the rule
Biti(x,y, z,u,v,w0,t) 1 —=Bitipg(x,y, 2 u,v,w0,t), Ale,y, 2,2, 2,2 u, 0,0, 1)

The intuition is that ¢ is either x, when the configuration is existential, or y, when the
configuration is universal. The pair u,v was replaced by the triple u,v,w to account
for the fact that universal configuration has two successors. The other rules for Bit; are
replaced analogously.

We assume that the starting state is existential, so the rule for (' is:
C:—Biti(x,y,z,u,v,w,), Start(z).

The rules that encode transitions between configurations have to check whether the
source configuration is existential or universal. For existential configurations we have
rules such as:

Bty (z,y, z,u,v,w,x) = Bity(x,y, 2" v u w0 y), An(a,y, a2, 2, 2 uy v 0w, 1), Qu(2)
Bt (z,y,z,u,v,w,x) 1 —Bity(x,y, 2 v 0w y), An(a, y, e, e, 2,2 u, v, w, 1), Qu(2)

The 7th argument of Bzt, is x here, since these rules are for existential configurations.
Here u migrates either to the 5th argument or the 6th argument of B:t;. Migration to
the hth argument corresponds to a transition to a left successor, while migration to the
6th argument corresponds to a transition to the right successor.

For universal configurations we have rules such as:
N . N ! ! ! N ! ! !
Bty (z,y, z,u,v,w,y) - —Bity(x,y, 2w u,w' x), Bity(x,y, 2w 0w x),
!
An(x7y7x7x72727u7v7w7 y)?Qa(Z)

Here the 7th argument of Bit, is y, since this rule is for universal configurations. This
rule is nonlinear; the two occurrences of Bit; in the body correspond to transitions to
both the left successor and the right successor.

The conjunctive queries in © also have to be revised to account for the additional
arguments of the A;’s. There are also additional errors to capture. For example, if a is
a composite symbol with a universal state then we have the query:

An(xvyv 309 Zny Fntly - .,l’), Qa(Zn)

This query finds universal configurations marked as existential.

25

The queries that capture transition errors, have to distinguish between left successors
and right successors. For example, the following query is directed at transitions to left
successors:

(@, y, 81, 21, 29, u, 0,0, 1), ...,

n(xv Yy Sns oy Zny Znt1, U, U, W, t)v Qa(Zn)7

1(1’, Yy Sn+1y 9 Zntly Znt2, U, U, W, t)v AR

n(xv Y, S2ny +y 2ny Z2n41, U, U, W, t)Qb(ZQTL)v

1(1’, Y5 S2n+15 -5 220415 Z2n42, U, U, W, t)v AR

(T3 Yy S3ny s 230, 23041, Uy U, W, 1) Q(23,),

1(1’, Y5 Sn+1y -5 Zan41y Z4n42; ulv u, wlv t/)v)

n(xv Yy S2ny +y Z5my Z5n+1, ulv u, wlv t/)v Qd(25n)'

Here u migrates one position to the right. For right successors, we need queries where u
migrates two positions to the right.

e

Theorem 5.15: Containment of a recursive Datalog program in a union of conjunctive

queries is complete for 2EXPTIME (EXPSPACE for linear programs).

6 Equivalence to Nonrecursive Programs

In the previous section we studied the complexity of containment of recursive programs
in unions of conjunctive queries. In this section we focus on containment of recursive
programs in nonrecursive programs, i.e., we are given a recursive program Il and a
nonrecursive program II’ and we have to decide whether II is contained in II'. The
straightforward approach is to rewrite I’ as a union of conjunctive queries and apply the
results of the previous section. Unfortunately, rewriting nonrecursive programs as unions
of conjunctive queries may involve an exponential blow-up in size. We now show several
examples; the queries defined in this example will be used later in the lower-bound proof.

Example 6.1: Let £ be a binary EDB predicate, i.e., the database is a directed graph.
Consider the nonrecursive program consisting of the rules, for 0 < < n:

dist(x,y) : —disti_q(x,2),dist,_1(z,y)

and the rule

diStO(xv y) : —E(l', y)

Clearly, dist;(z,y) holds precisely when there is a path of length 2' between z and y. It
is easy to see that the smallest conjunctive query equivalent to dist, is of exponential
size. 1

Example 6.2: This example is a variant of the previous example. Consider the nonre-
cursive program consisting of the rules, for 0 < ¢ < n:

dist<i(z,y) : —dist<i_q(z,z),dist<;_1(2,y)
distei(z,y) @ —disteiq(z,2), dist<;1(2,y)

26

and the rules
dist<o(z,y) —E(x,y)
dist<o(z,z) @ —
distco(x,) @ —

(Note the empty bodies in the last two rules; the convention is that an empty body is
equivalent to true.) Here, dist<;(x,y) holds precisely when there is a path of length at
most 2! between x and y, and dist;(z,y) holds precisely when there is a path of length
at most 2° — 1 between = and y. I

Example 6.3: To the EDB predicate £ of the previous example, add unary EDB
predicates Zero and One, i.e., the database is a node-labeled directed graph. Consider
the nonrecursive program consisting of the rules, for 0 < : < n:

equali(x,y,u,v) : —equal,_y(x, 2’ u,u'), equal;_1 (', y,u',v),

and the rules

equalo(x,y,u,v) —FE(x,y), E(u,v), Zero(x), Zero(u),
equalo(x,y,u,v) —FE(x,y), E(u,v),One(x), One(u).

Here equal;(x,y,u,v) holds precisely when there are paths length 2° between x and y
and between u and v, respectively, and the paths have the same labels, with the possible
exception of the last points. I

In general, the upper bounds of Theorem 5.12 together with the exponential blow-up
involved in rewriting nonrecursive programs as union of conjunctive queries imply upper
bounds of triply exponential time for containment of recursive programs in nonrecursive
programs and doubly exponential space for containment of linear recursive programs
in nonrecursive programs. [t turns out that the succinctness of nonrecursive programs
is inherent, and these bounds are optimal. We can encode doubly-exponential space-
bounded computation by using 2"-bit counters. We can discover errors among bits that
are doubly exponentially far from each other using programs such as those in the above
examples.

We focus first on linear programs and doubly exponential-space Turing machines. A
configuration of such a machine M can be described by a string of length 22", Thus, we
need 2" address bit to describe a position in the configuration.

As in Section 5.3, each rule unfolding in our encoding will describe one address bit.
Thus, each position in a configuration will be encoded by 2" rule unfoldings. In Sec-
tion 5.3, we had the predicates Bity,..., Bit, to denote the n address bits. We cannot
do this here, since we have 2" address bits. Instead, we use one ternary IDB predicate
Bit and one binary EDB predicate A. In addition we use several unary EDB predicates.

27

The recursive program II contains the following rules:

(z,u,v) : —=Bit(u,v), Az, u,v), (2), E(z,2"), Zero(z), Carry0(z)
Bit(z,u,v) : —Bit(Z' u,v), Az, u,v), Address(z), E(z,z"), Zero(z), Carryl(z)
Bit(z,u,v) : —=Bit(2,u,v), Az, u,v), Address(z), E(z, z"), One(z), Carry0(z)
Bit(z,u,v) : =Bit(2,u,v), Az, u,v), Address(z), E(z, z"), One(z), Carryl(z)

The difference from the rules for Bi¢; in Section 5.3 is that we have additional EDB atoms
Address(z), F(z,z'), Zero(z), One(z), Carry0(z), and Carryl(z). Here the variable z
points to an address bit or to a symbol. So we call these variables points. The atom
Address(z) says that these rules describe address points, so we call these rules address
rules. The atoms F(z, z') connects adjacent points. The rest of the atoms encode the ad-
dress and carry bits. Notice that these atoms encode the information that was previously
carried by the first four arguments of the A; predicates.

We have separate rules in II for encoding configuration symbols:
Bit(z,u,v) : —=Bit(z,u,v), A(z,u,v), E(z,2), Symbol(z), Q.(z).

The atom Symbol(z) says that the rule describes a symbol, so we call this rule a symbol
rule.

To encode the start of the computation, we use the 0-ary goal predicate C', a 1-ary
EDB predicate Start, and the rule

C : =Start(z), Bit(z,u,v), A(z,u,v), Address(z), Zero(z), Carryl(z)

which means that the first bit of the first configuration is the address bit 0.

To encode the end of the computation, we put in II rules of the form:
Bit(z,u,v) : —A(z,u,v), Symbol(z), Qu(z),

for symbols a that correspond to accepting states. That is, the last symbol of the last
configuration is an accepting symbol.

Finally, to encode the transition from configuration to configuration, we put in II
rules of the form

Bit(z,u,v) :=Bit(z", v/ u), A(z,u,v), E(z, "), Symbol(z), Qu(z).

We now describe the construction of II'. As in the previous lower-bound proof, the idea
of our encoding is that the unfolding expansions of the recursive program II correspond to
a sequence of configurations, ending with an accepting configuration of the machine M.
The role of the nonrecursive program I’ is to check whether the sequence corresponds
to an accepting computation. If an expansion 7 does not correspond to an accepting
computation, then we will have that = C II’. Thus, we will have that II is contained in
ITI" if and only if the machine M does not accept.

28

In Section 5.3, unfolding expansions of the recursive program were guaranteed to
correspond to sequences of n-bit addresses, with a symbol attached to each n-th bit.
Here we want unfolding expansions that corresponds to sequences of 2"-bit address points
followed by a symbol point. This, however, is not guaranteed by the program, since we
have a single But predicate. Instead, we have rules in Il that “filter out” expansions that
are not of this format.

All expansions start with the unfolding of the start rule. We need to verify that this
is followed by 2" — 1 unfoldings of address rules, and then an unfolding of the symbol
rule. This is verified by putting the following rule in II':

C : =Start(z),dist<n(z,2"), Symbol(2')

and the rule

C : —=Start(z),dist,(z,2"), Address(z')

The former rule finds expansions where one of the first 2" unfoldings is of a symbol rule.
The latter rule finds expansion where the 2" + 1-st unfolding is of an address rule.

The above queries take care of the first 2" + 1 unfoldings. To make sure that the
expansions has the right format we also need the rule

C :=Symbol(z),dists,(z,2"), Symbol(z")

and the rule

C : =Symbol(z),dist,(z,2"), E(Z, "), Address(z")

This makes sure that a symbol point is followed by 2" address points followed by a symbol
point.

So far we have ensured that that we have filtered away all expansions to do not
correspond to sequences of blocks of 2" address points followed by a symbol point. Anal-
ogously to Section 5.3, we need to check is that the address bits indeed act as an 2"-bit
counter. That is, the first address is 0,...,0 and two adjacent addresses are successive.
As in Section 5.3, there are 7 possible errors in the counter. For example, a possible
error is that the first address is not 0,...,0. Such an error can be found by the following
query:

C : =Start(z),distp(z,2"), One(z").
Another possible addressing error is when the ¢-th address bit and the i-th carry bit are
1, but the (i 4 1)-st carry bit is 0. Such an error is found by the following rule:

C : —Address(z),One(z),dist,(z,2"), E(Z', "),
Carryl(z"), E(z",2"), Carry0(z")

This query is using the fact that we need only consider expansions in which the distance
between corresponding address points is precisely 2" + 1. Thus, z and z” point to address
points in corresponding positions of successive addresses, and z" is the next address
point.

29

So far we have ensured that our addresses indeed act as a 2"-bit counter. We now
have to ensure that every sequence of 22" addresses starting with 0,...,0 describe a
single configuration, that is, we have to ensure that configuration change exactly when
the address is 1,...,1. Thus, there are two types of error here: (1) a configuration
change when the address is not 1,...,1,, and (2) a configuration does not change when
the address is 1,...,1. For example, error of the first type are found by the following
rule in 11":

C :—Address(z), A(z,u,v), Zero(z), dist<n(z, 2'), Symbol(2'), E(%', 2"), A(z",u', u)

The atom Zero(z) indicates that we are referring to an the address that is not 1,..., 1.
The fact that the variable © moved from the 2nd position in the first A atom to the 3th
position in the second A atom indicates a configuration change.

We have so far ensured that we have a sequence of configurations of length 22" + 1
with the proper sequence of addresses. We now have to enure that this sequence of
configurations indeed represent a legal computation of the machine M. For example, we
have to detect errors between corresponding symbols in two successive configurations,
i.e., when such symbols do not obey the restrictions imposed by the relations Ry, R,
and Rj;. A violation of Ry will be found by rules in I’ of the following form:

C :—Alz1,,u,v), Qa(21), E(z1, 1),
t,u,v), dist,(t1, 22),

22,u v), Qb(ZQ) dist,(z2,25), E(25, 23),
<3) (23)7

tg,.,),dlStn(tQ,Z4),,

An(z4, o u), Qalz4),
equal,(t, 22,12, 14).

A(
A(
A(zs,
A(

Here, the variables zy, z3, and z3 point to three consecutive symbols a, b, and ¢. The
variables ¢ points to the first address point preceding z;. The variable z4 points to the
symbols d in the successor configuration (notice that « migrates one position to the right),
and t5 points to the first address point preceding z4. The atom equal,(t1, 22,2, z4) guar-
antees that z, and z4 have the same addresses, so they point to symbols in corresponding
positions.

By adding to II' rules corresponding to all possible errors in the expansions of 11 —
there are O(n) such errors, we reduce the acceptance problem for doubly exponential-
space Turing machines to containment of linear programs in nonrecursive programs. We
deal with nonlinear programs as in Section 5.3, that is, by adding arguments to Bt and
A and using nonlinear rule we can force universal configurations to have two successors.

Theorem 6.4: Containment of a recursive Datalog program in a nonrecursive Datalog

program is complete for SEXPTIME (2EXPSPACE for linear programs).

30

Before stating our final result, we note that if Il is a recursive program and I’ is a
nonrecursive program such that both II and II' have the same goal predicate (), and @)
occurs only in heads of rules, than IT C II" if and only if ITUII’ = II'. Thus, containment
in nonrecursive programs is reducible to equivalence to nonrecursive programs.

Theorem 6.5: Equivalence of recursive Datalog programs to nonrecursive Datalog pro-

grams is complete for SEXPTIME (2EXPSPACE for linear recursive programs).

We note that the blow-up in the translation from nonrecursive programs to unions
of conjunctive queries is caused by the nonlinearity of the nonrecursive programs. For
linear nonrecursive programs the translation yields a union of conjunctive queries, where
each conjunctive query is of size that is linear in the size of the nonrecursive program
(though the number of terms in the union could be exponential).

Example 6.6: Again we use the binary EDB predicate E and the unary EDB predicates
Zero and One. Consider the nonrecursive program consisting of the rules, for 1 < ¢ < n:

word;(x,y) : —word;_1(x,2"), E(x',y), Zero(y)
word;(x,y) : —word;_1(x,2"), E(x',y), One(y)

and the rules

wordy(x,y) : —FE(x,y), Zero(x)
wordy(x,y) : —FE(x,y),One(x)

It is easy to see that by unfolding word, to a union of conjunctive queries we get expo-
nentially many terms in the union, but each term is of size O(n). 1

Nevertheless, the proof of Theorem 5.12 does go through, and the bounds of the
theorem hold for linear nonrecursive programs.

Theorem 6.7: Equivalence of recursive Datalog programs to nonrecursive, linear Datalog

programs is complete for 2EXPTIME (EXPSPACE for linear recursive programs).

Proof: Let II be a program with goal predicate ¢) and let I’ be a nonrecursive, linear
program with goal (). As observed above, II' can be unfolded to an exponential union
© = U;0; of conjunctive queries, each of size linear in the size of I1I'. By Theorem 5.11,
IT is contained in © if and only if

T(AGE) € UT(AG).

By Propositions 4.1 and 4.4, we can obtain an automaton Agﬂ, whose size is exponential
in the size of II and II’, such that

T(AS,H) = U T(Ag,n)-

The upper bound then follows as in Theorem 5.12. I

31

7 Concluding Remarks

Courcelle’s Theorem yields the decidability of equivalence to nonrecursive program, but
with very weak upper bounds. Using the automaton-theoretic technique we found tighter
upper bounds, triply-exponential time in general and doubly-exponential space for linear
programs, and proved matching lower bounds. This shows that the problem isintractable;
in fact, to our knowledge this is the most intractable decidable problem is database theory.
We note that one has to be careful in interpreting lower bounds for query containment.
While containment of conjunctive queries in recursive program is complete for EXPTIME
[CK86, CLM81, Sa88b], this complexity is simply the expression complexity of evaluation
Datalog programs [Va82]. In fact, if attention is restricted to programs of bounded
arity, we get NP-completeness instead of EXPTIME-completeness. In contrast, our lower
bounds here imply “real” intractability, and they hold even for programs of bounded arity.

For certain classes of recursive Datalog programs, such as monadic linear programs
and single-rule programs, the equivalence problem is less intractable than the general
case. We discuss these cases in another paper [CV94].

8 Acknowledgement

We thank Shuki Sagiv for discussions on the complexity of query containment and Jeff
Ullman for useful comments that helped improve a previous draft of the paper.

References

[AUT9] Aho, A.V., Ullman, J.D.: Universality of data retrieval languages. Proc. 6th
ACM Symp. on Principles of Programming Languages, 1979, pp. 110-117.

[AV89] Abiteboul, S.; Vianu, V.: Fixpoint Extensions of First-Order Logic and
Datalog-like languages. Proc. jth [EEE Symp. on Logic in Computer Sci-
ence, 1989, pp. 71-79.

[BeS0] Beeri, C.: On the membership problem for functional and multivalued
dependencies in relational databases. ACM Trans. on Database Systems,

5(1980), pp. 241-259.

[BR36] Bancilhon, F., Ramakrishnan, R.: An amateur’s introduction to recursive
query processing strategies. Proc. ACM Conf. on Management of Data,
Washington, 1986, pp. 16-52.

[Ch81] Chandra, A.K.,: Programming primitives for database languages. Proc. 8th
ACM Symp. on Principles of Programming Languages, Williamsburg, 1981,
pp- H0-62.

32

[CHS0]

[CHS2]

[CHS3]

[CKSS1]

[CLMS1]

[CV94]

[CGKVSS]

[CKS6]

[CosT2]

[Cou90]

[Cou9l]

[Do70]

[EJ8S]

[GMTS]

Chandra, A.K., Harel, D.: Computable queries for relational databases. J.
Computer and Systems Sciences 21(1980), pp. 156-178.

Chandra, A.K., Harel, D.: Structure and Complexity of Relational Queries.
J. Computer and Systems Sciences 25(1982), pp. 99-128.

Chandra, A.K., Harel, D.: Horn Clause Queries and Generalizations.
J. Logic Programming, 2 (1985), 1-15.

Chandra, A., Kozen, A., Stockmeyer, L.: Alternation, J. ACM 28(1981),
pp- 114-133.

Chandra, A. K., H. R. Lewis, and J. A. Makowsky, Embedded implicational
dependencies and their inference problem. Proc. 13th ACM Symp. on Theory
of Computing, 1981, pp. 342-354.

Chaudhuri, 5., Vardi, M.Y.: On the complexity of equivalence between
recursive and nonrecursive Datalog programs. Proc. 13th ACM Symp. on
Principles of Database Systems, 1994, pp. 107-116.

Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C.; Vardi, M.Y.: Decidable
optimization problems for database logic programs. Proc. 20th ACM Symp.
on Theory of Computing, 1988, pp. 477-490.

Cosmadakis, S.S., Kanellakis, P.: Parallel evaluation of recursive rule
queries. Proc. 5th ACM Symp. on Principles of Database Systems, Cam-
bridge, 1986, pp. 280-293.

Costich, O.L.: A Medvedev characterization of sets recognized by general-
ized finite automata. Math. System Theory 6(1972), pp. 263-267.

Courcelle, B.: The monadic second-order theory of graphs I — Recognizable
sets of finite graphs. Information and Computation 85(1990), pp. 12-75.

Courcelle, B.: Recursive queries and context-free graph grammars. Theoret-
ical Computer Science T8(1991), pp. 217-244.

Doner, J.E.: Tree acceptors and some of their applications. J. Computer
and System Sciences 4(1971), pp. 406-451.

Emerson, E.A.; Jutla, C.5.: Complexity of tree automata and modal logics
of programs. Proc. 29th IEEE Symp. on Foundations of Computer Science,
1988, pp. 328-337.

Gallaire, H., Minker, J.: Logic and Databases. Plenum Press, 1978.

33

[GMSV93]

[HKMV91]

[HKMV95]

[Im86]

[JoT5]

[K90]

[KAS9]

[MUV84]

[Mey93]

[MF71]

[MS72]

[MP91]

[Mo74]

[Na89a]

Gaifman, H., Mairson, H., Sagiv, Y., Vardi M.Y.: Undecidable optimization
problems for database logic programs. J. ACM 40(1993), pp. 683-713.

Hillebrand, G.G., Kanellakis, P.C., Mairson, H.G., Vardi, M.Y.: Tools for
Datalog boundedness. Proc. 10th ACM Symp. on Principles of Database
Systems, May 1991, pp. 1-12.

Hillebrand, G.G., Kanellakis, P.C., Mairson, H.G., Vardi, M.Y.: Undecidable
boundedness problems for Datalog programs. To appear in J. Logic Program-
ming.

Immerman, N.: Relational queries computable in polynomial time. Infor-

mation and Control 68(1986), pp. 86-104.

Jones, N.D.: Space-bounded reducibility among combinatorial problems. .J.
Computer and System Sciences 11(1975), pp. 68-85.

Kanellakis P.C.: Elements of Relational Database Theory. Handbook of The-
oretical Computer Science, Vol. B, Chapter 17, J. van Leeuwen, A.R. Meyer,
N. Nivat, M.S. Paterson, D. Perrin ed., North-Holland 1990.

Kanellakis, P., Abiteboul, S.: Deciding bounded recursion in database logic
programs. SIGACT News 20:4, Fall 1989.

Maier, D., Ullman, J.D., Vardi, M.Y.: On the foundations of the universal
relation model. ACM Trans. on Database Systems 9(1984), pp. 283-308.

van der Meyden, R.: Recursively indefinite databases. Theoretical Computer
Science, 116(1993), pp. 151-194.

Meyer, A.R., Fischer, M.J.: Economy of description by automata, gram-
mars, and formal systems. Proc. 21st IEEE Symp. on Switching and Au-
tomata Theory, 1971, pp. 188-191.

Meyer, A.R., Stockmeyer, [..J.: The equivalence problem for regular expres-
sions with squaring requires exponential time. Proc. 13th [EEE Symp. on
Switching and Automata Theory, 1972, pp. 125-129.

Mumick, I.S.,Pirahesh, H.: Overbound and right-linear queries. Proc. 10th
ACM Symp. on Principles of Database Systems, 1991, pp. 127-141.

Moschovakis, Y.N.: Elementary Induction on Abstract Structures. North
Holland, 1974.

Naughton, J.F.: Data independent recursion in deductive databases. .J.

Computer and System Sciences, 38(1989), pp. 259-289.

34

[Na89b]

[NRSUS8Y]

[Ra69]

[RS59]

[RSUV93]

[SY81]

[Sa88b]

[Se90]

[Shm87]

[TW68]

[U1ss]

[U189]

[UVsS]

[Va82]

Naughton, J.F.: Minimizing function-free recursive definitions. J. ACM
36(1989), pp. 69-91.

Naughton, J.F., Ramakrishnan, R., Sagiv, Y., Ullman, J.D.: Efficient evalu-
ation of right . left , and multilinear rules. Proc. ACM-SIGMOD Int’l Conf.
on Management of Data, 1989, pp. 235-242.

Rabin, M.O.: Decidability of second-order theories and automata on infinite

trees. Trans. AMS 141(1969), pp. 1-35.

Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM
J. Research and Development, 3(1959), pp. 114-125.

Ramakrishnan, R., Sagiv, Y., Ullman, J.D., Vardi, M.Y.: Logical query op-
timization by proof-tree transformation. J. Computer and System Sciences

47(1993), pp. 222-248

Sagiv,Y., Yannakakis M.: Equivalences among Relational Expressions with
the union and difference operators. JACM, 27:4, pp 633-655.

Sagiv, Y.: Optimizing Datalog programs. In Foundations of Deductive
Databases and Logic Programming, J. Minker (ed.), Morgan Kaufmann Pub-
lishers, 1988, pp. 659-698.

Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Computing
19(1990), pp. 424-437.

Shmueli, O.: Decidability and expressiveness aspects of logic queries. Proc.

6th ACM Symp. on Principles of Database Systems, 1987, pp. 237-249.

Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical System

Theory 2(1968), pp. 57-81.

Ullman, J.D.: Principles of Database and Knowledge Base Systems, Vol. 1,
Computer Science Press, 1988.

Ullman, J.D.: Principles of Database and Knowledge Base Systems, Vol. 2,
Computer Science Press, 1989.

Ullman, J.D., Van Gelder, A.: Parallel complexity of logical query programs.
Algorithmica 3(1988), pp. 5H-42.

Vardi, M.Y.: The complexity of relational query languages. Proc. 14th ACM
Symp. on Theory of Computing, San Francisco, 1982, pp. 137-146.

35

[Va88]

[Va92]

[VWS6]

[7176]

Vardi, M.Y.: Decidability and undecidability results for boundedness of
linear recursive queries. Proc. 7th ACM Symp. on Principles of Database
Systems, 1988, pp. 341-351.

Vardi, M.Y.: Automata theory for database theoreticians. In Theoretical
Studies in Computer Science (J.D. Ullman, ed.), Academic Press, 1992, pp.
153-180.

Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logic of
programs. .J. Computer and System Sciences 32(1986), pp. 183-221.

Zloof, M.; Query-by-Example: Operations on the Transitive Closure. IBM
Research Report RC5526, 1976.

36

