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Abstract. For quantum spin systems on a lattice of an arbitrary dimension, the KMS
condition and the variational principle are shown to be equivalent at an arbitrary tempera-
ture for translationally invariant states.

§ 1. Main Result

The KMS condition and the variational principle are known to be
equivalent for classical spin lattice systems [8]. The equivalence has
been shown also for quantum spin lattice systems when either the
dimension of the lattice is one or the temperature is high [7]. We shall
prove the equivalence for any spin lattice system at arbitrary non-zero
temperature.

We use the same notation as in [7]. The assumption on the interaction
potential Φ(I) is as follows:

(i) Translational covariance: Φ(I + a) = τ(a) Φ(l).
(ii) Finite-body interaction: Φ(I) = 0 if N(/)^AΓ0 for some No.

(iii) Relatively short range: | |Φ| |= £ ||Φ(J)||/N(J)<αo.
130

For a state ψ of the C*-algebra 91 (of quasi-local operators) and a
finite subset A of the lattice, ψΛ denotes the restriction of ψ to 9ί(/L)
(the local subalgebra) and ρ^ denotes the density matrix for ψΛ:

2) for all <2e9I(Λ). (1.1)

The variational principle at the inverse temperature β is satisfied
by a translationally invariant state ip of 91 if

s(y>) - βψ{A) = P = lim N ( Λ Γ x log tr(e-βJJ{Λ)) (1.2)

where s{ψ) is the mean entropy of the state ψ:

- l imN(/l)- 1

φ (logρ^), (1.3)
Λj
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ψ(A) is the mean energy of the state ψ:

[, (1.4)

= limN(/L)~1 ψ(Ό(A)), (1.5)
/It

and U{A) is the total energy in A:

\](A)= X Φ(I). (1.6)
JcΛ

The time translation automorphisms σt of 21 are given by

σ t β = l imέ? i U ( i l ) t βέΓ i U ( i l ) t , β e 2 t . (1.7)
/It

A state ψ of 2ί satisfies the KMS condition at the inverse temperature β
if for any given Qx and Q2 i n ^ there exists a function F(z) of a complex
variable z in the strip 0 ^ I m z ^ β such that F is continuous and bounded
on the strip, holomorphic inside the strip and

F(ή = w(Q2°tQi), F(t + iβ) = xpifaQJ β 2)

for all real t.
We shall prove the following:

Theorem 1. A translationally invariant state ψ satisfies the KMS
condition at the inverse temperature β if and only if it satisfies the variational
principle at the inverse temperature β.

The proof that ψ satisfies the KMS condition if it satisfies the vari-
ational principle has been known for some time. (Theorems 4.2, 3.2,
and 3.4 in [9].) We have only to prove the converse.

It has been shown (Theorem 9.1 in [4]) that ψ satisfies the KMS
condition if and only if it satisfies the following Gibbs condition:

Let ξ)ψ,nψ, and Ψ be the cyclic Hubert space, representation and
vector associated with a faithful ψ. Let WΛ be the interaction energy
across the boundary of A:

WΛ = Σ{Φ(I); / n τ l Φ 0 , / n y l c Φ 0 } . (1.8)

We recall the following notation defined in [1]:

(1.8)

1/2

Σ i d :
n = 0 0

h f dί2
b

tn- 1

... J dί
ό



Equivalence of KMS and Variational Principle 3

A state ψ satisfies the Gibbs condition at the inverse temperature β if
and only if it is faithful and the vector state given by the vector Ψ(βWΛ)
is a product of the Gibbs state

on 91 (Λ) and a positive linear functional on
We shall show that the Gibbs condition implies the variational

equality (1.2) by using an inequality of Umegaki [10] and Lindblad [11].

§ 2. Continuity Properties of Modular Operators

We need some continuity properties of the modular operators and
the modular conjugation operators when there is a monotonously
increasing net of von Neumann algebras 9Jία with

m=([ Jaw,

Let Ψ be a cyclic and separating vector for the von Neumann algebra
SR. Let Ea be the projection onto the subspace WlaΨ. Let A and J be the
modular operator and the modular conjugation operator for Ψ relative
to 9Ji. Define Aa and Ja to be the same for Ψ relative to 9Jία on WlaΨ. They
are defined to be the identity operator and an antiunitary involution
on (9Jlα

ιF)1, respectively, and are defined additively on the sum

Theorem 2. A% and Ja have strong limits which are Aιt and J, re-
spectively, where the convergence is uniform in t over any compact set.

We shall present the proof as a series of Lemmas. We first recall
Sakai's theorem on the linear Radon-Nicodym derivative. (For example,
see Lemmas 1 and 2 in [6].) Let ψ and φ be normal positive linear
functional on a von Neumann algebra 9ΪI and assume that ψ is faithful
and φ^ψ (i.e. φ(Q)^ψ(Q) for all positive Q in 9Jί). Then there exists
a unique h e 9Ji+ (the positive elements of $R) such that \\h\\ S 1 and

(2.1)

for all Q e 9Ji.

Lemma 1. Let Ψ be a cyclic and separating vector for 9JΪ such that

ωΨ = ψ {hereωΨ(Q) = (Ψ,QΨ)). (2.2)

Then hΨ is in the domain of the modular operator AΨ and

AΨhΨ = 2h'Ψ-hΨ (2.3)
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where h' is the unique positive element in W satisfying

φ(Q) = (h'Ψ,QΨ). (2.4)

Proof. For all Q e SCR we have

2φ(Q) = {2hf Ψ,QΨ) = (h Ψ,QΨ) + (Q* Ψ,hΨ).

By properties of ΔΨ and JΨ, we have

= (Q*Ψ9 hΨ) = {{2ti -h)Ψ,QΨ).

Since 3RΨ is a core oϊΔ^2, we see that Δ^ί2hΨ is in the domain of Δψ" and

= {2h -h)Ψ.

This proves Lemma 1.
We now investigate the linear Radon-Nikodym derivatives ha

of the restrictions φa and φα of φ and ψ to 9Jία C 501. Since φa S ψa follows
from φ^ψ and ψa is faithful, we have the unique existence of haeW^
with | | f t β | |^ l .

Lemma 2. ha and ΔahaΨ strongly tend to h and ΔhΨ, respectively.

Proof. By weak compactness, there exists a weak accumulation
point h^ of ha. We then have

for an arbitrary α due to (2.1) for φv y ̂  α. Since ί(J 9JίαV' = 9JΪ, we have

ho0 = h. Hence /zα has a weak limit which is h. From (2.1) for φa again,
we obtain

This implies that haQ'Ψ tends strongly to hQ'Ψ for Qf=ί and hence
for any Q'eWcWa. Therefore ha tends strongly to h.

Since ί i ' e f in Lemma 1 satisfies h'eWa(DW) and φα(β) = φ(β)
= (hf Ψ, Q Ψ) for Q e 9Jία, we obtain

ΔahaΨ = 2h'Ψ-haΨ.

Hence ΔahaΨ tends strongly to

ΔhΨ = 2h'Ψ-hΨ.

This proves Lemma 2.

Lemma 3. 77ιe seί of vectors (ΔΨ+ ί)hΨ, when φ runs over normal
linear functionals on 9JΪ satisfying φ^ψ, is total.
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Proof. Let Q e 9K+, | |β | | ̂  1. Consider

f (2.5)

where σ^ denotes the modular automorphisms and the Fourier transform
of / is an arbitrary C00-function with a compact support. Then σf(h)
is an entire function of t and hΨ is an analytic vector of ΔΨ (because hΨ
has compact support relative to the spectral measure of ΛΨ). We choose
sufficiently small real positive λf satisfying

λf\\f(t±(ί/2))\dt<ί. (2.6)
Then

t' = (l/2)Mσϊil2(h) + σfl2(h)) (2.7)

is obviously a selfadjoint element of Wΐ and satisfies 1 > t' > 0 due to (2.6).
Hence

QeWi

defines a normal positive linear functional of 9Ji satisfying φ<ψ.
Furthermore

2φ{Q) = (JΨΔy2hΨ, QΨ) + {Ψ, QjΨ(σUh))* Ψ)

The linear span of hΨ with h given by (2.5) contains Ψ (for λf = 0)
and ]j σγ(Q)f(t)dtΨ. Hence it is a dense set of analytic vectors of ΔΨ

and is a core of the selfadjoint positive operator ΔΨ. Hence (ΔΨ+ ί)hΨ
is total.

Lemma 4. ΔιJ tends strongly to Διt uniformly in t over any compact set.

Proof. By Lemma 2, we have

Km\\(Aa+i)haΨ-{A +

Since ||(zlα + 1)~11| ^ 1, we have

lim \haψ-(Λx + I ) " : (A + 1) hΨII = 0.

Hence we have

for x = (Δ + i)hΨ. Since \\(Δa + 1)~A || ̂  1 and since x is total by Lemma 3,
we have

This implies the conclusion of Lemma 4.

Lemma 5. Ja tends strongly to J.
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Proof. Let

xa(z)^ez2(Azχψ-AzhΨ).

By Lemma 2 and Lemma 4, we have

lim sup ||xα(s-f it)\\ = 0

for s — 0 and s = 1. For example

By the three lines theorem, we have

lim sup sup |(x, xα(s + ii))\ = 0

for 0 ̂  5 ̂  1. Hence we have

By setting z = ^,we obtain

\im\\jχψ-JhΨ\\=ϊ).

Hence
l im| | (J α -J)f t<P| |=O.

By the proof of Lemma 3, the set of hΨ is total and we have lim Jα = J.
Lemmas 4 and 5 prove Theorem 2.

Corollary. Assume that βαe$)ΐα, βe9W, l imβ α = β and l imρ* = β*
a a.

(strongly). For any z with (Rez)e [0,χ],

(2.8)

where the convergence is uniform in z over any compact subset of the
strip 0 ̂  Re z^ 1/2.

Proof We have

All2QaΨ - Ail2QΨ ^ J^Ψ - JQ^Ψ = Ja{QtΨ - Q¥Ψ) + {Ja- J)Q"Ψ.

By Theorem 2, we have (2.8) for (Rez) = ̂  and (Rez) = 0 uniformly
on any compact set of values of Imz. By the three lines theorem,
(with ez2 multiplied), we obtain (2.8) for (Rez)e[0,i], with the stated
uniformity.

Lemma 6. // ka e 9Jlα, fe* = ka, sup \\ka\\ < oo and lim ka = k (strongly),

then
\imΨ{ka)=Ψ(k) (2.9)

α

where Ψ{ka) is defined in terms of Aa.
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Proof. By the preceding Corollary, we have

lim L) = 0,

L)= sup
00 <ί <— 00 < ί < 00

; - o o < £ < o o , ||x|| ^

For the vector

with Re (zxH \-zn)^j and R e z ^ O , we have the following estimate
by Corollary 2.2 of [1]:

Hence we have

1/2 ί i ί n _ i

l i m f d ί A f d ί 2 . . . \ dtffΔ^kf^Δ^' ί t n k a . . . Δ t

a

1 ~ t 2 k a Ψ
α b b b

1/2 ίi ί n - i

= J dίi J dί 2 ... J dtnΔ
t"kΔt»-ί-t«k...Δtί-t2kΨ .

b b b
Since

1/2 ίl ί n - l

Σ
Λti~t2

0

^ Σ
n=0

we obtain (2.9).

§ 3. An Inequality

The main tool for our proof of Theorem 1 is the following:

Theorem 3. Let 'ίl be a finite Type I subfactor of a hyperfinite von
Neumann algebra SDΪ, Ψ be a cyclic and separating unit vector for
9Jt, /c=/c*eSR, ρm(Ψ) and ρm(Ψ(k)) be the density matrices for the
restrictions of vector states ωΨ and coΨ{k) to 91, i.e. the unique positive
elements in 91 satisfying

(Ψ, QΨ) = tr(ρ«(«P) Q), (Ψ(k), QΨ{k)) = tr(

for all Q e 91. Then

(Ψ,kΨ)£{Ψ,{loge*(Ψ(k))-logQ*(Ψ)}Ψ)ίlog{\\Ψ{k)\\2}. (3.1)
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First we prove the finite matrix case:

Lemma 7. If W is a finite Type I factor, then (3.1) holds.

Proof. As is well known, there exists a unitary map u from the
underlying Hubert space to 9W [considered as the Hubert space with
inner product (QuQ2) = tr(Q:tQ2)] such that u(Qx) = Q(ux) for all
<2e9JΪ and (uΨ)>0. From the characterization of JΨ and ΔΨ in [3],
it is easy to see that u(JΨx) = (ux)* and u{Δψx) = ρ(Ψ)a xρ(Ψ)~* where
ρ(Ψ) = (uΨ)2 is the density matrix for ωΨ. Hence

oo 1/2 ί n _ !

uΨ{k)= Σ ί dίi ί dtHρ(ψY"ke(ψY"-^k...
n = 0 0 0

By the formula (5.4) in [2], with A = fc/2 and 5 = (logρ(^))/2, we obtain

uΨ(k) = e{k+logβ{ψ)]l2

Hence
logρ(!P(fe))-logρ(ΪO = fc. (3.2)

We now recall an inequality derived by Lindblad. Let A and B be
strictly positive elements of 9JΪ which we assume to be a finite Type I
factor. Let 91 be a subfactor of 501 and π be the conditional expectation
from SDΪ onto 91. Namely, for each C e 9W, π(Q is defined as the element
of 91 satisfying φo(π(C) Q) = φo(CQ) for all Q e 91 where φ0 denotes the
tracial state on 901 If trA = tτB, Umegaki defines the information
between A and B by

I (A, B) = tr (A log A-A log B)

which is always positive. (Umegaki's definition is for any semifinite SOI
and operators A and B affiliated with 9Jί satisfying A ^ 0, B ^ 0, s(A) ^ s(JB)
and φo(A) = φo(B) < oo where s(C) denotes the support projection of C.)
Lindblad obtains the following inequality in Theorem 1 of [11] (also see
Theorem 4 of [10]).

) . (3.3)

We set A = ρ(Ψ) and B = ρ{Ψ(k))/\\ Ψ{k)\\2. We then have π(A) = ρ*{Ψ),
) = ρ9l(Ψ(k))/\\Ψ(k)\\2. Substituting these into (3.3) and using (3.2),

trB = trπ(>l) = t rπ(B)=l( | | !P | | = l), trAQ = (Ψ, QΨ) for QeWl
and trπ(A) Q = (Ψ, QΨ) for Q e 91, we obtain (3.1).

Proof of Theorem 3. There exists an increasing sequence of finite
Type I factors 9Jin with 9KW D 91 and 501 = (M 9KnV' since WnWl is hyper-

finite. Let knemn be such that ||fen|| S \\k\\, k* = kn and limfcM=/c. By
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Lemma 7, we have

(Ψ,knΨ)ί(ΨΛyogρ*(Ψ(kn))-logQ*(Ψ)} Ψ)Zlog{||f(U|2} (3-4)

By Lemma 6, we have lim Ψ(kn) = Ψ(k). Then the vector state (Oψ{kn)

of 91 tends to ω$ ( k ) in "norm. Hence limρ*(^(fcj) = ρ*(¥>(fc)). Since( ) ) )

Ψ(k) is separating by Corollary 4.4 of [1], ρm(Ψ(k)) is a strictly positive
matrix. Hence l i m l o g ρ * ( ! P ( 0 = logρ®(¥'(fc)). We then obtain (3.1)

n

as the limit of (3.4).

§4. Proof of Theorem 1

By Theorem 1 of [5], we have

\og{\\Ψ{k)\\2}^\og{Ψ,ekΨ).

Hence we have the estimate

ε(k) = log {|| ψ(k)||2} - (Ψ, {logρ*(Ψ(k)) - logρ*(Ψ)}Ψ).

For k = βWΛ, we have lim ||fc||/N(Λ) = 0 by Lemma4 of [7]. Therefore
Λt

{ ( ) ( ) } (4.1)

By the Gibbs condition as formulated in Section 1 (see [4]), the
restriction cθψ{βWΛ) of the vector state coΨ{βWΛ) to 91 = 2Ϊ(Λ-) is the Gibbs
state ΨQ up to a proportionality constant, which is coΨ{βWΛ){ί)

WWdW2. Since ρΛ(φέ) = e-βυ{Λ)/tv(e-βυ{Λ)\ we obtain

1 ψ(υ(Λ))

By taking the limit of large A and using (4.1), (1.3), (1.5) and the definition
of P in (1.2), we obtain the variational equality:

P = s(ψ)-βψ{A).
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