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On the Equivalence of RLS Implementations of
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Abstract—This letter compares the transients of the constrained
recursive least squares (CRLS) algorithm with the generalized
sidelobe canceler (GSC) employing the recursive least squares
(RLS) algorithm. We prove that the two adaptive implementations
are equivalent everywhere regardless of the blocking matrix
chosen. This guarantees that algorithm tuning is not affected by
the blocking matrix. This result differs from the more restrictive
case for transient equivalence of the constrained least mean-square
(CLMS) algorithm and the GSC employing the least mean square
(LMS) algorithm, for in this case the blocking matrix needs to be
unitary.

Index Terms—Beamforming, generalized sidelobe canceler
(GSC), linearly constrained adaptive filtering, linearly con-
strained minimum variance (LCMV).

I. INTRODUCTION

T HE LINEARLY constrained minimum-variance (LCMV)
filter and the generalized sidelobe canceler (GSC) are two

alternative structures for implementation of linearly constrained
filters which find applications in, for example, beamforming
[1], [2] and blind multiuser detection [3]. Several adaptation al-
gorithms have been proposed that estimate the coefficients of
the LCMV filter [1]–[10]. Gradient-based adaptive implemen-
tations of LCMV filters may suffer from slow convergence due
to the correlated nature of the input signal. In these cases, an
alternative may be the use of faster algorithms, such as those
based on the least squares (LS) solution.

The optimal (LCMV) filter is the one that minimizes the ob-
jective function subject to a set of linear constraints, i.e.,

subject to (1)

where is a vector of coefficients of length , is the
constraint matrix, and is the gain vector, being the
number of constraints. The most common LCMV filter used in
the literature is probably the one minimizing the mean output
energy (MOE) objective function, i.e., , where
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is the autocorrelation matrix of the input signal. In
the more general minimization problem, a desired signal may
be present, and the optimal filter is the one which minimizes the
mean-squared error (MSE) subject to a set oflinear constraints
given by and .

The GSC processor solves the same problem as the one given
in (1) by dividing the filter vector into two components oper-
ating on orthogonal subspaces

(2)

where is the constant part of vector that
satisfies the constraints, i.e., . The
matrix of full column-rank is often referred to as theblocking
matrixand spans the null space of the constraint matrix, i.e.,

. The vector is given as the solution
to the unconstrained problem

(3)

with given by (2).
The equivalence of the two optimal processors in (1) and

(2) has been shown by numerous authors (e.g., see [11]–[13]).
Although the optimal solutions are equivalent, their adaptive im-
plementations are not necessarily identical everywhere, where
everywhereherein means for all time instants and for all
realizations of the stochastic processes involved. For example,
transient equivalence for the least mean-square (LMS) algo-
rithm applied to the GSC processor and the constrained LMS
(CLMS) algorithm [1], which is the corresponding LCMV
implementation, can be ensured only for the particular case
of unitary blocking matrix, i.e., [2]. For a small
number of constraints, a unitary blocking matrix can lead to
a computationally complex implementation of the GSC struc-
ture rendering the total complexity of the filtering operation
comparable to that of the recursive LS (RLS) implementation.
On the other hand, simple nonunitary blocking matrices may
require extra care on algorithm tuning, for nonunitary matrices
do not preserve the modes of the correlation function [10].

To our knowledge, no results are available comparing the
RLS implementations of the LCMV filter,viz., the constrained
RLS (CRLS) algorithm introduced in [4] and the GSC struc-
ture employing an unconstrained RLS algorithm. The goal of
this letter is to investigate what are the requirements for tran-
sient equivalence everywhere when considering the implemen-
tations of the CRLS and the GSC–RLS algorithms. In particular,
we investigate if the requirement of unitary blocking matrix is
also necessary in the case of the RLS implementations. On the
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contrary, we show that for the RLS implementations to produce
identical transient curves, the blocking matrix only needs to be
orthogonal to the constraint matrix, which is always the case
in any GSC structure. Our argument also provides extra insight
to the solution of the constrained LS problem, for it is expected
that recursive solutions to a deterministic minimization problem
give the same results regardless of the implementation chosen,
except for errors introduced by quantization.

II. CRLS ALGORITHM

For the more general case where the desired signal is not
necessarily zero, the linearly constrained RLS algorithm to be
discussed below uses the weighted LS criterion as objective
function , resulting in the following optimization problem:

s.t. (4)

where the error is defined as

(5)

and is the forgetting factor .
The optimal LS solution, derived in [14], can be split into two

terms

(6)

where

(7)

and

(8)

is the deterministiccorrelation matrix, and
is the deterministiccross-correlation vector, defined
respectively as

(9)

(10)

The coefficient vector is independent of the con-
straints, whereas depends on the constraints imposed by

.
After lengthy but straightforward manipulations, an RLS up-

date of the coefficient vector in (6), referred to as the CRLS
algorithm, can be derived [4]

(11)

where is the gain vector

(12)

and , , and and are auxiliary matrices with di-
mensions , , and , respectively

(13)

(14)

(15)

For the equivalence study to be carried out in Section IV, we will
make use of (11)–(15). For efficient recursive implementations
of the matrices and , see [4].

III. GSC–RLS ALGORITHM

Many implementations of linearly constrained adaptive fil-
ters utilize the advantages of the GSC model [15], mainly
because this model employs unconstrained adaptation algo-
rithms that have been extensively studied in the literature. The
RLS recursions for the GSC structure become

(16)

(17)

(18)

(19)

where is thea priori error, and is the gain
vector. The inverse of the correlation matrix can be
updated recursively in a standard way by using thematrix in-
versionlemma [15]. In the next section, we will compare the
recursion in (19) with that of the CRLS algorithm in (11) in
order to prove that both implementations yield the same tran-
sient solution everywhere, regardless of the blocking matrix
used.

IV. EQUIVALENCE OFCRLSAND GSC–RLS IMPLEMENTATIONS

Our goal in this section is to investigate under what circum-
stances the transients of the CRLS and the GSC-RLS algorithms
are identical everywhere.

We will study the coefficient-vector evolution defined as

(20)

Equations (11)–(14) give us the coefficient-vector evolution for
the CRLS algorithm as

(21)

For the GSC-RLS algorithm, with ,
(19) gives us

(22)
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where was used together with
and . In order for

(21) and (22) to be identical, it is required that the following
matrix equality holds:

(23)

In addition, the initialization of both schemes (CRLS and
GSC–RLS) should also be equivalent, which means that

and . As
a consequence, holds. Therefore, equiv-
alence of the CRLS and the GSC–RLS processors using the
correct initialization is ensured by induction with the following
lemma.

Lemma 1: For , if exists and is sym-
metric, if rank , and if rank , (23) holds
true.

Proof: Define matrices and
, where . The left-hand

side of (23) becomes , and
it remains to show that this addition of matrices equals identity.
For this purpose, let us introduce the matrix . is a
full-rank matrix, and, consequently, exists. We
have

(24)

where the relation was used. We have

(25)

Therefore

which concludes the proof.
As a consequence of Lemma 1, and (21) and (22), we

can conclude that the necessary requirement for equivalent
transients of the CRLS and the GSC-RLS algorithms is that

, which holds true in any GSC structure. This is a
looser requirement than the transient equivalence of the CLMS
and GSC–LMS algorithms, which in addition to ,
requires to be unitary. For reasons of computational com-
plexity and robustness, the result just presented serves as an
indication that implementing the unconstrained form of the
RLS algorithm may be preferable, either using the Householder
transform as described in [10] or in a GSC structure.

As the overall complexity is a function of filtering and coeffi-
cient updating, implementation of a nonunitary sparse blocking
matrix together with a fast RLS algorithm may be an interesting
alternative for constrained adaptive filters.

Fig. 1. Coefficient-error vector as a function of the iterationk for a
beamforming application using derivative constraints.

V. SIMULATIONS

In this section, the equivalence of the CRLS and GSC–RLS
algorithms is investigated in a beamforming application where
the desired signal is set to zero, i.e., . A uniform linear
array with antennas with element spacing equal to half
wave-length was used in a system with users, where the
signal of one user is of interest, and the other four are treated as
interferers. The desired signal had an SNR of 15 dB, and two of
the interfering users had 20 dB while the other two had 25 dB.
For a more complete description of the setup, see [10].

A second-order derivative constraint matrix [16] was used,
giving a total of three constraints. The GSC implementation
used a nonunitary blocking matrix constructed through a se-
quence of sparse matrices as presented in [17] rendering an im-
plementation of the multiplication of low computational
complexity.

The CRLS and the GSC–RLS algorithms used .
Fig. 1 shows the evolution of coefficient-error norm for the
CRLS and the GSC–RLS algorithms. Fig. 1 also plots the re-
sults for the CLMS and the GSC-LMS algorithms. As can be
seen from the figure, the CLMS and the GSC-LMS algorithms
only become identical when using the unitary blocking matrix,
whereas the CRLS and the GSC–RLS algorithms are identical
for the nonunitary blocking matrix.

VI. CONCLUSION

This letter presents theoretical results linking transient be-
havior of the constrained RLS algorithm and the GSC structure
with the RLS algorithm. We showed that contrary to the LMS
algorithm, in the case of the RLS algorithm, transient behavior
can always be ensured identical in the two forms of implemen-
tation provided only that the blocking matrix and the constraint
matrix span orthogonal subspaces. This result facilitates algo-
rithm tuning, for it establishes that the constrained algorithm
behaves exactly like its unconstrained counterpart in transient
as well as in steady state. This confirms intuition, for both im-
plementations solve the same LS problem exactly. The result



WERNERet al.: EQUIVALENCE OF RLS IMPLEMENTATIONS OF LCMV AND GSC PROCESSORS 359

presented herein may favor the utilization of the unconstrained
counterpart of the CRLS algorithm, for it facilitates the choice
of various versions of the RLS algorithm optimized with respect
to computational complexity and robustness.
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