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are often based on the ability to transform a query into an equivalent one that can beevaluated more e�ciently [RSUV93]. Therefore, determining equivalence of queries is oneof the most fundamental optimization problems. Naturally, the problem of determiningequivalence of Datalog programs has received attention. Unfortunately, Datalog programequivalence is undecidable [Shm87].Since the source of the di�culty in evaluating Datalog programs is their recursivenature, the �rst line of attack in trying to optimize such programs is to eliminate therecursion. The following example is from [Na89a].Example 1.1: Consider the following Datalog program �1:buys(X ;Y ) : �likes(X ;Y ):buys(X ;Y ) : �trendy(X);buys(Z;Y ):It can be shown that �1 is equivalent to the following nonrecursive program.buys(X ;Y ) : �likes(X ;Y ):buys(X ;Y ) : �trendy(X); likes(Z;Y ):Consider, on the other hand, the following Datalog program �2:buys(X ;Y ) : �likes(X ;Y ):buys(X ;Y ) : �knows(X ;Z);buys(Z;Y ):It can be shown that �2 is not equivalent to the following nonrecursive program:buys(X ;Y ) : �likes(X ;Y ):buys(X ;Y ) : �knows(X ;Z); likes(Z;Y ):In fact, �2 is inherently recursive, i.e., it is not equivalent to any nonrecursive program.Thus, a problem of special interest is that of determining the equivalence of a givenrecursive Datalog program to a given nonrecursive program, i.e., a Datalog programwhere the dependency graph among the predicates is acyclic.This problem is the main focus of this paper. Note that this problem is di�erent fromthat of determining whether a given recursive Datalog program is equivalent to somenonrecursive program. The latter problem, called the boundedness problem, is knownto be undecidable [GMSV93] and has been studied extensively (see [KA89] for a surveyand [HKMV91, HKMV95] for recent results)A nonrecursive program can be rewritten as a union of conjunctive queries. Thus,containment of a nonrecursive program in a recursive program can be reduced to thecontainment of a conjunctive query in a recursive program. The latter problem wasshown to be decidable; in fact it is EXPTIME-complete [CK86, CLM81, Sa88b]. Thus,2



what was left open is the other direction, i.e., the problem of determining whether arecursive program is contained in a nonrecursive program. We attack this problem byinvestigating the containment of recursive programs in unions of conjunctive queries. Ourmain result is that containment of recursive programs in unions of conjunctive queriesis decidable. Therefore, iIt follows that equivalence of two given programs is decidablewhen one is recursive and the other nonrecursive.We �rst prove that the decidability of the containment problem follows from a power-ful general decidability result due to Courcelle [Cou91]. Unfortunately, while Courcelle'sresult yields the decidability of the containment problem, it provides only nonelementarytime-bounds [Cou90]. The main body of the paper is dedicated to a detailed study ofthe computational complexity of containment and equivalence.For upper bounds, we use the automaton-theoretic approach advocated in [Va92]. Thekey idea is that a recursive program can be viewed as an in�nite union of conjunctivequeries. These conjunctive queries can be represented by proof trees, and the set ofproof trees corresponding to a given recursive program can be represented by a treeautomaton. This representation enables us to reduce containment of recursive programsin unions of conjunctive queries to containment of tree automata, which is known tobe decidable in exponential time [Se90]. The size of the tree automata obtained inthe reduction is exponential in the size of the input; as a result, we obtain a doubly-exponential time upper bound for containment in unions of conjunctive queries. Thesebounds turn out to be optimal; by a succinct encoding of alternating exponential-spaceTuring machines, we prove a matching doubly-exponential time lower bound. A caseof special interest is that of linear programs, i.e., programs in which each rule containsat most one recursive subgoal [CK86, UV88]. In this case, the corresponding set ofproof trees can be represented by word automata, for which containment is known tobe decidable in polynomial space [MS72]. As a result, we obtain an exponential spaceupper bound for the containment problem for linear programs, which is also matched bya lower bound.1We then note that expressing a nonrecursive program as a union of conjunctive queriesmay involve an exponential blow-up in size. Thus, our upper-bound technique for con-tainment yields a triply-exponential time upper bound for containment in nonrecursiveprograms (doubly-exponential space upper bound for linear programs). We show thatthe succinctness of nonrecursive programs is inherent, by proving a matching triply-exponential time lower bound (doubly-exponential space lower bound for linear pro-grams). Finally, we observe that these results also yield the same complexity bounds forequivalence to nonrecursive programs. Thus, while equivalence to nonrecursive programsis decidable, it is highly intractable. We note that one has to be careful in interpret-ing lower bounds for query containment. While containment of conjunctive queries inrecursive program is complete for EXPTIME [CK86, CLM81, Sa88b], this complexity1Our upper bounds follow also from van der Meyden's results on recursively inde�nite databases[Mey93, Theorem 5.7]. 3



is simply the expression complexity of evaluation Datalog programs [Va82]. In fact, ifattention is restricted to programs of bounded arity, we get NP-completeness instead ofEXPTIME-completeness. In contrast, our lower bounds here imply \real" intractability,and they hold even for programs of bounded arity.2 Preliminaries2.1 Conjunctive Queries and DatalogA conjunctive query is a positive existential conjunctive �rst-order formula, i.e., the onlypropositional connective allowed is ^ and the only quanti�er allowed is 9. Without lossof generality, we can assume that conjunctive queries are given as formulas �(x1; : : : ; xk)of the form (9y1; : : : ; ym)(a1 ^ : : : an) with free variables among x1; : : : ; xk, where theai's are atomic formulas of the form p(z1; : : : ; zl) over the variables x1; : : : ; xk; y1; : : : ; ym.For example, the conjunctive query (9y)(E(x; y)^ E(y; z)) is satis�ed by all pairs hx; zisuch that there is a path of length 2 between x and z. The free variables are also calleddistinguished variables. We distinguish between variables and occurrences of variables in aconjunctive query, but we only consider occurrences of variables in the atomic formulas ofthe query. For example, the variables x and y have each two occurrences in (9y)(E(x; y)^E(y; z)). An occurrence of a distinguished variable in a conjunctive query is called adistinguished occurrence. A union of conjunctive queries is a disjunctions_i=1 �i(x1; : : : ; xk)of conjunctive queries.A union of conjunctive queries �(x1; : : : ; xk) can be applied to a database D. Theresult �(D) = f(a1; : : : ; ak)jD j= �(a1; : : : ; ak)gis the set of k-ary tuples that satisfy � in D. If � has no distinguished variables, thenit is viewed as a Boolean query; the result is either the empty relation (corresponding tofalse) or the relation containing the 0-ary tuple (corresponding to true).A (Datalog) program consists of a set of Horn rules. A Horn rule consists of a singleatom in the head of the rule and a conjunction of atoms in the body, where an atom is aformula of the form p(z1; ::; zl) where p is a predicate symbol and z1::zl are variables. Thepredicates that occur in head of rules are called intensional (IDB) predicates. The restof the predicates are called extensional (EDB) predicates. Let � be a Datalog program.Let Qi�(D) be the collection of facts about an IDB predicate Q that can be deduced froma database D by at most i applications of the rules in � and let Q1� (D) be the collectionof facts about Q that can be deduced from D by any number of applications of the rulesin �, that is, Q1� (D) = [i�0Qi�(D):4



We say that the program � with goal predicateQ is contained in a union of conjunctivequeries � if Q1� (D) � �(D) for each database D. It is known (cf. [MUV84, Na89a])that the relation de�ned by an IDB predicate in a Datalog program �, i.e., Q1� (D), canbe de�ned by an in�nite union of conjunctive queries. That is, for each IDB predicate Qthere is an in�nite sequence '0; '1; : : : of conjunctive queries such that for every databaseD, we have Q1� (D) = S1i=0 'i(D). The 'i's are called the expansions of Q.A predicate P depends on a predicate Q in a program �, if Q occurs in the bodyof a rule r of � and P is the predicate at the head of r. The dependence graph of �is a directed graph whose nodes are the predicates of �, and whose edges capture thedependence relation, i.e., there is an edge from Q to P if P depends on P . A program �is nonrecursive if its dependence graph is acyclic, i.e., no predicate depends recursivelyon itself. It is well-known that a nonrecursive program has only �nitely many expansions(up to renaming of variables). Thus, a nonrecursive program is equivalent to a union ofconjunctive queries.2.2 Containment of Conjunctive QueriesLet �(x1; : : : ; xk) and  (x1; : : : ; xk) are two conjunctive queries with the same vector ofdistinguished variables. We say that � is contained in  if �(D) �  (D) for each databaseD, i.e., if the following implication is valid8x1 : : :8xk(�(x1; : : : ; xk)!  (x1; : : : ; xk))De�nition 2.1: A containment mapping from a conjunctive query  to a conjunctivequery � is a renaming of variables subject to the following constraints: (a) every distin-guished variable must map to itself, and (b) after renaming, every literal in  must beamong the literals of �.Conjunctive-query containment can be characterized in terms of containment map-pings (cf. [Ul89]).Theorem 2.2: A conjunctive query �(x1; : : : ; xk) is contained in a conjunctive query (x1; : : : ; xk) i� there is a containment mapping from  to �.It will be convenient to view a containment mapping h from  to � as a mappingfrom occurrences of variables in  to occurrences to variables in �. Such a mapping hasthe property that v1 and v2 are occurrences of the same variable in  , then h(v1) andh(v2) are occurrences of the same variable in �.Sagiv and Yannakakis [SY81] extended Theorem 2.2 to the case where queries areunions of conjunctive queries.Theorem 2.3: If � = [i'i and 	 = [i i are union of conjunctive queries, then � iscontained in 	 (i.e., �(D) � 	(D) for every database D) i� each 'i is contained insome  j , i.e., there is a containment mapping from  j to 'i.5



2.3 Expansion TreesExpansions can be described in terms of expansion trees. The nodes of an expansion treefor a Datalog program � are labeled by pairs of the form (�; �), where � is an IDB atomand � is an instance of a rule r of � such that the head of � is �. The atom labeling anode x is denoted �x and the rule labeling a node x is denoted �x. In an expansion treefor an IDB predicate Q, the root is labeled by a Q-atom. Consider a node x, where �xis the atom R(t), �x is the ruleR(t) : �R1(t1); : : : ; Rm(tm);and the IDB atoms in the body of the rule are Ri1(ti1); : : : ; Ril(til). Then x has childrenx1; : : : ; xl labeled with the atoms Ri1(ti1); : : : ; Ril(til). In particular, if all atoms in �x areEDB atoms, then x must be a leaf. The query corresponding to an expansion tree is theconjunction of all EDB atoms in �x for all nodes x in the tree, with the variables in theroot atom as the free variables. Thus, we can view an expansion tree � as a conjunctivequery. Let trees(Q;�) denote the set of expansion trees for an IDB predicate Q in �.(Note that trees(Q;�) is an in�nite set.) Then for every database D, we haveQ1� (D) = [�2trees(Q;�) � (D):It follows that � is contained in a conjunctive query � if there is a containment mappingfrom � to each expansion tree � in trees(Q;�), i.e., a mapping, which maps distinguishedvariables to distinguished variables and maps the atoms of � to atoms in the bodies ofrules labeling nodes of � .Of particular interest are expansion trees that are obtained by \unfolding" the pro-gram �.De�nition 2.4: An expansion tree � of a Datalog program � is an unfolding expansiontree if it satis�es the following conditions: (a) the atom labeling the root is the head ofa rule in �, and (b) if a node x is labeled by (�x; �x), then the variables in the body of�x either occur in �x or they do not occur in the label of any node above x.Intuitively, an unfolding expansion tree is obtained by starting with a head of a rule in� as the atom labeling the root, and then creating children by unifying an atom labelinga node with a \fresh" copy of a rule in �. Note that if a variable v occur in the atomlabelling a node x but not in the atoms labeling the children of x, then v will not occurin the label of any descendant of x.We denote the collection of unfolding expansion trees for an IDB predicate Q in aprogram � by u trees(Q;�). It is easy to see that every expansion tree can be obtainedby renaming variables in an unfolding expansion tree. Thus, every expansion tree, viewedas a conjunctive query, is contained in an unfolding expansion tree.6



?? ??(b)(a)
p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e'(X,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e'(X,Y)p(Z,Y), p(Z,Y) :- e(Z,X), p(X,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e'(X,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e'(X,Y)p(Z,Y), p(Z,Y) :- e(Z,X), p(X,Y) p(W,Y), p(W,Y) :- e'(W,Y)p(W,Y), p(W,Y) :- e'(W,Y)p(W,Y), p(W,Y) :- e'(W,Y)p(W,Y), p(W,Y) :- e'(W,Y)p(Z,Y), p(Z,Y) :- e(Z,W), p(W,Y)p(Z,Y), p(Z,Y) :- e(Z,W), p(W,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

Figure 1: (a) Expansion Tree (b) Unfolding Expansion TreeExample 2.5: Figure 1 shows expansion trees for the IDB predicate p in the followingtransitive closure program.r1 : p(X;Y ) : � e(X;Z); p(Z; Y )r0 : p(X;Y ) : � e0(X;Y )Note that the variable X is re-used in the child of the root of the expansion tree, while anew variable W is used instead of X in the child of the root of the unfolding expansiontree.The following proposition follows immediately.Proposition 2.6: Let � be a program with a goal predicate Q. For every database D,we have Q1� (D) = [�2u trees(Q;�) � (D):3 DecidabilityWe can view a conjunctive query '(x1; : : : ; xk) with free variables among x1; : : : ; xk asa 2-sorted relational structure A'. The sorts V and F , denote the set of variables andatomic formulas in ', respectively. For each l-ary predicate symbol P in the vocabulary of', we have a predicate symbol P 0 in the vocabulary of A' of type F�V l. The vocabularyof A' also has constant symbols x1; : : : ;xk. These constant and predicate symbols areinterpreted in A' as follows. First, the constant symbol xi is interpreted as xi. Second,if the atomic formula ai is P (z1; : : : ; zl) in ', then we have a tuple hai; z1; : : : ; zli in theinterpretation of P 0. (Note that ' can have multiple occurrences of the same atomicformula, which explains why we need the sort F in A'.)7



Since a conjunctive query ' can be viewed as a 2-sorted relational structure A', wecan view u trees(Q;�) as a set of 2-sorted relational structures, which we denote asstr(Q;�). If Q is k-ary, then we can assume that all conjunctive queries in u trees(Q;�)have free variables among x1; : : : ; xk. Thus, all structures in str(Q;�) have the samevocabulary, denoted vocab(Q;�). We can now express properties of Datalog program interms of properties of the associated collection of 2-sorted structures. If  is a 1st-orderformula over vocab(Q;�), then we say that the program � with goal predicate Q satis�es if  holds in all structures in str(Q;�).As an example, consider the property of strong nonredundancy. We say that a Datalogprogram � with goal predicate Q is strongly nonredundant if no unfolding expansiontree contains two distinct occurrences of the same EDB atom. It is easy to see that thisproperty can be expressed as a �rst-order property of the structures in str(Q;�). Forsimplicity assume that there is a single EDB predicate P , which happens to be k-ary.Then the desired property holds if the program � with goal predicate Q satis�es thesentence (8x1; x2 2 F )(8y1; : : : ; yk 2 V )(P 0(x1; y1; : : : ; yk)^P 0(x2; y1; : : : ; yk)) x1 = x2):First-order logic gives us a very powerful language to describe properties of Datalogqueries in terms of the associated set of structures. It is not clear, a priori, whether suchproperties can be e�ectively tested. After all, to check whether a Datalog program �with a goal Q satis�es a �rst-order sentence  we have to check in principle the in�nitelymany structures in str(Q;�). The following powerful result by Courcelle asserts that,nevertheless, �rst-order properties of Datalog programs can be e�ectively tested.2Theorem 3.1: [Cou90, Cou91] There is an algorithm to decide, given a Datalog program� with goal predicate Q and a �rst-order sentence  over vocab(Q;�), whether � satis�es . The decidability of containment in nonrecursive programs follows now from Theo-rem 3.1.Theorem 3.2: Containment of recursive Datalog programs in nonrecursive Datalog pro-grams is decidable.Proof: Let us assume that � is a recursive Datalog program with the goal predicate Q.Let � be an arbitrary nonrecursive program. Assume that � has already been rewrittenas a �nite union s_i=1'i(x1; : : : ; xk)2Courcelle's result applies also to monadic second-order logic, which is a powerful extension of �rst-order logic. 8



of conjunctive queries. Let 'i(x1; : : : ; xk) be (9y1; : : : ; ym)(a1 ^ : : : ^ an) with free vari-ables among x1; : : : ; xk, where ai is an atomic formula pi(z1; : : : ; zl) over the variablesx1; : : : ; xk; y1; : : : ; ym. De�ne '0i to be the sentence (9y1; : : : ; ym 2 V )(9a1; : : : ; an 2F )(a01 ^ : : : a0n), where a0i is the atomic formula p0i(ai; z01; : : : ; z0l), and z01; : : : ; z0l are ob-tained from z1; : : : ; zl by substituting xj for xj.We claim that � is contained in � i� � satis�es �0, where �0 is Wsi=1 '0i. Assumethat � is contained in �. Then, from Theorem 2.3, it follows that for every expansion� (x1; : : : ; xk) 2 u trees(Q;�), there exists some 'i = (9y1; : : : ; ym)(a1^: : :^an) such thatthere is a containment mapping from 'i to � . Let � (x1; : : : ; xk) be 9z1; : : : ; zr(b1^: : :^bs).Let the corresponding tuples in A� be b01; : : : ; b0s. Consider any aq where 1 � q � n. Sincethere is a containment mapping from 'i to � , it follows that aq maps to some bj where thedistinguished variables are preserved. Therefore, there is a substitution for the variablesin a0q such that it corresponds to the literal b0j. Therefore, '0i holds over A� . Thus, �satis�es �0.Let us now assume that � satis�es �0. Let � be an expansion of � that correspondsto an unfolding expansion tree, and let A� be the corresponding structure. Since �satis�es �0, it follows that some '0i must hold over A� . Therefore, there is an assignmentof variables, such that a literal a0q of '0i corresponds to a tuple b0j. Moreover, such amapping ensures that the distinguished variables map to themselves. Thus, � is containedin �. This completes our proof.Corollary 3.3: Equivalence of Datalog programs to nonrecursive programs is decidable.Unfortunately, Theorem 3.1 yields a very high upper bound; the algorithm describedin [Cou90] is of nonelementary time complexity, i.e., its time complexity cannot bebounded by any �nite stack of exponentials. There is, however, a possible way aroundthis di�culty. While Courcelle's algorithm for arbitrary �rst-order properties of Datalogprograms has a nonelementary time complexity, more e�cient algorithms may exist forspeci�c properties. The crux of Courcelle's result is the well known connection betweenmonadic second-order logic and tree automata (cf. [TW68, Ra69]). It is conceivablethat by using automata-theoretic techniques directly we might be able to obtain morefeasible algorithms for the equivalence problem. A similar strategy of using automatatheory directly rather than monadic second-order logic was demonstrated successfully fordecision problems in the area of program veri�cation (cf. [VW86, EJ88]).4 Automata on Words and TreesIn this section, we review some of the relevant results from automata theory on emptinessand containment of automata. We will use these results for proving the upper-bound onthe complexity of deciding containment of a Datalog predicate in a union of conjunctivequeries. The material in this section is quoted from [Va92].9



4.1 Automata on WordsAn automaton A is a tuple (�; S; S0; �; F ), where � is a �nite alphabet, S is a �nite setof states, S0 � S is the set of initial states, F � S is the set of accepting states, and� : S � � ! 2S is a transition function. Note that the automaton is nondeterministic,since it may have many initial states and the transition function may specify manypossible transitions for each state and letter.A run r of A over a word w = a0; : : : ; an�1 2 �n is a sequence s0; : : : ; sn 2 Sn+1 suchthat� s0 2 S0,� si+1 2 �(si; ai) for 0 � i < n.The run r is accepting if sn 2 F . The word w is accepted by A if A has an accepting runover w. The language of A, denoted L(A), is the set of words accepted by A.An important property of automata is their closure under Boolean operations.Proposition 4.1: [RS59] Let A1; A2 be a automata over an alphabet �. Then there areautomata A3, A4, and A5 such that L(A3) = �� � L(A1), L(A4) = L(A1) \ L(A2), andL(A5) = L(A1) [ L(A2).The constructions for union and intersection involve only a polynomial blowup in thesize of the automata. In contrast, complementation may involve an exponential blow-upin the size of the automaton [MF71].The nonemptiness problem for automata is to decide, given an automaton A, whetherL(A) is nonempty.Proposition 4.2: [Jo75, RS59] The nonemptiness problem for automata is decidable innondeterministic logarithmic space.Proof: Let A = (�; S; S0; �; F ) be the given automaton. Let s; t be states of S. Saythat s is directly connected to t if there is a letter a 2 � such that t 2 �(s; a). Saythat s is connected to t if there is a sequence s1; : : : ; sm, m � 1, of states such thats1 = s, sn = t, and si is directly connected to si+1 for 1 � i < m. It is easy to see thatL(A) is nonempty i� there are states s 2 S0 and t 2 F such that s is connected to t.Thus, automata nonemptiness is equivalent to graph reachability, which can be tested innondeterministic logarithmic space.A problem related to nonemptiness is the containment problem, which is to decide,given automata A1 and A2, whether L(A1) � L(A2). Note that L(A1) � L(A2) i�L(A1) \ L(A2) = ;. Thus, by Proposition 4.1, the containment problem is reducible tothe nonemptiness problem, though the reduction may be computationally expensive.Proposition 4.3: [MS72] The containment problem for automata is PSPACE-complete.10



4.2 Automata on TreesLet N denote the set of positive integers. The variables x and y denote elements of N*.A tree � is a �nite subset of N*, such that if xi 2 � , where x 2 N* and i 2 N , then alsox 2 � and and if i > 1 then also x(i � 1) 2 � . The elements of � are called nodes. If xand xi are nodes of � , then x is the parent of xi and xi is the child of x. The node x is aleaf if it has no children. By de�nition, the empty sequence � is a member of every tree;it is called the root.A �-labeled tree, for a �nite alphabet �, is a pair (�; �), where � is a tree and � : � ! �assigns to every node a label. Labeled trees are often referred to as trees; the intentionwill be clear from the context. The set of �-labeled trees is denoted trees(�).A tree automaton A is a tuple (�; S; S0; �; F ), where � is a �nite alphabet, S isa �nite set of states, S0 � S is a set of initial states, F � S is a set of acceptingstates, and � : S � � ! 2S* is a transition function such that �(s; a) is �nite for alls 2 S and a 2 �. A run r : � ! S of A on a �-labeled tree (�; �) is a labeling of� by states of A, such that the root is labeled by an initial state and the transitionsobey the transition function �; that is, r(�) 2 S0, and if x is not a leaf and x has kchildren, then hr(x1); : : : ; r(xk)i 2 �(r(x); �(x)). If for every leaf x of � there is a tuplehs1; : : : ; sli 2 �(r(x); �(x)) such that fs1; : : : ; slg � F , then r is accepting. A accepts(�; �) if it has an accepting run on (�; �). The tree language of A, denoted T (A), is theset of trees accepted by A.An important property of tree automata is their closure under Boolean operations.Proposition 4.4: [Cos72] Let A1; A2 be a automata over an alphabet �. Then there areautomata A3, A4, and A5 such that L(A3) = �� � L(A1), L(A4) = L(A1) \ L(A2), andL(A5) = L(A1) [ L(A2).As in word automata, the constructions for union and intersection involve only a poly-nomial blowup in the size of the automata, while complementation may involve an ex-ponential blow-up in the size of the automaton.The nonemptiness problem for tree automata is to decide, given a tree automaton A,whether T (A) is nonempty.Proposition 4.5: [Do70, TW68] The nonemptiness problem for tree automata is decid-able in polynomial time.Proof: Let A = (�; S; S0; �; F ) be the given tree automaton. Let accept(A) be theminimal set of states in S such that� F � accept(A), and� if s is a state such that there are a letter a 2 � and a transition hs1; : : : ; ski 2�(s; a) \ accept(A)�, then s 2 accept(A).11



It is easy to see that T (A) is nonempty i� S0 \ accept(A) 6= ;. Intuitively, accept(A)is the set of all states that label the roots of accepting runs. Thus, T (A) is nonemptyprecisely when some initial state is in accept(A). The claim follows, since accept(A) canbe computed bottom-up in polynomial time.We note that using techinques such as in [Be80], the nonemptiness problem for treeautomata is decidable in linear time.A problem related to nonemptiness is the containment problem, which is to decide,given tree automata A1 and A2, whether T (A1) � T (A2). As for word automata, thecontainment problem is reducible to the nonemptiness problem, though the reductionmay be computationally expensive.Proposition 4.6: [Se90] The containment problem for tree automata is EXPTIME-complete.5 Containment in Union of Conjunctive Queries5.1 Proof TreesThe basic idea behind proof trees is to describe expansion trees using a �nite numberof labels. We bound the number of labels by bounding the set of variables that canoccur in labels of nodes in the tree. If r is a rule of a Datalog program �, then letvar num(r) be the number of variables occurring in IDB atoms in r (head or body). Letvar num(�) be twice the maximum of var num(r) for all rules r in �. Let var(�) bethe set fx1; : : : ; xvar num(�)g. A proof tree for � is simply an expansion tree for � all ofwhose variables are from var(�). We denote the set of proof trees for a predicate Q of aprogram � by p trees(Q;�).The intuition behind proof tree is that variables are re-used. In an unfolding expansiontree, when we \unfold" a node x we take a \fresh" copy of a rule r in �. In a proof tree,we take instead an instance of r over var(�). Since the number of variables in var(�)is twice the number of variables in any rule of �, we can instantiate the variables in thebody of r by variables di�erent from those in the goal �x.Example 5.1: Figure 2 describes an unfolding expansion tree and a proof tree for theIDB predicate p in the transitive-closure program of Example 2.5. In the proof tree,instead of using a new variable W , we re-use the variable X.A proof tree represents an expansion tree where variables are re-used. In other words,the same variable is used to represent a set of distinct variables in the expansion tree.Intuitively, to reconstruct an expansion tree for a given proof tree, we need to distinguishamong occurrences of variables. 12



?? ??(b)(a)
p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(W,Y), p(W,Y) :- e'(W,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(W,Y), p(W,Y) :- e'(W,Y)p(Z,Y), p(Z,Y) :- e(Z,W), p(W,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(W,Y), p(W,Y) :- e'(W,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(W,Y), p(W,Y) :- e'(W,Y)p(Z,Y), p(Z,Y) :- e(Z,W), p(W,Y) p(X,Y), p(X,Y) :- e'(X,Y)p(X,Y), p(X,Y) :- e'(X,Y)p(X,Y), p(X,Y) :- e'(X,Y)p(X,Y), p(X,Y) :- e'(X,Y)p(Z,Y), p(Z,Y) :- e(Z,X), p(X,Y)p(Z,Y), p(Z,Y) :- e(Z,X), p(X,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)p(X,Y), p(X,Y) :- e(X,Z), p(Z,Y)

Figure 2: (a) Unfolding Expansion Tree (b) Proof TreeDe�nition 5.2: Let x1 and x2 be nodes in a proof tree � , with a lowest common ancestorx, and let v1 and v2 be occurrences, in x1 and x2, respectively, of a variable v. We saythat v1 and v2 are connected in � if the goal of every node, except perhaps for x, on thesimple path connecting x1 and x2 has an occurrence of v. We say that an occurrence vof a variable v in � is a distinguished occurrence if it is connected to an occurrence of vin the atom labeling the root of � .From the de�nition above, it follows that connectedness is an equivalence relation andit partitions the occurrences of variables in the proof tree. We denote the equivalenceclass of an occurrence v of a variable v in a proof tree � by [v]�. We will omit � when itis clear from the context.Example 5.3: Consider the proof tree in Figure 2. The occurrences of the variable Y inthe root and in the interior node are connected. Both occurrences of Y are distinguished.The occurrences of the variable X in the root and in the leaf are not connected. Theoccurrence of X in the root is distinguished, but the occurrence of X in the leaf is notdistinguished.Every proof tree corresponds to an expansion tree and hence to an expansion. Wewant to de�ne containment mappings from conjunctive queries to proof trees such thatthere is a containment mapping from a conjunctive query to a proof tree i� there is acontainment mapping from the conjunctive query to the expansion corresponding to theproof tree. The de�nition should force a variable in the conjunctive query to map to aunique variable in the expansion corresponding to the proof tree.De�nition 5.4: A strong containment mapping from a conjunctive query � to a prooftree � is a containment mapping h from � to � with the following properties:13



� h maps distinguished occurrences in � to distinguished occurrences in � , and� if v1 and v2 are two occurrences of a variable v in �, then the occurrences h(v1) andh(v2) in � are connected.We now relate containment of programs and strong containment mappings.Proposition 5.5: Let � be a conjunctive query and and let � be a program with goalpredicate Q. If � is contained in �, then, for every proof tree � 2 p tree(Q;�), there isa strong containment mapping from � to � .Proof: Assume that � is contained in �, and let � 2 p tree(Q;�). Rename everyoccurrence v of a variable v in � by an occurrence of a new variable v[v], i.e., connectedoccurrences v1 and v2 of a variable v are replaced by occurrences v01 and v02 of v[v1] (notethat [v1] = [v2]). Denote this renaming, which is a mapping on occurrences (not onvariables), by �. It is easy to prove that the result of this renaming is an expansion tree;call it � 0. Since � is contained in �, there is a containment mapping h0 from � to � 0.We now de�ne a containmentmapping h from � to � as follows. Let u be an occurrenceof a variable u in �, and suppose that h0(u) is �(v), where v is an occurrence of the variablev in � , i.e., h0(u) is an occurrence of v[v] in � 0. De�ne h(u) = v.We have to show that h is also a mapping on variables. Consider now two occurrencesu1 and u2 of a variable u in �. Then h0(u1) and h0(u2) are occurrences of some variablesv0[v0] and v00[v00] in � 0, where v0 and v00 are occurrences in � . But v0[v0] and v00[v00] must be thesame variable, since h0 is a containment mapping from � to � 0, so v0[v0] and v00[v00] coincide,as well as [v0] and [v00]. It follows that h(u1) and h(u2) are connected occurrences of thesame variable. A similar argument shows that h maps distinguished occurrences in � todistinguished occurrences in � . It follows that h is a strong containment mapping from� to � .Proposition 5.6: Let � be a conjunctive query and and let � be a program with goalpredicate Q. If, for every proof tree � 2 p tree(Q;�), there is a strong containmentmapping from � to � , then � is contained in �.Proof: Assume that, for every proof tree � 0 2 p tree(Q;�), there is a strong containmentmapping from � to � 0. Let � be an unfolding expansion tree of �. We obtain a prooftree � 0 from � by renaming of variables in a top-down fashion. Let x be a node of � thatwas not yet relabeled and that is labeled in � by (�x; �x). The variables in the body of�x either occur in �x or they do not occur in the label of any node above x. We renamethe variables in the body of �x that do not occur in �x by variables from var(�) that donot occur in �x; distinct variables in the body of �x are renamed by distinct variables of14



var(�). This renaming can be done, since the number of variables in var(�) is at leasttwice the number of variables in any rule of �. Denote this renaming, which is a mapping,by �. Note that the distinguished variables of � 0 are not renamed by this process. It isalso easy to verify that if v1 = �(u1) and v2 = �(u2) are connected occurrences in � 0,then u1 and u2 must be occurrences of the same variable in � .Since � 0 is a proof tree, by assumption, there is a strong containment mapping h0from � to � 0. We use h0 to de�ne a containment mapping h from � to � . We de�ne h onoccurrences of variables. Let u, v, and w be occurrences of variables u, v, and w in � , � 0,and �, respectively. If h0(w) = v and v = �(u), then we take h(w) = u. We claim that hcan also be viewed as a mapping on variables, i.e., h(w) = u. Indeed, suppose that w1and w2 are both occurrences of w in �. Since h0 is a strong containment mapping, h0(w1)and h0(w2) must be connected in � 0. But then, as observed above, there are occurrencesu1 and u2 of u in � such that h0(w1) = �(u1) and h0(w2) = �(u2). A similar argumentshows that h maps distinguished variables in � to distinguished variables in � . Thus, his indeed a containment mapping.The propositions above yield the following characterization of containment.Corollary 5.7: Let � be a program with goal predicate Q, and let � be a conjunctivequery. Then � is contained in � if and only if there are strong containment mappingsfrom � to all proof trees in p trees(Q;�).Since we are also interested in containment in union of conjunctive queries, we needthe following characterizationTheorem 5.8: Let � be a program with goal predicate Q, and let � = [i�i be a unionof conjunctive queries. Then � is contained in � if and only if for every proof tree� 2 p trees(Q;�) there is a strong containment mappings from some �i to � .Proof: Theorem 2.3 tells us that if � = [i'i and 	 = [i i are union of conjunctivequeries, then � is contained in 	 (i.e., �(D) � 	(D) for every database D) i� each 'i iscontained in some  j. It follows that � is contained in � i� each expansion tree (resp.unfolding expansion tree) is contained in some �i. The claim now follows by repeatingthe arguments in the proofs of Propositions 5.5 and 5.6.We will use the characterization above to obtain optimal upper bound for containmentof programs in conjunctive queries.5.2 Upper BoundsThe main feature of proof trees, as opposed to expansion trees, is the fact that thenumbers of possible labels is �nite; it is actually exponential in the size of �. Becausethe set of labels is �nite, the set of proof trees p trees(Q;�), for an IDB predicate Q ina program �, can be described by a tree automaton.15



Proposition 5.9: Let � be a Datalog program with a goal predicate Q. Then there isan automaton Ap treesQ;� , whose size is exponential in the size of �, such that T (Ap treesQ;� ) =p trees(Q;�).Proof: We describe the construction of the automatonAp treesQ;� = (�;I [ facceptg;IQ; �; facceptg)The state set I is the set of all IDB atoms with variables among var(�). The start-stateset is the set of all atoms Q(s), where the variables of s are in var(�). The alphabet� = I � R where R is the set of instances of rules of � over var(�). The transitionfunction � is constructed as follows:� Let � be a rule instance R(t) : �R1(t1); : : : ; Rm(tm);in R, where the IDB atoms in the body of the rule are Ri1(ti1); : : : ; Ril(til). ThenhRi1(ti1); : : : ; Ril(til)i 2 �(R(t); (R(t); �)).� Let � be a rule instance R(t) : �R1(t1); : : : ; Rm(tm);in R, where all atoms in the body of the rule are EDB atoms. Then haccepti 2�(R(t); (R(t); �)).It follows that T (Ap treesQ;� ) = p trees(Q;�). It is easy to see that the number of statesand transitions in the automaton is exponential in the size of �.We now show that strong containment of proof trees in a conjunctive query can bechecked by tree automata as well.Proposition 5.10: Let � be a Datalog program � with goal predicate Q, and let � bea conjunctive query. Then there is an automaton A�Q;�, whose size is exponential in thesize of � and �, such that T (A�Q;�) is the set of proof trees � in p trees(Q;�) where thereis a strong containment mapping from � to � .Proof: We describe the construction of A�Q;�, and then prove its correctness.We view � as a set of atoms. Every state of the automaton includes a subset of atomsof � that have not yet been strongly mapped to � . Such unmapped atoms may sharevariables with atoms that have already been mapped. Therefore, also included in thestate description is a partial mapping that indicates the images of the mapped variables.A transition on an input symbol (�; �) results in mapping of zero or more unmapped16



atoms to the body of �. The remainder of the unmapped atoms are partitioned amongthe sequence of states prescribed by the transition.The automaton A�Q;� is (�; S [ facceptg; SQ; �; facceptg). The sets I and � = I �Rare as in the proof of Proposition 5.9. We assume that the conjunctive query � has a setof variables V�. The state set S is the set I � 2� � 2V��var(�). The second component inS represents the collection of subsets (of atoms) of � and the �nal component containsthe set of partial mappings from V� to var(�). The start-state set SQ consists of alltriples (Q(s); �;M�;s), where the variable of s are in var(�) and M�;s is a mapping of thedistinguished variables of � into the variables of s. The transition function is constructedas follows:� Let � be a rule instance R(t) : �R1(t1); : : : ; Rm(tm);in R, where the IDB atoms in the body of the rule are Ri1(ti1); : : : ; Ril(til). Thenh(Ri1(ti1); �1;M 0) : : : ; (Ril(til); �l;M 0)i 2 �((R(t); �;M); (R(t); �))if the following hold:1. � can be partitioned into � 0; �1; : : : ; �l, where � 0 is mapped to atoms in thebody of � by a mapping M�0 that is consistent with M ,2. M 0 is a partial mapping that extends M and is consistent with M�0.3. �j and �k can share a variable only if this variable is in the domain of M 0 andits image is in both tij and tik.4. If a variable occurs in �j and it is in the domain of M 0, then its image is intij .� Let � be a rule instance R(t) : �R1(t1); : : : ; Rm(tm);in R, where all atoms in the body of the rule are EDB atoms. Then haccepti 2�((R(t); �;M); (R(t); �)) if there is a mapping that extendsM and maps all literalsin � to atoms in the body of �.It is easy to see that the number of states and transition in the automaton is expo-nential in the size of � and �. We now show the correctness of our construction. First,we show that if there is a strong containment mapping h from � to � , then � is acceptedby A�Q;�. We prove acceptance by showing the existence of an accepting run r.We show that our de�nition of r satis�es the inductive property that if R(t) is thegoal labeling a node x, then r(x) = (R(t); �;M), where M is consistent with h, and hmaps � to atoms in bodies of rules labeling x or nodes below x.17



The run starts with r(�) = (Q(s); �;M�;s), where Q(s) be the atom labeling the rootof � and M�;s is the restriction of h to the distinguished variables of �; the range of M�;sare the variables of s. Since h is a strong containment mapping from � to � , it followsthat all literals in � are mapped in � . Thus, the speci�cation of the root of � satis�es theinductive property.Suppose now that x is not a leaf node and has l children. Assume that �(x) =(R(t); �). We know that � must be an instance of a recursive rule in R:R(t) : �R1(t1); : : : ; Rm(tm);where the IDB atoms in the body of the rule are Ri1(ti1); : : : ; Ril(til). Thus, x hasl children, labeled by the IDB atoms in the body of �. By inductive hypothesis, letr(x) = (R(t); �;M) where h maps � to atoms in rules labeling nodes below x. We canpartition � into subsets � 0; �1; : : : ; �l, where � 0 is mapped by h to atoms in the body of�, and �j is mapped by h to atoms in bodies labeling the node xj or nodes below xj.We obtain M 0 from M by adding to M the pairs consisting of variables in � 0 and theircorresponding images in h. Also, suppose that �j and �k share a variable. Since h isstrong, it must maps the occurrences of this variable in �j and �k to occurrences in tij andtik . In that case, we add the pair consisting of this variable and its image (in h) toM 0. Wenow de�ne r(xj) = (Rij(tij); �j;M 0). Note that our construction ensures that r(�) 2 S0and if x is an internal node with children x1; ::; xl, then hr(x1); ::; r(xl)i 2 �(r(x); �(x)).Finally, if x is a leaf-node, then �(x) = (R(t); �), where � is instance of a nonrecursiverule. Our inductive property ensures that r(x) = (R(t); �;M), where all literals in � mapto literals in � that is consistent with h. Therefore, from the description of the automaton,it follows that accept 2 �(r(x); �(x)). Thus, r is an accepting run.Second, we show that if � is accepted by A�Q;�, then there is a strong containmentmapping h from � to � . Let r be an accepting run. The proof is by bottom-up inductionon the tree. The inductive hypothesis is that if r(x) = (R(t); �;M), then R(t) is the goallabeling x, and there is a mapping hx that is consistent with M and maps � to atomsin bodies of rules labeling x or nodes below x. Furthermore, hx is a strong mapping; itmaps occurrences of the same variable in � to connected occurrences in � . Suppose �rstthat x is a leaf. Since r is an accepting run, x is labeled by (R(t); �), where � is a ruleinstance R(t) : �R1(t1); : : : ; Rm(tm);in R and all atoms in the body of the rule are EDB atoms, and there is a mapping hxthat extendsM and maps all literals in � to atoms in the body of �. Thus, the inductivehypothesis holds for leaves.Suppose now that x is not a leaf, and let x1; : : : ; xl be the children of x. Then x islabeled by (R(t); �), where � is a rule instanceR(t) : �R1(t1); : : : ; Rm(tm);18



in R, and the IDB atoms in the body of the rule are Ri1(ti1); : : : ; Ril(til). Thus, we haver(xj) = (R(tij ); �j;M 0), 1 � j � l, where � 0; �1; : : : ; �l is a partition of � that satis�esthe conditions in the de�nition of �. By the inductive hypothesis, for j = 1; : : : ; l, andthere is a mapping hj that is consistent with M 0 and maps �j to atoms in bodies of ruleslabeling xj or nodes below xj. The de�nition of � guarantees that the hj's are consistentwith each other and that there is a mappingM�0 that maps � 0 to atoms in the body of �,and M 0 is an extension ofM�0. Thus, the union of the hj 's withM�0 is a partial mappinghx that is consistent with M and maps � to atoms in the bodies of rule labeling x ornodes below x. Furthermore, the de�nition of � guarantees that hx is strong.Now let r(�) = (Q(s); �;M�;s). By the induction hypothesis Q(s) is the goal labelingthe root of � , and there is a strong mapping h that extends M�;s and maps � to atomsin bodies of rules labeling nodes in � . Thus, h is a strong containment mapping from �to � .We can now reduce the containment problem for Datalog programs in unions ofconjunctive queries to an automata-theoretic problem.Theorem 5.11: Let � be a program with goal predicate Q, and let � = [i�i be a unionof conjunctive queries. Then � is contained in � if and only ifT (Ap treesQ;� ) � [i T (A�iQ;�):Proof: By Theorem 5.8, � is contained in � if and only if for every proof tree � 2p trees(Q;�) there is a strong containment mappings from some �i to � . By Proposi-tions 5.9 and 5.10, the latter condition is equivalent toT (Ap treesQ;� ) � [i T (A�iQ;�):Theorem 5.12: Containment of a recursive Datalog program in a union of conjunctivequeries is in 2EXPTIME (EXPSPACE for linear programs).Proof: By Propositions 4.1 and 4.4, we can obtain an automaton A�Q;�, whose size isexponential in the size of � and �, such thatT (A�Q;�) =[i T (A�iQ;�):Thus, by Theorem 5.11, containment in a union of conjunctive queries can be reducedto containment of tree (resp. word) automata of exponential size. Since containment oftree automata can be decided in exponential time (Proposition 4.6), and containment ofword automata can be decided in polynomial space (Proposition 4.3), the result follows.19



Remark 5.13: The automata-theoretic technique used here is closely related to theautomata-theoretic techniques used in [CGKV88] to prove the decidability of bounded-ness of monadic programs. The result here, however, is more robust since it applies toprograms of arbitrary arity. In contrast, boundedness is undecidable for binary programs[Va88, HKMV95].Remark 5.14: So far, we have assumed that neither the recursive program nor theunion of conjunctive queries contain constants. However, this restriction is easily relaxedby rede�ning the containment mapping (De�ntion 2.1). The proof of Theorem 5.12then extends in a straight-forward fashion. In the presence of constants, a containmentmapping from a conjunctive query  to a conjunctive query � is a renaming of variablessubject to the following constraints: (a) every distinguished variable must map to itself,and (b) every nondistinguished variable must map to either a variable or a constant in �and (c) after renaming, every literal in  must be among the literals of �.5.3 Lower BoundsTheorem 5.12 provides a doubly exponential time (resp., exponential space) upper boundfor containment of (resp. linear) Datalog programs in a union of conjunctive queries. Wenow show that these bounds are optimal. We accomplish this via a succinct encoding ofalternating (resp., deterministic) exponential-space Turing machines. It is known thatalternating exponential-space machines have the same computational power as doubly-exponential-time Turing machines [CKS81]; thus, deciding if an alternating Turing ma-chine accepts the empty tape using space 2n is complete for doubly exponential time.We focus �rst on linear programs and exponential-space Turing machines. A con�gu-ration of an exponential-space Turing machineM can be described by a string of length2n. The symbols of the string are either symbols of the input alphabet or compositesymbols. A composite symbol is a pair (s; a), where s is a state of M and a is an inputsymbol. Such a composite symbol denotes the fact that M is in state s and is scanningthe symbol a. An important feature of Turing machine computations is the locality ofthe transitions, i.e., the succession relation between con�gurations depends only on localconstraints. We can associate with M a 4-ary relation RM on symbols that characterizesthe transitions of M . Suppose that a = a1 : : : am and b = b1 : : : bm are two con�gura-tions, m = 2n. Then b is a successor con�guration of a only if (ai�1; ai; ai+1; bi) 2 RMfor 1 < i < m. We also need to associate with M two 3-ary relations RlM and RrM onsymbols that characterize the transitions at the left and right end of the con�guration,i.e., (a1; a2; b1) 2 RlM and (am�1; am; bm) 2 RrM .The idea of our encoding is that the unfolding expansions of the recursive program �correspond to a sequence of con�gurations ending with an accepting con�guration. Therole of the union � of conjunctive queries is to check whether the sequence correspondsto an accepting computation. If an expansion � does not correspond to an acceptingcomputation, then we will have that � � �. Thus, we will have that � � � if and20



only if the machine M does not accept. In order to check that an expansion � does notcorrespond to an accepting computation, we have to compare corresponding positionson successive con�gurations. To do that, we address each position in a con�guration;we need n bits for each address. In our encoding, each rule unfolding will describe oneaddress bit. Thus, each position in a con�guration will be encoded by n rule unfoldings.If a = �n : : : �1 and b = �n : : : �1 are two n-bit numbers, then b = a+ 1 (mod 2n)precisely when the following hold: for 1 < i � n, we have that �i = �i i� �j = 0 for some1 � j < i. Since this condition is not local, we encode carry bits in addition to addressbits. Now b = a + 1 (mod 2n) if and only if there is an n-bit carry c = 
n : : : 
1 suchthat 
1 = 1, 
i+1 = 1 precisely when �i = 1 and 
i = 1 for 1 � i � n � 1, and �i = 0precisely when either both �i = 0 and 
i = 0 or both �i = 1 and 
i = 1, for 1 � i � n.Thus, succession of addresses also has the locality property if the carry bits are available.We encode con�gurations in the following manner. Let Bit1; : : : ; Bitn be 5-ary IDBpredicates and let A1; : : : ; An be 8-ary EDB predicates:� The �rst two arguments of Ai act as the constants 0 and 1,� the 3rd and 4th arguments of Ai encode address and carry bits, respectively� the 5th and 6th arguments of Ai link successive bits, and� the 7th and 8th arguments of Ai link successive con�gurations.For 1 � i � n� 1, we have in � the following rules:Biti(x; y; z; u; v) : �Biti+1(x; y; z0; u; v); Ai(x; y; x; x; z; z0; u; v);Biti(x; y; z; u; v) : �Biti+1(x; y; z0; u; v); Ai(x; y; x; y; z; z0; u; v);Biti(x; y; z; u; v) : �Biti+1(x; y; z0; u; v); Ai(x; y; y; x; z; z0; u; v);Biti(x; y; z; u; v) : �Biti+1(x; y; z0; u; v); Ai(x; y; y; y; z; z0; u; v):The intuition is that each unfolding of a rule for a Biti predicate describes one addressbit. The variable z can be thought as a pointer to an address bit, while z0 points tothe next bit. Note the four possible combinations of variables in the third and fourtharguments of body EDB predicate A. Each combination encodes two bits of information,an address bit and a carry bit. Intuitively, x and y, which are persistent variables, i.e.,they appear both in the head atom and in the recursive body atom, act as the constants0 and 1. That is, the third argument being x, or y corresponds to the address bit being 0or 1, respectively. Similarly, the fourth argument being x, or y corresponds to the carrybit being 0 or 1, respectively. The carry bits encode the carry obtained when the previousaddress is incremented by 1. Note that the variables u and v are also persistent in theabove rules; this persistence connects nodes that belong to the same con�guration.The rules for Bitn encode also the symbol pointed to by the n-bit address. For eachsymbol a of the machine M we have a unary EDB predicate Qa. The symbol in acon�guration position is encoded by rules of the form:Bitn(x; y; z; u; v) : �Bit1(x; y; z0; u; v); An(x; y; x; x; z; z0; u; v); Qa(z):21



(The 3rd and 4th arguments of An could also be the pair x; y, the pair y; x, or the pairy; y.)So far the rules encode a sequence of address bits and tape symbols. To encode thestart of the computation, we use the 0-ary goal predicate C, a 1-ary EDB predicate Start,and the rule C : �Bit1(x; y; z; u; v); Start(z):To encode the end of the computation, we use rules of the form:Bitn(x; y; z; u; v) : �An(x; y; x; x; z; z0; u; v); Qa(z);for symbols a that correspond to accepting states. (The 3rd and 4th arguments in Ancould also be the pair x; y, the pair y; x, or the pair y; y.)Finally, to encode the transition from con�guration to con�guration, we use rules ofthe formBitn(x; y; z; u; v) : �Bit1(x; y; z0; u0; u); An(x; y; x; x; z; z0; u; v); Qa(z):(The 3rd and 4th arguments in An could also be the pair x; y, the pair y; x, or the pairy; y.) Notice that u persists but changes position, but v does not persist (only x and ypersist along nonsuccessive con�gurations). Intuitively, u's role is to connect successivecon�gurations.We now have to show how the conjunctive queries in � �nd errors in encoding ofcomputations. The queries in � have no distinguished variables. We describe eachdisjunct of � by listing its atomic formulas. We use dots to denote variables with uniqueoccurrences.The �rst thing that we need to check is that the address bits indeed act as an n-bitcounter. That is, the �rst address is 0; : : : ; 0 and two adjacent addresses are successive.Thus, one possible error is that the �rst address is not 0; : : : ; 0. Such an error can befound by the following conjunctive query:Start(z1); A1(x; y; :; :; z1; z2; u; v); : : : ; Ai(x; y; y; :; zi; zi+1; u; v):Here the third argument of Ai is y, expressing the fact that the i-th address bit is 1.The other errors that can prevent adjacent addresses from being successive are:1. the �rst carry bit is 0,2. the i-th address bit and the i-th carry bit are 1, but the (i+ 1)-st carry bit is 0,3. the i-th address bit or the i-th carry bit is 0, but the (i+ 1)-st carry bit is 1,4. the i-th address bit and the i-th carry bit are 0, but the (i+ 1)-st address bit is 1,5. the i-th address bit and the i-th carry bit are 1, but the (i+ 1)-st address bit is 1,22



6. the i-th address bit is 1 and the i-th carry bit is 0, but the (i+ 1)-st address bit is0,7. the i-th address bit is 0 and the i-th carry bit is 1, but the (i+ 1)-st address bit is0,We show how errors of, for example, type (2) can be discovered; the other errors canbe handled similarly. Such errors are found by the following conjunctive query:Ai(x; y; y; :; zi; zi+1; :; :);Ai+1(x; y; :; :; zi+1; zi+2; :; :); : : : ; An(x; y; :; :; zn; zn+1; :; :);A1(x; y; :; :; zn+1; zn+2; :; :); : : :Ai(x; y; :; y; zn+i; zn+i+1; :; :);Ai+1(x; y; :; x; zn+i+1; zn+i+2; :; :):The y's in the third argument on the �rst Ai atom and the fourth argument of the secondAi atom mean that the i-th address bit and the i-th carry bit are 1. The x in the fourthargument of the Ai+1 atom means that the (i+ 1)-st carry bit is 0. Note that when the�rst n atoms refer to an address, the following i+ 1 atoms refer to the next address.Next, we note that that every sequence of 2n addresses starting with 0; : : : ; 0 hasto describe a single con�guration, that is, we have to ensure that con�guration changeexactly when the address is 1; : : : ; 1. Thus, there are two types of error here: (1) acon�guration change when the address is not 1; : : : ; 1,, and (2) a con�guration does notchange when the address is 1; : : : ; 1. For example, error of the �rst type are found by thefollowing conjunctive query: Ai(x; y; x; :; zi; zi+1; u; u); : : : ;An(x; y; :; :; zn; zn+1; u; v);A1(x; y; :; :; zn+1; zn+2; u0; u):The y's in the third argument of the �rst Ai atom means that the i-th address bit is 0.Thus, the address is not 1; : : : ; 1. The fact that the variable umoved from the 7th positionin the An atom to the 8th position in the second Ai atom indicates a con�guration change.We have so far ensured that we have a sequence of con�gurations of length 2n with theproper sequence of addresses. We now have to enure that these sequence of con�gurationindeed represent a legal computation of the machine M . The �rst type possible errorhere is when the �rst con�guration does not correspond to the empty tape with the headscanning the leftmost symbol. If ? is the blank symbol and s is the initial state, thenthe �rst con�guration is hs;?i?2n�1. To ensure that the �rst symbol is indeed hs;?i,the query Start(z1); A1(x; y; :; :; z1; z2; u; v); : : : ;An(x; y; :; :; zn; zn+1; u; v); Qa(zn)23



checks whether the �rst symbols is not a, for each a 6= hs;?i. Note that the variablesz1; : : : ; zn ensure that this query checks the �rst symbol in the �rst con�guration. Sim-ilarly, to ensure that the rest of the symbols in the �rst con�guration are blank, thequery Start(z); A1(x; y; :; :; z; :; :; u; v);Ai(x; y; y; :; zi; zi+1; u; v); : : : ;An(x; y; :; :; zn; zn+1; u; v); Qa(zn);checks that the �rst symbols is not a, for each a 6= ?. Because of the variable z, the �rstA1 atom must map to the �rst con�guration. The variables u; v then ensures that theatoms A1; : : : ; An also map to the �rst con�guration. The fact that the 3rd argument ofAi is y means that the query does not check the �rst symbol, since one of the addressbits is 1.Another type of errors is between corresponding symbols in two successive con�gura-tions, i.e., when such symbols do not obey the restrictions imposed by the relations RM ,RlM , and RrM . For example, a violation of RM will be found by conjunctive queries of thefollowing form: A1(x; y; s1; :; z1; z2; u; v); : : : ;An(x; y; sn; :; zn; zn+1; u; v); Qa(zn);A1(x; y; sn+1; :; zn+1; zn+2; u; v); : : : ;An(x; y; s2n; :; z2n; z2n+1; u; v)Qb(z2n);A1(x; y; s2n+1; :; z2n+1; z2n+2; u; v); : : : ;An(x; y; s3n; :; z3n; z3n+1; u; v)Qc(z3n);A1(x; y; sn+1; :; z4n+1; z4n+2; u0; u); : : : ;An(x; y; s2n; :; z5n; z5n+1; u0; u); Qd(z5n):The pattern of the zi's variables and the u; v variables ensures that the �rst three blocksof A1; : : : ; An atoms are mapped to three successive positions on the same con�guration.The patern of the variables u; v; u0 enures that the last block of A1; : : : ; An atoms ismapped to the next con�guration. Finally, the reuse of the variables sn+1; : : : ; s2n ensuresthe the second block and the last block refer to the same address and therefore aremapped to corresponding positions on successive con�gurations. Here a; b; c; d are suchthat (a; b; c; d) 62 RM .By adding to � conjunctive queries corresponding to all possible errors in the expan-sions of � { there are O(n) such errors, we reduce the acceptance problem for exponential-space Turing machines to containment of linear programs in unions of conjunctive queries.We now sketch how this encoding can be extended to alternating exponential-spacemachines. An alternating machineM has existential and universal states. Without lossof generality, we can assume that (1) the machine always alternates between existentialand universal states and (2) every con�guration of M have two possible successors, a leftsuccessor and a right successor. The latter can be captured by M having two transitionrelations, one for left successors and one for right successors. An accepting computationof M is a tree of con�gurations, where each con�guration is a successor of its parent, a24



universal con�guration (i.e., a con�guration on whichM is in a universal state) has bothits successors as children, and all leaves are accepting con�gurations.To encode a computation tree, we add to the Biti and Ai predicates two additionalarguments. The ruleBiti(x; y; z; u; v) : �Biti+1(x; y; z0; u; v); Ai(x; y; x; x; z; z0; u; v)will be replaced by the ruleBiti(x; y; z; u; v; w; t) : �Biti+1(x; y; z0; u; v; w; t); Ai(x; y; x; x; z; z0; u; v; w; t)The intuition is that t is either x, when the con�guration is existential, or y, when thecon�guration is universal. The pair u; v was replaced by the triple u; v; w to accountfor the fact that universal con�guration has two successors. The other rules for Biti arereplaced analogously.We assume that the starting state is existential, so the rule for C is:C : �Bit1(x; y; z; u; v; w; x); Start(z):The rules that encode transitions between con�gurations have to check whether thesource con�guration is existential or universal. For existential con�gurations we haverules such as:Bitn(x; y; z; u; v; w; x) : �Bit1(x; y; z0; u0; u; w0; y); An(x; y; x; x; z; z0; u; v; w; x); Qa(z)Bitn(x; y; z; u; v; w; x) : �Bit1(x; y; z0; u0; v0; u; y); An(x; y; x; x; z; z0; u; v; w; x); Qa(z)The 7th argument of Bitn is x here, since these rules are for existential con�gurations.Here u migrates either to the 5th argument or the 6th argument of Bit1. Migration tothe 5th argument corresponds to a transition to a left successor, while migration to the6th argument corresponds to a transition to the right successor.For universal con�gurations we have rules such as:Bitn(x; y; z; u; v; w; y) : �Bit1(x; y; z0; u0; u; w0; x); Bit1(x; y; z0; u0; v0; u; x);An(x; y; x; x; z; z0; u; v; w; y); Qa(z)Here the 7th argument of Bitn is y, since this rule is for universal con�gurations. Thisrule is nonlinear; the two occurrences of Bit1 in the body correspond to transitions toboth the left successor and the right successor.The conjunctive queries in � also have to be revised to account for the additionalarguments of the Ai's. There are also additional errors to capture. For example, if a isa composite symbol with a universal state then we have the query:An(x; y; :; :; zn; zn+1; :; :; x); Qa(zn)This query �nds universal con�gurations marked as existential.25



The queries that capture transition errors, have to distinguish between left successorsand right successors. For example, the following query is directed at transitions to leftsuccessors: A1(x; y; s1; :; z1; z2; u; v; w; t); : : : ;An(x; y; sn; :; zn; zn+1; u; v; w; t); Qa(zn);A1(x; y; sn+1; :; zn+1; zn+2; u; v; w; t); : : : ;An(x; y; s2n; :; z2n; z2n+1; u; v; w; t)Qb(z2n);A1(x; y; s2n+1; :; z2n+1; z2n+2; u; v; w; t); : : : ;An(x; y; s3n; :; z3n; z3n+1; u; v; w; t)Qc(z3n);A1(x; y; sn+1; :; z4n+1; z4n+2; u0; u; w0; t0); : : : ;An(x; y; s2n; :; z5n; z5n+1; u0; u; w0; t0); Qd(z5n):Here u migrates one position to the right. For right successors, we need queries where umigrates two positions to the right.Theorem 5.15: Containment of a recursive Datalog program in a union of conjunctivequeries is complete for 2EXPTIME (EXPSPACE for linear programs).6 Equivalence to Nonrecursive ProgramsIn the previous section we studied the complexity of containment of recursive programsin unions of conjunctive queries. In this section we focus on containment of recursiveprograms in nonrecursive programs, i.e., we are given a recursive program � and anonrecursive program �0 and we have to decide whether � is contained in �0. Thestraightforward approach is to rewrite �0 as a union of conjunctive queries and apply theresults of the previous section. Unfortunately, rewriting nonrecursive programs as unionsof conjunctive queries may involve an exponential blow-up in size. We now show severalexamples; the queries de�ned in this example will be used later in the lower-bound proof.Example 6.1: Let E be a binary EDB predicate, i.e., the database is a directed graph.Consider the nonrecursive program consisting of the rules, for 0 < i � n:disti(x; y) : �disti�1(x; z); disti�1(z; y)and the rule dist0(x; y) : �E(x; y)Clearly, disti(x; y) holds precisely when there is a path of length 2i between x and y. Itis easy to see that the smallest conjunctive query equivalent to distn is of exponentialsize.Example 6.2: This example is a variant of the previous example. Consider the nonre-cursive program consisting of the rules, for 0 < i � n:dist�i(x; y) : �dist�i�1(x; z); dist�i�1(z; y)dist<i(x; y) : �dist<i�1(x; z); dist�i�1(z; y)26



and the rules dist�0(x; y) : �E(x; y)dist�0(x; x) : �dist<0(x; x) : �(Note the empty bodies in the last two rules; the convention is that an empty body isequivalent to true.) Here, dist�i(x; y) holds precisely when there is a path of length atmost 2i between x and y, and dist<i(x; y) holds precisely when there is a path of lengthat most 2i � 1 between x and y.Example 6.3 : To the EDB predicate E of the previous example, add unary EDBpredicates Zero and One, i.e., the database is a node-labeled directed graph. Considerthe nonrecursive program consisting of the rules, for 0 < i � n:equali(x; y; u; v) : �equali�1(x; x0; u; u0); equali�1(x0; y; u0; v);and the rules equal0(x; y; u; v) : �E(x; y); E(u; v); Zero(x); Zero(u);equal0(x; y; u; v) : �E(x; y); E(u; v); One(x); One(u):Here equali(x; y; u; v) holds precisely when there are paths length 2i between x and yand between u and v, respectively, and the paths have the same labels, with the possibleexception of the last points.In general, the upper bounds of Theorem 5.12 together with the exponential blow-upinvolved in rewriting nonrecursive programs as union of conjunctive queries imply upperbounds of triply exponential time for containment of recursive programs in nonrecursiveprograms and doubly exponential space for containment of linear recursive programsin nonrecursive programs. It turns out that the succinctness of nonrecursive programsis inherent, and these bounds are optimal. We can encode doubly-exponential space-bounded computation by using 2n-bit counters. We can discover errors among bits thatare doubly exponentially far from each other using programs such as those in the aboveexamples.We focus �rst on linear programs and doubly exponential-space Turing machines. Acon�guration of such a machineM can be described by a string of length 22n. Thus, weneed 2n address bit to describe a position in the con�guration.As in Section 5.3, each rule unfolding in our encoding will describe one address bit.Thus, each position in a con�guration will be encoded by 2n rule unfoldings. In Sec-tion 5.3, we had the predicates Bit1; : : : ; Bitn to denote the n address bits. We cannotdo this here, since we have 2n address bits. Instead, we use one ternary IDB predicateBit and one binary EDB predicate A. In addition we use several unary EDB predicates.27



The recursive program � contains the following rules:Bit(z; u; v) : �Bit(z0; u; v); A(z; u; v);Address(z); E(z; z0); Zero(z); Carry0(z)Bit(z; u; v) : �Bit(z0; u; v); A(z; u; v);Address(z); E(z; z0); Zero(z); Carry1(z)Bit(z; u; v) : �Bit(z0; u; v); A(z; u; v);Address(z); E(z; z0); One(z); Carry0(z)Bit(z; u; v) : �Bit(z0; u; v); A(z; u; v);Address(z); E(z; z0); One(z); Carry1(z)The di�erence from the rules for Biti in Section 5.3 is that we have additional EDB atomsAddress(z), E(z; z0), Zero(z), One(z), Carry0(z), and Carry1(z). Here the variable zpoints to an address bit or to a symbol. So we call these variables points. The atomAddress(z) says that these rules describe address points, so we call these rules addressrules. The atoms E(z; z0) connects adjacent points. The rest of the atoms encode the ad-dress and carry bits. Notice that these atoms encode the information that was previouslycarried by the �rst four arguments of the Ai predicates.We have separate rules in � for encoding con�guration symbols:Bit(z; u; v) : �Bit(z0; u; v); A(z; u; v); E(z; z0); Symbol(z); Qa(z):The atom Symbol(z) says that the rule describes a symbol, so we call this rule a symbolrule.To encode the start of the computation, we use the 0-ary goal predicate C, a 1-aryEDB predicate Start, and the ruleC : �Start(z); Bit(z; u; v); A(z; u; v); Address(z); Zero(z); Carry1(z)which means that the �rst bit of the �rst con�guration is the address bit 0.To encode the end of the computation, we put in � rules of the form:Bit(z; u; v) : �A(z; u; v); Symbol(z); Qa(z);for symbols a that correspond to accepting states. That is, the last symbol of the lastcon�guration is an accepting symbol.Finally, to encode the transition from con�guration to con�guration, we put in �rules of the formBit(z; u; v) : �Bit(z0; u0; u); A(z; u; v); E(z; z0); Symbol(z); Qa(z):We now describe the construction of �0. As in the previous lower-bound proof, the ideaof our encoding is that the unfolding expansions of the recursive program � correspond toa sequence of con�gurations, ending with an accepting con�guration of the machineM .The role of the nonrecursive program �0 is to check whether the sequence correspondsto an accepting computation. If an expansion � does not correspond to an acceptingcomputation, then we will have that � � �0. Thus, we will have that � is contained in�0 if and only if the machineM does not accept.28



In Section 5.3, unfolding expansions of the recursive program were guaranteed tocorrespond to sequences of n-bit addresses, with a symbol attached to each n-th bit.Here we want unfolding expansions that corresponds to sequences of 2n-bit address pointsfollowed by a symbol point. This, however, is not guaranteed by the program, since wehave a single Bit predicate. Instead, we have rules in �0 that \�lter out" expansions thatare not of this format.All expansions start with the unfolding of the start rule. We need to verify that thisis followed by 2n � 1 unfoldings of address rules, and then an unfolding of the symbolrule. This is veri�ed by putting the following rule in �0:C : �Start(z); dist<n(z; z0); Symbol(z0)and the rule C : �Start(z); distn(z; z0); Address(z0)The former rule �nds expansions where one of the �rst 2n unfoldings is of a symbol rule.The latter rule �nds expansion where the 2n + 1-st unfolding is of an address rule.The above queries take care of the �rst 2n + 1 unfoldings. To make sure that theexpansions has the right format we also need the ruleC : �Symbol(z); dist�n(z; z0); Symbol(z00)and the rule C : �Symbol(z); distn(z; z0); E(z0; z00); Address(z00)This makes sure that a symbol point is followed by 2n address points followed by a symbolpoint.So far we have ensured that that we have �ltered away all expansions to do notcorrespond to sequences of blocks of 2n address points followed by a symbol point. Anal-ogously to Section 5.3, we need to check is that the address bits indeed act as an 2n-bitcounter. That is, the �rst address is 0; : : : ; 0 and two adjacent addresses are successive.As in Section 5.3, there are 7 possible errors in the counter. For example, a possibleerror is that the �rst address is not 0; : : : ; 0. Such an error can be found by the followingquery: C : �Start(z); dist<n(z; z0); One(z0):Another possible addressing error is when the i-th address bit and the i-th carry bit are1, but the (i+ 1)-st carry bit is 0. Such an error is found by the following rule:C : �Address(z); One(z); distn(z; z0); E(z0; z00);Carry1(z00); E(z00; z000); Carry0(z000)This query is using the fact that we need only consider expansions in which the distancebetween corresponding address points is precisely 2n+1. Thus, z and z00 point to addresspoints in corresponding positions of successive addresses, and z000 is the next addresspoint. 29



So far we have ensured that our addresses indeed act as a 2n-bit counter. We nowhave to ensure that every sequence of 22n addresses starting with 0; : : : ; 0 describe asingle con�guration, that is, we have to ensure that con�guration change exactly whenthe address is 1; : : : ; 1. Thus, there are two types of error here: (1) a con�gurationchange when the address is not 1; : : : ; 1,, and (2) a con�guration does not change whenthe address is 1; : : : ; 1. For example, error of the �rst type are found by the followingrule in �0:C : �Address(z); A(z; u; v); Zero(z); dist�n(z; z0); Symbol(z0); E(z0; z00); A(z00; u0; u)The atom Zero(z) indicates that we are referring to an the address that is not 1; : : : ; 1.The fact that the variable u moved from the 2nd position in the �rst A atom to the 3thposition in the second A atom indicates a con�guration change.We have so far ensured that we have a sequence of con�gurations of length 22n + 1with the proper sequence of addresses. We now have to enure that this sequence ofcon�gurations indeed represent a legal computation of the machineM . For example, wehave to detect errors between corresponding symbols in two successive con�gurations,i.e., when such symbols do not obey the restrictions imposed by the relations RM , RlM ,and RrM . A violation of RM will be found by rules in �0 of the following form:C : �A(z1; ; u; v); Qa(z1); E(z1; t1);A(t1; u; v); distn(t1; z2);A(z2; u; v); Qb(z2); distn(z2; z03); E(z02; z3);A(z3; u; v); Qc(z3);A(t2; :; u); distn(t2; z4); ;An(z4; :; u); Qd(z4);equaln(t1; z2; t2; t4):Here, the variables z1, z2, and z3 point to three consecutive symbols a, b, and c. Thevariables t1 points to the �rst address point preceding z2. The variable z4 points to thesymbols d in the successor con�guration (notice that umigrates one position to the right),and t2 points to the �rst address point preceding z4. The atom equaln(t1; z2; t2; z4) guar-antees that z2 and z4 have the same addresses, so they point to symbols in correspondingpositions.By adding to �0 rules corresponding to all possible errors in the expansions of � {there are O(n) such errors, we reduce the acceptance problem for doubly exponential-space Turing machines to containment of linear programs in nonrecursive programs. Wedeal with nonlinear programs as in Section 5.3, that is, by adding arguments to Bit andA and using nonlinear rule we can force universal con�gurations to have two successors.Theorem 6.4: Containment of a recursive Datalog program in a nonrecursive Datalogprogram is complete for 3EXPTIME (2EXPSPACE for linear programs).30



Before stating our �nal result, we note that if � is a recursive program and �0 is anonrecursive program such that both � and �0 have the same goal predicate Q, and Qoccurs only in heads of rules, than � � �0 if and only if �[�0 � �0. Thus, containmentin nonrecursive programs is reducible to equivalence to nonrecursive programs.Theorem 6.5: Equivalence of recursive Datalog programs to nonrecursive Datalog pro-grams is complete for 3EXPTIME (2EXPSPACE for linear recursive programs).We note that the blow-up in the translation from nonrecursive programs to unionsof conjunctive queries is caused by the nonlinearity of the nonrecursive programs. Forlinear nonrecursive programs the translation yields a union of conjunctive queries, whereeach conjunctive query is of size that is linear in the size of the nonrecursive program(though the number of terms in the union could be exponential).Example 6.6: Again we use the binary EDB predicate E and the unary EDB predicatesZero and One. Consider the nonrecursive program consisting of the rules, for 1 < i � n:wordi(x; y) : �wordi�1(x; x0); E(x0; y); Zero(y)wordi(x; y) : �wordi�1(x; x0); E(x0; y); One(y)and the rules word1(x; y) : �E(x; y); Zero(x)word1(x; y) : �E(x; y); One(x)It is easy to see that by unfolding wordn to a union of conjunctive queries we get expo-nentially many terms in the union, but each term is of size O(n).Nevertheless, the proof of Theorem 5.12 does go through, and the bounds of thetheorem hold for linear nonrecursive programs.Theorem 6.7: Equivalence of recursive Datalog programs to nonrecursive, linear Datalogprograms is complete for 2EXPTIME (EXPSPACE for linear recursive programs).Proof: Let � be a program with goal predicate Q and let �0 be a nonrecursive, linearprogram with goal Q. As observed above, �0 can be unfolded to an exponential union� = [i�i of conjunctive queries, each of size linear in the size of �0. By Theorem 5.11,� is contained in � if and only ifT (Ap treesQ;� ) � [i T (A�iQ;�):By Propositions 4.1 and 4.4, we can obtain an automaton A�Q;�, whose size is exponentialin the size of � and �0, such thatT (A�Q;�) =[i T (A�iQ;�):The upper bound then follows as in Theorem 5.12.31
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