Commun. math. Phys. 38, 1-10 (1974) © by Springer-Verlag 1974

On the Equivalence of the KMS Condition and the Variational Principle for Quantum Lattice Systems

Huzihiro Araki

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

Received May 16, 1974

Abstract. For quantum spin systems on a lattice of an arbitrary dimension, the KMS condition and the variational principle are shown to be equivalent at an arbitrary temperature for translationally invariant states.

§ 1. Main Result

The KMS condition and the variational principle are known to be equivalent for classical spin lattice systems [8]. The equivalence has been shown also for quantum spin lattice systems when either the dimension of the lattice is one or the temperature is high [7]. We shall prove the equivalence for any spin lattice system at arbitrary non-zero temperature.

We use the same notation as in [7]. The assumption on the interaction potential $\Phi(I)$ is as follows:

- (i) Translational covariance: $\Phi(I + a) = \tau(a) \Phi(I)$.
- (ii) Finite-body interaction: $\Phi(I) = 0$ if $N(I) \ge N_0$ for some N_0 . (iii) Relatively short range: $\|\Phi\| = \sum_{I \ge 0} \|\Phi(I)\| / N(I) < \infty$.

For a state ψ of the C*-algebra \mathfrak{A} (of quasi-local operators) and a finite subset Λ of the lattice, ψ_{Λ} denotes the restriction of ψ to $\mathfrak{A}(\Lambda)$ (the local subalgebra) and ϱ_w^A denotes the density matrix for ψ_A :

$$\varrho_{\psi}^{A} \in \mathfrak{A}(A), \quad \psi(Q) = \operatorname{tr}(\varrho_{\psi}^{A}Q) \quad \text{for all} \quad Q \in \mathfrak{A}(A).$$
(1.1)

The variational principle at the inverse temperature β is satisfied by a translationally invariant state ψ of \mathfrak{A} if

$$s(\psi) - \beta \psi(A) = P \equiv \lim_{A\uparrow} N(A)^{-1} \log \operatorname{tr}(e^{-\beta U(A)})$$
(1.2)

where $s(\psi)$ is the mean entropy of the state ψ :

$$\mathbf{s}(\psi) = -\lim_{\Lambda \uparrow} \mathbf{N}(\Lambda)^{-1} \,\psi(\log \varrho_{\psi}^{\Lambda})\,,\tag{1.3}$$

H. Araki

 $\psi(A)$ is the mean energy of the state ψ :

$$A \equiv \sum_{I \ge 0} \mathcal{N}(I)^{-1} \Phi(I) \in \mathfrak{A}, \qquad (1.4)$$

$$\psi(A) = \lim_{\Lambda^{\uparrow}} \mathcal{N}(\Lambda)^{-1} \psi(\mathcal{U}(\Lambda)), \qquad (1.5)$$

and $U(\Lambda)$ is the total energy in Λ :

$$U(\Lambda) = \sum_{I \in \Lambda} \Phi(I) .$$
 (1.6)

The time translation automorphisms σ_t of \mathfrak{A} are given by

$$\sigma_t Q = \lim_{\Lambda^{\uparrow}} e^{i U(\Lambda) t} Q e^{-i U(\Lambda) t}, \quad Q \in \mathfrak{A}.$$
(1.7)

A state ψ of \mathfrak{A} satisfies the *KMS* condition at the inverse temperature β if for any given Q_1 and Q_2 in \mathfrak{A} there exists a function F(z) of a complex variable z in the strip $0 \leq \text{Im } z \leq \beta$ such that F is continuous and bounded on the strip, holomorphic inside the strip and

$$F(t) = \psi(Q_2 \sigma_t Q_1), \quad F(t+i\beta) = \psi(\{\sigma_t Q_1\} Q_2)$$

for all real t.

We shall prove the following:

Theorem 1. A translationally invariant state ψ satisfies the KMS condition at the inverse temperature β if and only if it satisfies the variational principle at the inverse temperature β .

The proof that ψ satisfies the *KMS* condition if it satisfies the variational principle has been known for some time. (Theorems 4.2, 3.2, and 3.4 in [9].) We have only to prove the converse.

It has been shown (Theorem 9.1 in [4]) that ψ satisfies the KMS condition if and only if it satisfies the following Gibbs condition:

Let $\mathfrak{H}_{\psi}, \pi_{\psi}$, and Ψ be the cyclic Hilbert space, representation and vector associated with a faithful ψ . Let W_{Λ} be the interaction energy across the boundary of Λ :

$$W_A = \Sigma \left\{ \Phi(I) ; \quad I \cap A \neq \emptyset , \quad I \cap A^c \neq \emptyset \right\}.$$
(1.8)

We recall the following notation defined in [1]:

$$\Psi(k) = \sum_{n=0}^{1/2} \int_{0}^{1/2} dt_{1} \int_{0}^{t_{1}} dt_{2} \dots \int_{0}^{t_{n-1}} dt_{n}$$

$$\cdot \varDelta_{\Psi}^{t_{n}} k \varDelta_{\Psi}^{t_{n-1}-t_{n}} k \dots \varDelta_{\Psi}^{t_{1}-t_{2}} k \Psi$$

$$(= \exp\left[(1/2) \left\{ \log \varDelta_{\Psi} + k \right\}\right] \Psi).$$
(1.8)

2

A state ψ satisfies the Gibbs condition at the inverse temperature β if and only if it is faithful and the vector state given by the vector $\Psi(\beta W_A)$ is a product of the Gibbs state

$$\varphi_{G}^{A}(Q) = \operatorname{tr}(e^{-\beta \operatorname{U}(A)}Q)/\operatorname{tr}(e^{-\beta \operatorname{U}(A)})$$

on $\mathfrak{A}(\Lambda)$ and a positive linear functional on $\mathfrak{A}(\Lambda^{c})$.

We shall show that the Gibbs condition implies the variational equality (1.2) by using an inequality of Umegaki [10] and Lindblad [11].

§ 2. Continuity Properties of Modular Operators

We need some continuity properties of the modular operators and the modular conjugation operators when there is a monotonously increasing net of von Neumann algebras \mathfrak{M}_{α} with

$$\mathfrak{M} = \left(\bigcup_{lpha} \mathfrak{M}_{lpha}\right)''$$

Let Ψ be a cyclic and separating vector for the von Neumann algebra \mathfrak{M} . Let E_{α} be the projection onto the subspace $\overline{\mathfrak{M}_{\alpha}\Psi}$. Let Δ and J be the modular operator and the modular conjugation operator for Ψ relative to \mathfrak{M} . Define Δ_{α} and J_{α} to be the same for Ψ relative to \mathfrak{M}_{α} on $\overline{\mathfrak{M}_{\alpha}\Psi}$. They are defined to be the identity operator and an antiunitary involution on $(\mathfrak{M}_{\alpha}\Psi)^{\perp}$, respectively, and are defined additively on the sum $\overline{\mathfrak{M}_{\alpha}\Psi} + (\mathfrak{M}_{\alpha}\Psi)^{\perp}$.

Theorem 2. Δ_{α}^{it} and J_{α} have strong limits which are Δ^{it} and J, respectively, where the convergence is uniform in t over any compact set.

We shall present the proof as a series of Lemmas. We first recall Sakai's theorem on the linear Radon-Nicodym derivative. (For example, see Lemmas 1 and 2 in [6].) Let ψ and φ be normal positive linear functionals on a von Neumann algebra \mathfrak{M} and assume that ψ is faithful and $\varphi \leq \psi$ (i.e. $\varphi(Q) \leq \psi(Q)$ for all positive Q in \mathfrak{M}). Then there exists a unique $h \in \mathfrak{M}^+$ (the positive elements of \mathfrak{M}) such that $||h|| \leq 1$ and

$$\varphi(Q) = \psi(hQ + Qh)/2 \tag{2.1}$$

for all $Q \in \mathfrak{M}$.

Lemma 1. Let Ψ be a cyclic and separating vector for \mathfrak{M} such that

$$\omega_{\Psi} = \psi \quad (here \; \omega_{\Psi}(Q) \equiv (\Psi, Q \, \Psi)) \,. \tag{2.2}$$

Then $h\Psi$ is in the domain of the modular operator Δ_{Ψ} and

$$\Delta_{\Psi}h\Psi = 2h'\Psi - h\Psi \tag{2.3}$$

where h' is the unique positive element in \mathfrak{M}' satisfying

$$\varphi(Q) = (h'\Psi, Q\Psi). \tag{2.4}$$

Proof. For all $Q \in \mathfrak{M}$ we have

$$2\varphi(Q) = (2h'\Psi, Q\Psi) = (h\Psi, Q\Psi) + (Q^*\Psi, h\Psi).$$

By properties of Δ_{Ψ} and J_{Ψ} , we have

$$(\varDelta_{\Psi}^{1/2}h\Psi, \varDelta_{\Psi}^{1/2}Q\Psi) = (J_{\Psi}\varDelta_{\Psi}^{1/2}Q\Psi, J_{\Psi}\varDelta_{\Psi}^{1/2}h\Psi)$$
$$= (Q^*\Psi, h\Psi) = ((2h'-h)\Psi, Q\Psi).$$

Since $\mathfrak{M}\Psi$ is a core of $\Delta_{\Psi}^{1/2}$, we see that $\Delta_{\Psi}^{1/2}h\Psi$ is in the domain of $\Delta_{\Psi}^{1/2}$ and

$$\Delta_{\Psi}^{1/2}(\Delta_{\Psi}^{1/2}h\Psi) = (2h'-h)\Psi.$$

This proves Lemma 1.

We now investigate the linear Radon-Nikodym derivatives h_{α} of the restrictions φ_{α} and ψ_{α} of φ and ψ to $\mathfrak{M}_{\alpha} \subset \mathfrak{M}$. Since $\varphi_{\alpha} \leq \psi_{\alpha}$ follows from $\varphi \leq \psi$ and ψ_{α} is faithful, we have the unique existence of $h_{\alpha} \in \mathfrak{M}_{\alpha}^+$ with $||h_{\alpha}|| \leq 1$.

Lemma 2. h_{α} and $\Delta_{\alpha}h_{\alpha}\Psi$ strongly tend to h and $\Delta h\Psi$, respectively.

Proof. By weak compactness, there exists a weak accumulation point h_{∞} of h_{α} . We then have

$$\varphi(Q) = \psi(h_{\infty}Q + Qh_{\infty})/2, \qquad Q \in \mathfrak{M}_{\alpha}$$

for an arbitrary α due to (2.1) for φ_{γ} , $\gamma \ge \alpha$. Since $\left(\bigcup_{\alpha} \mathfrak{M}_{\alpha}\right)^{"} = \mathfrak{M}$, we have $h_{\alpha} = h$. Hence h_{α} has a weak limit which is *h*. From (2.1) for φ_{α} again, we obtain

$$\|h\Psi\|^2 = \varphi(h) = \lim_{\alpha} \varphi(h_{\alpha}) = \lim_{\alpha} \psi(h_{\alpha}^2) = \lim_{\alpha} \|h_{\alpha}\Psi\|^2.$$

This implies that $h_{\alpha}Q'\Psi$ tends strongly to $hQ'\Psi$ for Q'=1 and hence for any $Q' \in \mathfrak{M}' \subset \mathfrak{M}'_{\alpha}$. Therefore h_{α} tends strongly to h.

Since $h' \in \mathfrak{M}'$ in Lemma 1 satisfies $h' \in \mathfrak{M}'_{\alpha}(\supset \mathfrak{M}')$ and $\varphi_{\alpha}(Q) = \varphi(Q) = (h' \Psi, Q \Psi)$ for $Q \in \mathfrak{M}_{\alpha}$, we obtain

$$\Delta_{\alpha}h_{\alpha}\Psi=2h'\Psi-h_{\alpha}\Psi.$$

Hence $\Delta_{\alpha}h_{\alpha}\Psi$ tends strongly to

$$\Delta h\Psi = 2h'\Psi - h\Psi$$

This proves Lemma 2.

Lemma 3. The set of vectors $(\Delta_{\Psi} + 1) h \Psi$, when φ runs over normal linear functionals on \mathfrak{M} satisfying $\varphi \leq \varphi$, is total.

Proof. Let
$$Q \in \mathfrak{M}^+$$
, $||Q|| \leq 1$. Consider

$$h = (1/2) \{1 + \lambda_f \int \sigma_t^{\psi}(Q) f(t) dt\}$$
(2.5)

where σ_t^{ψ} denotes the modular automorphisms and the Fourier transform of f is an arbitrary C^{∞} -function with a compact support. Then $\sigma_t^{\psi}(h)$ is an entire function of t and $h\Psi$ is an analytic vector of Δ_{Ψ} (because $h\Psi$ has compact support relative to the spectral measure of Δ_{Ψ}). We choose sufficiently small real positive λ_f satisfying

$$\lambda_f \int |f(t \pm (i/2))| \, \mathrm{d} t < 1 \,. \tag{2.6}$$

Then

$$t' \equiv (1/2) \, j_{\Psi} (\sigma^{\psi}_{-i/2}(h) + \sigma^{\psi}_{i/2}(h)) \tag{2.7}$$

is obviously a selfadjoint element of \mathfrak{M}' and satisfies 1 > t' > 0 due to (2.6). Hence

$$\varphi(Q) \equiv (t' \Psi, Q \Psi), \qquad Q \in \mathfrak{M}$$

defines a normal positive linear functional of \mathfrak{M} satisfying $\varphi < \psi$. Furthermore

$$2\varphi(Q) = (J_{\Psi} \Delta_{\Psi}^{1/2} h \Psi, Q \Psi) + (\Psi, Q j_{\Psi}(\sigma_{i/2}^{\psi}(h))^* \Psi)$$
$$= (h\Psi, Q\Psi) + (\Psi, Qh\Psi) = \psi(hQ + Qh).$$

The linear span of $h\Psi$ with h given by (2.5) contains Ψ (for $\lambda_f = 0$) and $\int \sigma_t^{\Psi}(Q) f(t) dt \Psi$. Hence it is a dense set of analytic vectors of Δ_{Ψ} and is a core of the selfadjoint positive operator Δ_{Ψ} . Hence $(\Delta_{\Psi} + 1) h\Psi$ is total.

Lemma 4. Δ_{α}^{it} tends strongly to Δ^{it} uniformly in t over any compact set.

Proof. By Lemma 2, we have

$$\lim_{\alpha} \left\| \left(\Delta_{\alpha} + 1 \right) h_{\alpha} \Psi - \left(\Delta + 1 \right) h \Psi \right\| = 0.$$

Since $\|(\varDelta_{\alpha}+1)^{-1}\| \leq 1$, we have

$$\lim_{\alpha} \|h_{\alpha} \Psi - (\Delta_{\alpha} + 1)^{-1} (\Delta + 1) h \Psi\| = 0.$$

Hence we have

$$\lim_{\alpha} \{ (\Delta_{\alpha} + 1)^{-1} - (\Delta + 1)^{-1} \} x = 0$$

for $x = (\Delta + 1) h \Psi$. Since $||(\Delta_{\alpha} + 1)^{-1}|| \leq 1$ and since x is total by Lemma 3, we have

$$\lim_{\alpha} (\Delta_{\alpha} + 1)^{-1} = (\Delta + 1)^{-1} .$$

This implies the conclusion of Lemma 4.

Lemma 5. J_{α} tends strongly to J.

Proof. Let

$$\mathbf{x}_{\alpha}(z) \equiv e^{z^2} (\Delta_{\alpha}^z h_{\alpha} \Psi - \Delta^z h \Psi) \,.$$

By Lemma 2 and Lemma 4, we have

$$\lim_{\alpha} \sup_{t} \|\mathbf{x}_{\alpha}(s+it)\| = 0$$

for s = 0 and s = 1. For example

$$\mathbf{x}_{\alpha}(1+it) = \varDelta_{\alpha}^{it} e^{(1+it)^2} (\varDelta_{\alpha} h_{\alpha} \Psi - \varDelta h \Psi) + e^{(1+it)^2} (\varDelta_{\alpha}^{it} - \varDelta^{it}) \varDelta h \Psi .$$

By the three lines theorem, we have

$$\lim_{\alpha} \sup_{\|x\| \leq 1} \sup_{t} |(x, x_{\alpha}(s+it))| = 0$$

for $0 \leq s \leq 1$. Hence we have

$$\lim_{\alpha} \left\| \Delta_{\alpha}^{z} h_{\alpha} \Psi - \Delta^{z} h \Psi \right\| = 0.$$

By setting $z = \frac{1}{2}$, we obtain

$$\lim_{\alpha} \|J_{\alpha}h_{\alpha}\Psi - Jh\Psi\| = 0.$$
$$\lim_{\alpha} \|(J_{\alpha} - J)h\Psi\| = 0.$$

Hence

By the proof of Lemma 3, the set of
$$h\Psi$$
 is total and we have $\lim J_{\alpha} = J$.
Lemmas 4 and 5 prove Theorem 2.

Corollary. Assume that $Q_{\alpha} \in \mathfrak{M}_{\alpha}$, $Q \in \mathfrak{M}$, $\lim_{\alpha} Q_{\alpha} = Q$ and $\lim_{\alpha} Q_{\alpha}^* = Q^*$ (strongly). For any z with (Rez) $\in [0, \frac{1}{2}]$,

$$\lim_{\alpha} \Delta_{\alpha}^{z} Q_{\alpha} \Psi = \Delta^{z} Q \Psi , \qquad (2.8)$$

where the convergence is uniform in z over any compact subset of the strip $0 \leq \text{Re } z \leq 1/2$.

Proof. We have

$$\Delta_{\alpha}^{1/2} Q_{\alpha} \Psi - \Delta^{1/2} Q \Psi = J_{\alpha} Q_{\alpha}^* \Psi - J Q^* \Psi = J_{\alpha} (Q_{\alpha}^* \Psi - Q^* \Psi) + (J_{\alpha} - J) Q^* \Psi.$$

By Theorem 2, we have (2.8) for $(\text{Re }z) = \frac{1}{2}$ and (Re z) = 0 uniformly on any compact set of values of Im z. By the three lines theorem, (with e^{z^2} multiplied), we obtain (2.8) for $(\text{Re }z) \in [0, \frac{1}{2}]$, with the stated uniformity.

Lemma 6. If $k_{\alpha} \in \mathfrak{M}_{\alpha}$, $k_{\alpha}^* = k_{\alpha}$, $\sup_{\alpha} ||k_{\alpha}|| < \infty$ and $\lim_{\alpha} k_{\alpha} = k$ (strongly), then

$$\lim_{\alpha} \Psi(k_{\alpha}) = \Psi(k) \tag{2.9}$$

where $\Psi(k_{\alpha})$ is defined in terms of Δ_{α} .

Proof. By the preceding Corollary, we have

$$\begin{split} \lim_{\alpha} L_{j}^{\alpha} &= 0 , \\ L_{j}^{\alpha} &\equiv \sup_{-\infty < t < \infty} e^{-t^{2}} \left\| k_{\alpha}^{j} \varDelta_{\alpha}^{(1/2) + it} k_{\alpha}^{n - j} \Psi - k^{j} \varDelta^{(1/2) + it} k^{n - j} \Psi \right\| \\ &= \sup \left\{ e^{-t^{2}} |(x, k_{\alpha}^{j} \varDelta_{\alpha}^{(1/2) + it} k_{\alpha}^{n - j} \Psi - k^{j} \varDelta^{(1/2) + it} k^{n - j} \Psi)| \\ &; -\infty < t < \infty, \left\| x \right\| \leq 1 \right\} . \end{split}$$

For the vector

$$\Psi(z_1,\ldots,z_n) \equiv e^{\sum z_j^2} \{ \Delta_{\alpha}^{z_1} k_{\alpha} \ldots \Delta_{\alpha}^{z_n} k_{\alpha} \Psi - \Delta^{z_1} k \ldots \Delta^{z_n} k \Psi \}$$

with $\operatorname{Re}(z_1 + \cdots + z_n) \leq \frac{1}{2}$ and $\operatorname{Re} z_j \geq 0$, we have the following estimate by Corollary 2.2 of [1]:

$$\|\Psi(z_1, ..., z_n)\| = \sup \{ |x, \Psi(z_1, ..., z_n)| ; \|x\| \le 1 \}$$

$$\le e^{1/4} \sup \{ L_j^{\alpha}; 0 \le j \le n \}.$$

Hence we have

$$\lim_{\alpha} \int_{0}^{1/2} dt_{1} \int_{0}^{t_{1}} dt_{2} \dots \int_{0}^{t_{n-1}} dt_{n} \Delta_{\alpha}^{t_{n}} k_{\alpha} \Delta_{\alpha}^{t_{n-1}-t_{n}} k_{\alpha} \dots \Delta_{\alpha}^{t_{1}-t_{2}} k_{\alpha} \Psi$$
$$= \int_{0}^{1/2} dt_{1} \int_{0}^{t_{1}} dt_{2} \dots \int_{0}^{t_{n-1}} dt_{n} \Delta^{t_{n}} k \Delta^{t_{n-1}-t_{n}} k \dots \Delta^{t_{1}-t_{2}} k \Psi.$$

Since

$$\begin{split} \sum_{n=0}^{\infty} \left\| \int_{0}^{t/2} \mathrm{d}t_{1} \int_{0}^{t_{1}} \mathrm{d}t_{2} \dots \int_{0}^{t_{n-1}} \mathrm{d}t_{n} \mathcal{\Delta}_{\alpha}^{t_{n}} k_{\alpha} \mathcal{\Delta}_{\alpha}^{t_{n-1}-t_{n}} k_{\alpha} \dots \mathcal{\Delta}_{\alpha}^{t_{1}-t_{2}} k_{\alpha} \Psi \right\| \\ & \leq \sum_{n=0}^{\infty} (n!)^{-1} \left\| k_{\alpha} \right\|^{n} \left\| \Psi \right\| \leq \left\| \Psi \right\| \exp \left\{ \sup_{\alpha} \left\| k_{\alpha} \right\| \right\} < \infty \,, \end{split}$$

we obtain (2.9).

§ 3. An Inequality

The main tool for our proof of Theorem 1 is the following:

Theorem 3. Let \mathfrak{N} be a finite Type I subfactor of a hyperfinite von Neumann algebra \mathfrak{M} , Ψ be a cyclic and separating unit vector for \mathfrak{M} , $k = k^* \in \mathfrak{M}$, $\varrho^{\mathfrak{N}}(\Psi)$ and $\varrho^{\mathfrak{N}}(\Psi(k))$ be the density matrices for the restrictions of vector states ω_{Ψ} and $\omega_{\Psi(k)}$ to \mathfrak{N} , i.e. the unique positive elements in \mathfrak{N} satisfying

$$(\Psi, Q\Psi) = \operatorname{tr}\left(\varrho^{\mathfrak{N}}(\Psi) Q\right), \qquad (\Psi(k), Q\Psi(k)) = \operatorname{tr}\left(\varrho^{\mathfrak{N}}(\Psi(k)) Q\right)$$

for all $Q \in \mathfrak{N}$. Then

$$(\Psi, k\Psi) \leq (\Psi, \{\log \varrho^{\mathfrak{N}}(\Psi(k)) - \log \varrho^{\mathfrak{N}}(\Psi)\} \Psi) \leq \log \{\|\Psi(k)\|^2\}.$$
(3.1)

First we prove the finite matrix case:

Lemma 7. If \mathfrak{M} is a finite Type I factor, then (3.1) holds.

Proof. As is well known, there exists a unitary map u from the underlying Hilbert space to \mathfrak{M} [considered as the Hilbert space with inner product $(Q_1, Q_2) = \operatorname{tr}(Q_1^*Q_2)$] such that u(Qx) = Q(ux) for all $Q \in \mathfrak{M}$ and $(u\Psi) > 0$. From the characterization of J_{Ψ} and Δ_{Ψ} in [3], it is easy to see that $u(J_{\Psi}x) = (ux)^*$ and $u(\Delta_{\Psi}^*x) = \varrho(\Psi)^{\alpha} x \varrho(\Psi)^{-\alpha}$ where $\varrho(\Psi) = (u\Psi)^2$ is the density matrix for ω_{Ψ} . Hence

$$u\Psi(k) = \sum_{n=0}^{\infty} \int_{0}^{1/2} dt_1 \dots \int_{0}^{t_{n-1}} dt_n \varrho(\Psi)^{t_n} k \varrho(\Psi)^{t_{n-1}-t_n} k \dots$$

 $\ldots \varrho(\Psi)^{t_1-t_2} k \varrho(\Psi)^{(1/2)-t_1}.$

By the formula (5.4) in [2], with A = k/2 and $B = (\log \varrho(\Psi))/2$, we obtain $u \Psi(k) = e^{\{k + \log \varrho(\Psi)\}/2}$.

$$\log \varrho(\Psi(k)) - \log \varrho(\Psi) = k.$$
(3.2)

We now recall an inequality derived by Lindblad. Let A and B be strictly positive elements of \mathfrak{M} which we assume to be a finite Type I factor. Let \mathfrak{N} be a subfactor of \mathfrak{M} and π be the conditional expectation from \mathfrak{M} onto \mathfrak{N} . Namely, for each $C \in \mathfrak{M}$, $\pi(C)$ is defined as the element of \mathfrak{N} satisfying $\varphi_0(\pi(C)Q) = \varphi_0(CQ)$ for all $Q \in \mathfrak{N}$ where φ_0 denotes the tracial state on \mathfrak{M} . If tr A = tr B, Umegaki defines the information between A and B by

$$I(A, B) = \operatorname{tr}(A \log A - A \log B)$$

which is always positive. (Umegaki's definition is for any semifinite \mathfrak{M} and operators A and B affiliated with \mathfrak{M} satisfying $A \ge 0$, $B \ge 0$, $s(A) \ge s(B)$ and $\varphi_0(A) = \varphi_0(B) < \infty$ where s(C) denotes the support projection of C.) Lindblad obtains the following inequality in Theorem 1 of [11] (also see Theorem 4 of [10]).

$$0 \le I(\pi(A), \pi(B)) \le I(A, B)$$
. (3.3)

We set $A = \varrho(\Psi)$ and $B = \varrho(\Psi(k))/||\Psi(k)||^2$. We then have $\pi(A) = \varrho^{\mathfrak{N}}(\Psi)$, $\pi(B) = \varrho^{\mathfrak{N}}(\Psi(k))/||\Psi(k)||^2$. Substituting these into (3.3) and using (3.2), tr $A = \text{tr } B = \text{tr } \pi(A) = \text{tr } \pi(B) = 1(||\Psi|| = 1)$, tr $AQ = (\Psi, Q\Psi)$ for $Q \in \mathfrak{M}$ and tr $\pi(A) Q = (\Psi, Q\Psi)$ for $Q \in \mathfrak{N}$, we obtain (3.1).

Proof of Theorem 3. There exists an increasing sequence of finite Type I factors \mathfrak{M}_n with $\mathfrak{M}_n \supset \mathfrak{N}$ and $\mathfrak{M} = \left(\bigcup_n \mathfrak{M}_n\right)^n$ since $\mathfrak{N}' \cap \mathfrak{M}$ is hyperfinite. Let $k_n \in \mathfrak{M}_n$ be such that $||k_n|| \leq ||k||$, $k_n^* = k_n$ and $\lim_n k_n = k$. By

8

Lemma 7, we have

$$(\Psi, k_n \Psi) \leq (\Psi, \{\log \varrho^{\mathfrak{N}}(\Psi(k_n)) - \log \varrho^{\mathfrak{N}}(\Psi)\} \Psi) \leq \log \{\|\Psi(k_n)\|^2\}.$$
(3.4)

By Lemma 6, we have $\lim_{\alpha} \Psi(k_n) = \Psi(k)$. Then the vector state $\omega_{\Psi(k_n)}^{\mathfrak{N}}$ of \mathfrak{N} tends to $\omega_{\Psi(k)}^{\mathfrak{N}}$ in norm. Hence $\lim_{\alpha} \varrho^{\mathfrak{N}}(\Psi(k_n)) = \varrho^{\mathfrak{N}}(\Psi(k))$. Since $\Psi(k)$ is separating by Corollary 4.4 of [1], $\varrho^{\mathfrak{N}}(\Psi(k))$ is a strictly positive matrix. Hence $\lim_{n} \log \varrho^{\mathfrak{N}}(\Psi(k_n)) = \log \varrho^{\mathfrak{N}}(\Psi(k))$. We then obtain (3.1) as the limit of (3.4).

§ 4. Proof of Theorem 1

By Theorem 1 of [5], we have

$$\log \{ \|\Psi(k)\|^2 \} \leq \log(\Psi, e^k \Psi).$$

Hence we have the estimate

$$2 \|k\| \ge \varepsilon(k) \ge 0,$$

$$\varepsilon(k) \equiv \log \{ \|\Psi(k)\|^2 \} - (\Psi, \{ \log \varrho^{\mathfrak{N}}(\Psi(k)) - \log \varrho^{\mathfrak{N}}(\Psi) \} \Psi).$$

For $k = \beta W_A$, we have $\lim_{\Lambda \to 0} ||k|| / N(\Lambda) = 0$ by Lemma 4 of [7]. Therefore

$$\lim_{\Lambda\uparrow} \{\mathbf{N}(\Lambda)^{-1} \varepsilon(k)\} = 0.$$
(4.1)

By the Gibbs condition as formulated in Section 1 (see [4]), the restriction $\omega_{\Psi(\beta W_A)}^{\mathfrak{N}}$ of the vector state $\omega_{\Psi(\beta W_A)}$ to $\mathfrak{N} = \mathfrak{A}(A)$ is the Gibbs state φ_G^A up to a proportionality constant, which is $\omega_{\Psi(\beta W_A)}(1) = \|\Psi(\beta W_A)\|^2$. Since $\varrho^{\mathfrak{N}}(\varphi_G^A) = e^{-\beta U(A)}/\operatorname{tr}(e^{-\beta U(A)})$, we obtain

$$- \operatorname{N}(\Lambda)^{-1} \psi(\log \varrho^{\mathfrak{R}}(\Psi)) - \beta \operatorname{N}(\Lambda)^{-1} \psi(\operatorname{U}(\Lambda))$$

=
$$- \operatorname{N}(\Lambda)^{-1} \varepsilon(\beta W_{\Lambda}) + \operatorname{N}(\Lambda)^{-1} \log \operatorname{tr}(e^{-\beta \operatorname{U}(\Lambda)}).$$
(4.2)

By taking the limit of large Λ and using (4.1), (1.3), (1.5) and the definition of *P* in (1.2), we obtain the variational equality:

$$P = \mathbf{s}(\psi) - \beta \psi(A) \, .$$

References

- 1. Araki, H.: Publ. RIMS, Kyoto Univ. 9, 165-209 (1973)
- 2. Araki, H.: Ann. Sci. École Norm. Sup. 4^e série, 6, 67-84 (1973)
- 3. Araki, H.: Pacific J. Math. 50, 309-354 (1974)
- 4. Araki, H.: Positive cone, Radon-Nikodym theorems, relative Hamiltonian and the Gibbs condition in statistical mechanics. An application of the Tomita-Takesaki theory. Lecture-note at Varenna Summer School, 1973 (RIMS preprint No. 151)

- 5. Araki, H.: Commun. math. Phys. 34, 167-178 (1973)
- 6. Araki, H.: Publ. RIMS, Kyoto Univ. 8, 439-469 (1972/73)
- 7. Araki, H., Ion, P. D. F.: Commun. math. Phys. 35, 1-12 (1974)
- 8. Brascamp, H.J.: Commun. math. Phys. 18, 82-96 (1970)
- 9. Lanford, O. E., III, Robinson, D. W.: Commun. math. Phys. 9, 327–338 (1968)
- 10. Umegaki, H.: Kōdai Math. Sem. Rep. 14, 59-85 (1962)
- 11. Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. To appear in Commun. math. Phys.

Communicated by G. Gallavotti

H. Araki Research Institute for Mathematical Sciences Kyoto University Kyoto, Japan