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Abstract. Let k be a quadratic imaginary field, p a prime which
splits in k/Q and does not divide the class number hk of k. Let L
denote a finite abelian extension of k and let K be a subextension of
L/k. In this article we prove the p-part of the Equivariant Tamagawa
Number Conjecture for the pair (h0(Spec(L)), Z[Gal(L/K)]).
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1 Introduction

The aim of this paper is to provide new evidence for the validity of the Equivari-
ant Tamagawa Number Conjectures (for short ETNC) as formulated by Burns
and Flach in [4]. We recall that these conjectures generalize and refine the
Tamagawa Number Conjectures of Bloch, Kato, Fontaine, Perrin-Riou et al.
In the special case of the untwisted Tate motive the conjecture also refines
and generalizes the central conjectures of classical Galois module theory as
developed by Fröhlich, Chinburg, Taylor et al (see [2]). Moreover, in many
cases it implies refinements of Stark-type conjectures formulated by Rubin and
Popescu and the ‘refined class number formulas’ of Gross. For more details in
this direction see [3].
Let k denote a quadratic imaginary field. Let L be a finite abelian extension of
k and let K be any subfield of L/k. Let p be a prime number which does not
divide the class number hk of k and which splits in k/Q. Then we prove the
’p-part’ of the ETNC for the pair (h0(Spec(L), Z[Gal(L/K)])) (see Theorem
4.2).
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To help put the main result of this article into context we recall that so far
the ETNC for Tate motives has only been verified for abelian extensions of
the rational numbers Q and certain quaternion extensions of Q. The most
important result in this context is due to Burns and Greither [5] and establishes
the validity of the ETNC for the pair (h0(Spec(L)(r), Z[ 12 ][Gal(L/K)])), where
L/Q is abelian, Q ⊆ K ⊆ L and r ≤ 0. The 2-part was subsequently dealt with
by Flach [8], who also gives a nice survey on the general theory of the ETNC,
including a detailed outline of the proof of Burns and Greither. Shortly after
Burns and Greither, the special case r = 0 was independently shown (up to
the 2-part) by Ritter and Weiss [22] using different methods.
In order to prove our main result we follow very closely the strategy of Burns
and Greither, which was inspired by previous work of Bloch, Kato, Fontaine
and Perrin-Riou. In particular, in [13] Kato formulates a conjecture whose
proof is one of the main achievements in the work of Burns and Greither.
Roughly speaking, we will replace cyclotomic units by elliptic units. More
concretely, the ETNC for the pair (h0(Spec(L), Z[Gal(L/K)])) conjecturally
describes the leading coefficient in the Laurant series of the equivariant Dirichlet
L-function at s = 0 as the determinant of a canonical complex. By Kronecker’s
limit formula we replace L-values by sums of logarithms of elliptic units. In
this formulation we may pass to the limit along a Zp-extension and recover
(an analogue) of a conjecture which was formulated by Kato in [13]. As in
[5] we will deduce this limit conjecture from the Main Conjecture of Iwasawa
Theory and the triviality of certain Iwasawa µ-invariants (see Theorem 5.1).
Combining the validity of the limit theorem with Iwasawa-theoretic descent
considerations we then achieve the proof of our main result.
The Main Conjecture in the elliptic setting was proved by Rubin in [24], but
only in semi-simple case (i.e. p ∤ [L : k]). Following Greither’s exposition [10]
we adapt Rubin’s proof and obtain the full Main Conjecture (see Theorem 3.1)
for ray class fields L and primes p which split in k/Q and do not divide the
class number hk of k.
The triviality of µ-invariants in the elliptic setting is known from work of Gillard
[9], but again only in the ordinary case when p is split in k/Q.
The descent considerations are particularly involved in the presence of ’trivial
zeros’ of the associated p-adic L-functions. In this case we make crucial use of
a recently published result of the author [1] concerning valuative properties of
certain elliptic p-units.
As in the cyclotomic case it is possible to use the Iwasawa-theoretic result
of Theorem 5.1 and Iwasawa descent to obtain the p-part of the ETNC for
(h0(Spec(L)(r), Z[Gal(L/K)])), r < 0. We refer to thesis of Johnson [12] who
deals with this case.
We conclude this introduction with some remarks on the non-split situation.
Generically this case is more complicated because the corresponding Iwasawa
extension is of type Z2

p. The main issue, if one tries to apply the above described
strategy in the non-split case, is to prove µ = 0. Note that we already use the
triviality of µ in our proof of the Iwasawa Main Conjecture (see Remark 3.9).
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During the preparation of this manuscript I had the pleasure to spend three
months at the department of mathematics in Besançon and three weeks at
the department of mathematics at Caltech, Pasadena. My thanks go to the
algebra and number theory teams at both places for their hospitality and the
many interesting mathematical discussions.

2 Elliptic units

The aim of this section is to define the elliptic units that we will use in this
paper. Our main references are [20], [21] and [1].
We let L ⊆ C denote a Z-lattice of rank 2 with complex multiplication by the
ring of integers of a quadratic imaginary field k. We write N = Nk/Q for the
norm map from k to Q. For any Ok-ideal a satisfying (N(a), 6) = 1 we define
a meromorphic function

ψ(z;L, a) := F̃ (z;L, a−1L), z ∈ C,

where F̃ is defined in [20, Théorème principale, (15)]. This function ψ coincides
with the function θ(z; a) used by Rubin in [23, Appendix] and it is a canonical
12th root of the function θ(z;L, a) defined in [6, II.2].
The basic arithmetical properties of special values of ψ are summarized in [1,
§2].
We choose a Z-basis w1, w2 of the complex lattice L such that Im(w1/w2) > 0
and write η(τ), Im(τ) > 0, for the Dedekind η-function. Let η1, η2 denote the
quasi-periods of the Weierstrass ζ-function and for any z = a1w1 + a2w2 ∈
C, a1, a2 ∈ R, put z∗ = a1η1 + a2η2. Writing σ(z;L) for the Weierstrass σ-
function attached to L we define

ϕ(z;w1, w2) := 2πie−zz∗/2σ(z;L)η2

(
w1

w2

)

w−1
2 . (1)

Note that ϕ is exactly the function defined in [20, (4)]. The function ϕ is not a
function of lattices but depends on the choice of a basis w1, w2. Its 12th power
does not depend on this choice and we will also write ϕ12(z;L). We easily
deduce from [20, Sec. 3, Lemme] and its proof that the relation between ϕ and
ψ is given by

ψ12(z;L, a) =
ϕ12N(a)(z;L)

ϕ12(z; a−1L)
. (2)

3 The Iwasawa main conjecture

For any Ok-ideal b we write k(b) for the ray class field of conductor b. In this
notation k(1) denotes the Hilbert class field. We let w(b) denote the number
of roots of unity in k which are congruent to 1 modulo b. Hence w(1) is the
number of roots of unity in k. This number will also be denoted by wk.
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Let p denote an odd rational prime which splits in k/Q, and let p be a prime
ideal of k lying over p. We assume p ∤ hk. For each n ≥ 0 we write

Gal(k(pn+1)/k) = Gal(k(pn+1)/k(p)) × H,

where H is isomorphic to Gal(k(p)/k) by restriction. We set

kn := k(pn+1)H , k∞ :=
⋃

n≥0

kn,

and note that k∞/k is a Zp-extension. More precisely, k∞/k is the unique Zp-
extension of k which is unramified outside p. The prime p is totally ramified
in k∞/k.
Let now f be any integral ideal of k such that (f, p) = 1. Let F = k(fp)
denote the ray class field of conductor fp. We set Kn := Fkn = k(fpn+1) and
K∞ := ∪n≥0Kn. Then K∞/K0 is a Zp-extension in which each prime divisor
of p is totally ramified.
For any number field L we denote the p-part of the ideal class group of L by
A(L). Set A∞ := lim

←
n

A(Kn), the inverse limit formed with respect to the norm

maps. We write En for the group of global units of Kn. For a divisor g of f

we let Cn,g denote the subgroup of primitive Robert units of conductor fpn+1,
n ≥ 0. If g 6= (1), then Cn,g is generated by all ψ(1; gpn+1, a) with (a, gp) = 1
and the roots of unity in Kn. If g = (1), then the elements ψ(1; pn+1, a) are no
longer units. By [1, Th. 2.4] a product of the form

∏
ψ(1; pn+1, a)m(a) is a unit,

if and only if
∑

m(a)(N(a) − 1) = 0. We let Cn,g denote the group generated
by all such products and the roots of unity in Kn. We let Cn be the group of
units generated by the subgroups Cn,g with g running over the divisors of f.
We let Un denote the semi-local units of Kn⊗kkp which are congruent to 1
modulo all primes above p, and let Ēn and C̄n denote the closures of En ∩ Un

and Cn ∩ Un, respectively, in Un. Finally we define

Ē∞ := lim
←
n

Ēn, C̄∞ := lim
←
n

C̄n,

both inverse limits formed with respect to the norm maps.
We let

Λ = lim
←
n

Zp[Gal(Kn/k)]

denote the completed group ring and for a finitely generated Λ-module and any
abelian character χ of ∆ := Gal(K0/k) we define the χ-quotient of M by

Mχ := M⊗Zp[∆]Zp(χ),

where Zp(χ) denotes the ring extension of Zp generated by the values of χ. For
the basic properties of the functor M 7→ Mχ the reader is referred to [30, §2].
The ring Λχ is (non-canonically) isomorphic to the power series ring Zp(χ)[[T ]].
If Mχ is a finitely generated torsion Λχ-module, then we write char(Mχ) for
the characteristic ideal.
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Equivariant Tamagawa Number Conjecture 77

Theorem 3.1 Let p be an odd rational prime which splits into two distinct
primes in k/Q. Then

char(A∞,χ) = char((Ē∞/C̄∞)χ).

Remarks 3.2 a) If p ∤ [F : k] and p does not divide the number of roots of
unity in k(1), then the result of Theorem 3.1 is already proved by Rubin, see
[24, Th. 4.1(i)].
b) The Main Conjecture of Iwasawa theory for abelian extensions of Q was
first proved by Mazur and Wiles [16] using deep methods from algebraic geo-
metry. They proved the version which identifies the characteristic power series
of the projective limit over the p-class groups with a p-adic L-function. These
methods were further developed by Wiles [32] who in 1990 established the Main
Conjecture for p 6= 2 and Galois extensions L/K of a totally real base field K.
Under the condition that p ∤ |Gal(L/Q)| the result of Mazur and Wiles implies
a second version of the Main Conjecture where the p-adic L-function is replaced
by the characteristic power series of “units modulo cyclotomic units”. It is this
version which is needed in the context of this manuscript.
Due to work of Kolyvagin and Rubin there is a much more elementary proof
of the Main Conjecture for abelian extension L/Q with p ∤ |Gal(L/Q)|. This
approach uses the Euler system of cyclotomic units. Replacing cyclotomic
units by elliptic units (amongst many other things) Rubin achieves the result
mentioned in part a) of this remark.
In 1992 Greither [10] refined the method of Rubin and used the Euler system
of cyclotomic units to give an elementary (but technical) proof of the second
version of the Main Conjecture for L/Q abelian and all primes p. Our proof of
Theorem 3.1 will closely follow Greither’s exposition.
Finally we mention recent work of Huber and Kings [11]. They apply the
machinery of Euler systems and simultaneously prove the Main Conjecture
and the Bloch-Kato conjecture for all primes p 6= 2 and all abelian extensions
L/Q.

The rest of this section is devoted to the proof of Theorem 3.1. Let C(f)
denote the Iwasawa module of elliptic units as defined in [6, III.1.6]. Then
C(f) ⊆ C̄∞, so that char((Ē∞/C̄∞)χ) divides char((Ē∞/C(f))χ). By [6, III.2.1,
Theorem] it suffices to show that char(A∞,χ) divides char((Ē∞/C(f))χ) for all
characters χ of ∆ = Gal(K0/k) in order to prove the equality char(A∞,χ) =
char((Ē∞/C(f))χ). Hence it is enough for us to prove

char(A∞,χ) divides char((Ē∞/C̄∞)χ) (3)

for all characters χ of ∆.
For an abelian character χ of ∆ we write

eχ :=
1

|∆|

∑

δ∈∆

Tr(χ(δ))δ−1
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for the idempotent of Qp[∆] corresponding to χ with Tr denoting the trace
map from Zp(χ) to Zp. We also set Tr∆ =

∑

δ∈∆ δ.
For any Zp[∆]-module M we have an epimorphism

Mχ = M⊗Zp[∆]Zp(χ) −→ |∆|eχM, m⊗α 7→ |∆|λαeχm,

where λα ∈ Zp[∆] is an element which maps to α under Zp[∆] → Zp(χ). If Z
denotes the kernel, then it is easily seen that |∆|Z = 0.
Let now M = A∞ and χ = 1. Then

Z −→ A∞,χ −→ Tr∆A∞ −→ 0

is exact. Since Tr∆An is contained in the p-Sylow subgroup of the ideal class
group of kn, which is trivial by our assumption p ∤ hk and [31, Th. 10.4], we
see that A∞,χ is annihilated by |∆|. By the main result of [9] the Iwasawa
µ-invariant of A∞,χ is trivial. From this we deduce char(A∞,χ) = (1), thus
establishing (3) for the trivial character.

The rest of this section is devoted to the proof of the divisibility relation (3) for
non-trivial characters χ. As already mentioned we will closely follow Greither’s
exposition [10]. Whenever there are only minor changes we shall be very brief,
but emphasize those arguments which differ from the cyclotomic situation.
To see the Euler system method applied in an easy setting the reader is advised
to have a look at [26]. The strategy of the proof of our Theorem 3.1 is essentially
the same, but there are additional difficulties because we allow p to divide |∆|.
If p ∤ |∆|, the functor M 7→ Mχ is exact and the Euler system machinery
directly produces a divisibility result of the form char(A∞,χ) | char((Ē∞/C̄∞)χ).
If p | |∆|, the functor M 7→ Mχ is no longer exact, but Greither’s paper [10]
shows how to adapt the Euler system method to produce a weaker divisibility
relation of the form char(A∞,χ) | ηchar((Ē∞/C̄∞)χ) with an additional factor
η ∈ Λχwhich is essentially a product of powers of p and γ−1. Because of Lemma
3.7 and the triviality of the µ-invariant of A∞,χ, the factor η is coprime with
char(A∞,χ), so that we again derive a clean divisibility result as in the case
p ∤ |∆|.
We will need some notation from Kolyvagin’s theory. Let M be a large power
of p and define L = LF,M to be the set of all primes l of k satisfying

(i) l splits completely in F/k,

(ii) Nk/Q(l) ≡ 1(mod M).

By [24, Lem. 1.1] there exists a unique extension F (l) of F of degree M in Fk(l).
Further F (l)/F is cyclic, totally ramified at all primes above l and unramified
at all other primes.
We write J = ⊕λZλ for the group of fractional ideals of F and for every prime
l of k we let Jl = ⊕λ|lZλ denote the subgroup of J generated by the prime
divisors of l. If y ∈ F× we let (y)l ∈ Jl denote the support of the principal
ideal (y) = yOF above l. Analogously we write [y] ∈ J/MJ and [y]l ∈ Jl/MJl.
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Equivariant Tamagawa Number Conjecture 79

For l ∈ L we let

ϕl :
(OF /lOF )

×

(

(OF /lOF )
×

)M
−→ Jl/MJl

denote the Gal(F/k)-equivariant isomorphism defined by [24, Prop. 2.3]. For
every l ∈ L we also write ϕl for the induced map

ϕl : {y ∈ F×/
(
F×

)M
: [y]l = 0} −→ Jl/MJl, y 7→ ϕl(u),

where y = zMu, z ∈ F×, u a unit at all places above l.
We write S = SF,M for the set of squarefree integral ideals of k which are

only divisible by primes l ∈ L. If a ∈ S, a =
∏k

i=1 li, we write F (a) for
the compositum F (l1) · · ·F (lk) and F (Ok) = F . For every ideal g of Ok let
S(g) ⊆ S be the subset {a ∈ S : (a, g) = 1}. We write F̄ for the algebraic
closure of F and let U(g) denote the set of all functions

α : S(g) −→ F̄×

satisfying the properties (1a)-(1d) of [24]. Any such function will be called an
Euler system. Define UF = UF,M =

∐
U(g). For α ∈ UF we write S(α) for the

domain of α, i.e. S(α) = S(g) if α ∈ U(g).

Given any Euler system α ∈ UF , we let κ = κα : S(α) −→ F×/ (F×)
M

be the
map defined in [24, Prop. 2.2].
Then we have:

Proposition 3.3 Let α ∈ UF , κ = κα, a ∈ S(α), a 6= 1, and l a prime of k. If
a = l we also assume that α(1) satisfies vλ(α(1)) ≡ 0(mod M) for all λ | l in
F/k. Then:

If l ∤ a, then [κ(a)]l = 0.

If l | a, then [κ(a)]l = ϕl(κ(a/l)).

Proof See [24, Prop. 2.4]. Note that the additional assumption in the case
a = l is needed in (ii), both for its statement (ϕl(κ(1)) may not be defined in
general) and for its proof.

We now come to the technical heart of Kolyvagin’s induction procedure, the
application of Chebotarev’s theorem.

Theorem 3.4 Let K/k be an abelian extension, G = Gal(K/k). Let M denote
a (large enough) power of p. Assume that we are given an ideal class c ∈ A(K),

a finite Z[G]-module W ⊆ K×/ (K×)
M

, and a G-homomorphism

ψ : W −→ (Z/MZ) [G].

Let p̄c be the precise power of p̄ which divides the conductor f of K. Then
there are infinitely many primes λ of K such that
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(1) [λ] = p3c+3c in A(K).

(2) If l = k ∩ λ, then N l ≡ 1(mod M), and l splits completely in K.

(3) For all w ∈ W one has [w]l = 0 in Jl/MJl and there exists a unit
u ∈ (Z/MZ)

×
such that

ϕl(w) = p3c+3uψ(w)λ.

Proof We follow the strategy of Greither’s proof of [10, Th. 3.7], but have
to change some technical details. Let H denote the Hilbert p-class field of K.
For a natural number n we write µn for the nth roots of unity in an algebraic
closure of K. We consider the following diagram of fields

K ′′ = K(µM ,W 1/M )

K ′ = K(µM ) H

mmmmmmmmmmmmmmmm

K
Claim (a) [H ∩ K ′ : K] ≤ pc

Proof: The situation is clarified by the following diagram

K ′

s
s
s
s
s
s
s
s
s
s

K ′ ∩ H

x
x
x
x
x
x
x
x
x

k(µM )

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

K Q(µM )

w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w

•

}
}
}
}
}
}
}
}

k

Q

We write ϕZ (resp. ϕOk
) for the Euler function in Z (resp. Ok). Obviously

p̄ is totally ramified in k(µM )/k. Hence p̄ ramifies in K ′/k of exponent at
least ϕZ(M). On the other hand, p̄ is ramified in K/k of exponent at most
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ϕOk
(p̄c). Therefore any prime divisor of p̄ ramifies in K ′/K of degree at least

ϕZ(M)/ϕOk
(p̄c). Since K ′ ∩ H/K is unramified and [K ′ : K] ≤ ϕZ(M), we

derive [K ′ ∩ H : K] ≤ ϕOk
(p̄c). Since p is split in k/Q we obtain ϕOk

(p̄c) =
(p − 1)pc−1 < pc, so that the claim is shown.

In order to follow Greither’s core argument for the proof of Theorem 3.4 we
establish the following two claims.

Claim (b) Gal(H ∩ K ′′/K) is annihilated by p2c+1.

Claim (c) The cokernel of the canonical map from Kummer theory

Gal(K ′′/K ′) →֒ Hom(W,µM )

is annihilated by pc+2.

We write M = pm. Since divisors of p̄ are totally ramified in k(µM )/k of degree
ϕZ(M) and at most ramified in K/k of degree ϕOk

(p̄c), one has

[k(µM ) : K ∩ k(µM )] ≥
ϕZ(M)

ϕOk
(p̄c)

=

{

pm−c, if c ≥ 1,

(p − 1)pm−1, if c = 0.

Since k(µM )/k is cyclic, there exists an element j ∈ Gal(k(µM )/K ∩ k(µM ))
of exact order a = pm−c−1. Let r ∈ Z such that j(ζM ) = ζr

M . Then ra ≡
1(mod M) and rb 6≡ 1(mod M) for all 0 < b < a. We also write j ∈ Gal(K ′/K)
for the unique extension of j to K ′ with j|K = id. Let σ ∈ Gal(K ′′/K ′) and
α ∈ K ′′ such that αM = w ∈ W . Then there exists an integer tw such that

σ(α) = ζtw

M α. Since W ⊆ K×/ (K×)
M

, there is an extension of j to K ′′/K
such that j(α) = α for all α ∈ K ′′ such that αM ∈ W . Therefore, for any such
α,

jσj−1(α) = jσ(α) = j(ζtw

M α) = ζrtw

M α.

Hence j acts as σ 7→ σr on Gal(K ′′/K ′). Since Gal(K ′/K) acts trivially on
Gal(K ′′ ∩ K ′H/K ′) this implies that r − 1 annihilates Gal(K ′′ ∩ K ′H/K ′).
On the other hand Gal(K ′′ ∩ K ′H/K ′) is an abelian group of exponent M , so
that also gcd(M, r − 1) annihilates. Suppose that pd divides r − 1 with d ≥ 1.

By induction one easily shows that rpm−d

≡ 1(mod pm). Hence a = pm−c−1

divides pm−d, which implies d ≤ c + 1. As a consequence, pc+1 annihilates
Gal(K ′′ ∩ K ′H/K ′) ≃ Gal(K ′′ ∩ H/K ′ ∩ H). Together with claim (a) this
proves (b).

We now proceed to demonstrate claim (c). Let W ′ ⊆ K ′×/ (K ′×)
M

denote the
image of W under the homomorphism

K×/
(
K×

)M
−→ K ′×/

(
K ′×

)M
. (4)

Since Gal(K ′′/K ′) ≃ Hom(W ′, µM ), it suffices to show that the kernel U of
the map in (4) is annihilated by pc+2. By Kummer theory U is isomorphic to
H1(K ′/K, µM ).
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The extension K ′/K is cyclic and a Herbrand quotient argument shows

#H1(K ′/K, µM ) = #H0(K ′/K, µM ) = #
µM (K)

NK′/K(µM )
.

From [20, Lem. 7] we deduce that #µM (K) divides pc+2. Hence U is annihilated
by pc+2.

Now that claim (b) and (c) are proved, the core argument runs precisely as
in [10, pg.473/474] (using Greiter’s notation the proof has to be adapted in

the following way: pc+2ιψ has preimage γ ∈ Gal(K ′′/K ′); γ1 = pc+2
(

c
H/K

)

∈

Gal(H/K); δ ∈ Gal(K ′′H/K) with δ|H = p2c+1γ1, δ|K′′ = p2c+1γ.)

Recall the notation introduced at the beginning of this section. In addi-
tion, we let ∆ = Gal(K0/k), Gn = Gal(Kn/k), G∞ = Gal(K∞/k) and
Γn = Gal(Kn/K0). We fix a topological generator γ of Γ = Gal(K∞/K0),
and abbreviate the pnth power of γ by γn.
For any abelian character χ of ∆ we write Λχ = Zp(χ)[[T ]] for the usual
Iwasawa algebra. Note that Λ⊗Zp[∆]Zp(χ) ≃ Zp(χ)[[T ]], so that our notation

is consistent. We choose a generator hχ ∈ Λχ of char
(
(Ē∞/C̄∞)χ

)
. By the

general theory of finitely generated Λχ-modules there is a quasi-isomorphism

τ : A∞,χ −→

k⊕

i=1

Λχ/(gi)

with gi ∈ Λχ, and by definition, char(A∞,χ) = (g) with g := g1 · · · gk.
As in [10] we need the following lemmas providing the link to finite levels.

Lemma 3.5 Let χ 6= 1 be an abelian character of ∆. Then there exist constants
n0 = n0(F ), ci = ci(F ), i = 1, 2, a divisor h′

χ of hχ (all independent of n) and
Gn-homomorphisms

ϑn : Ēn,χ −→ Λn,χ := Λχ/(1 − γn)Λχ

such that

(i) h′
χ is relatively prime to γn − 1 for all n

(ii) (γn0
− 1)c1pc2h′

χΛn,χ ⊆ ϑn(im(C̄n,χ))

where here im(C̄n,χ) denotes the image of C̄n,χ in Ēn,χ.

Proof We mainly follow Greither’s proof of [10, Lem. 3.9].
We let

πn : Ē∞/(1 − γn)Ē∞ −→ Ēn

denote the canonical map and first prove
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Claim 1: There exists an integer κ (independent of n) such that

(γ − 1)pκ ker(πn) = 0 and (γ − 1)pκcok(πn) = 0

This is shown as in Greither’s proof of [10, Lem. 3.9]. He uses [25, Lem. 1.2],
which is stated under the additional assumption p ∤ |∆|. As already remarked
by Greither, this hypothesis is not necessary.

Next we define U∞ := lim
←
n

Un and proceed to prove

Claim 2 Qp⊗Zp
U∞ ≃ Qp⊗Zp

Λ = Λ[ 1p ].

This can be proved similarly as [18, Th. 11.2.5]. The assumption p ∤ |∆| of
loc.cit. is not needed, since we invert p. Alternatively, Claim 2 follows from [6,
Prop. III.1.3], together with Exercise (iii) of [6, III.1.1].

It follows that Qp⊗Zp
U∞,χ is free cyclic over Qp⊗Zp

Λχ = Λχ[ 1p ]. Since Λχ[ 1p ]

is a principal ideal domain, the submodule Qp⊗Zp
Ē∞,χ is also free cyclic over

Λχ[ 1p ]. It follows that there exists a pseudo-isomorphism

f : Ē∞,χ −→ C :=
⊕

i

Λχ/pniΛχ ⊕ Λχ.

If we apply the snake lemma to the diagram

0 //

²²

Ē∞,χ
=

//

f

²²

Ē∞,χ
//

pr◦f=:α

²²

0

0 // ⊕Λχ/pniΛχ
// C

pr
// Λχ // 0

we see that ker(α) is annihilated by some power of p and cok(α) is finite.
We note that for any G∞-module X one has

(X/(1 − γn)X)χ ≃ Xχ/(1 − γn)Xχ.

Let Wn denote the image of πn and set T := TorZp[∆](cok(πn), Zp(χ)). Then
we have a commutative diagram (with exact lines)

T
ϕ

// Wn,χ //

=

²²

Ēn,χ
// cok(πn)χ

// 0

ker(πn)χ
τ

// Ē∞,χ

(1−γn)Ē∞,χ

πn
// Wn,χ // 0
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We write πn,χ for the composite map and obtain the exact sequence

0 −→ ker(πn,χ) −→
Ē∞,χ

(1 − γn)Ē∞,χ

πn,χ
−→ Ēn,χ −→ cok(πn)χ −→ 0

We claim that ker(πn,χ) is annihilated by (γ − 1)2p2κ: Let e ∈ ker(πn,χ). Then

πn(e) = ϕ(t) for some t ∈ TorZp[∆](cok(πn), Zp(χ))

=⇒ πn((γ − 1)pκe) = ϕ((γ − 1)pκt) = 0

=⇒ τ(c) = (γ − 1)pκe for some c ∈ ker(πn)χ

=⇒ 0 = τ((γ − 1)pκc) = (γ − 1)2p2κe

So both ker(πn,χ) and cok(πn,χ) are annihilated by (γ − 1)2p2κ.
Consider now the following commutative diagram

Ē∞,χ

(γ−1)4p4κα
//

πn,χ

²²

Λχ

²²

Ēn,χ
ϑn

// Λn,χ = Λχ/(1 − γn)Λχ

where we define ϑn in the following manner: for e ∈ Ēn,χ there exists z ∈ Ē∞,χ

such that πn,χ(z) = (γ − 1)2p2κe. We then set

ϑn(e) := (γ − 1)2p2κα(z)(mod (1 − γn)Λχ).

On the other hand, we have the exact sequence

C̄∞,χ −→ Ē∞,χ −→
(
Ē∞/C̄∞

)

χ
−→ 0

so that
Ē∞,χ/im(C̄∞,χ) →֒

(
Ē∞/C̄∞

)

χ
.

The structure theorem of Λχ-torsion modules implies that hχ

(
Ē∞/C̄∞

)

χ
is

finite. Since α(Ē∞,χ)/α(imC̄∞,χ) is a quotient of Ē∞,χ/im(C̄∞,χ), the module
hχ

(
α(Ē∞,χ)/α(imC̄∞,χ)

)
is also finite. Since cok(α) is finite, there exists a

power ps such that ps ∈ α(Ē∞,χ) and pshχα(Ē∞,χ) ⊆ α(im(C̄∞,χ))). Therefore
p2shχ ∈ α(im(C̄∞,χ)) and we conclude further:

p2s+4κ(γ − 1)4hχ = p4κ(γ − 1)4α(z) for some z ∈ im(C̄∞,χ)

=⇒ ϑn(zn) = p2s+4κ(γ − 1)4hχ with zn = πn,χ(z) ∈ im(C̄n,χ)

=⇒ p2s+4κ(γ − 1)4hχΛn,χ ⊆ ϑn(im(C̄n,χ)) (5)

Since γn − 1 divides γn+1 − 1 for all n there exists a positive integer n0 and a
divisor h′

χ of hχ such that hχ divides (γn0
−1)h′

χ and such that h′
χ is relatively
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prime with γn − 1 for all n. The assertions of the lemma are now immediate
from (5).

Lemma 3.6 Let χ 6= 1 be a character of ∆. Then there exists a constant
c3 = c3(F ) (independent of n) and Gn-homomorphisms

τn : An,χ −→

k⊕

i=1

Λn,χ/(ḡi)

such that pc3cokτn = 0 for all n ≥ 0. Here ḡi denotes the image of gi ∈ Λχ in
Λn,χ.

Proof The proof is identical to Greither’s proof of [10, Lem. 3.10]. It is based
on the following sublemma which will be used again at the end of the section.

Lemma 3.7 For n ≥ 0 the kernel and cokernel of multiplication with γn − 1
on A∞ are finite.

Proof See [25, pg. 705]. It is remarkable that one uses the known validity of
Leopoldt’s conjecture in this proof.

The following technical lemma is the analogue of [10, Lem. 3.12].

Lemma 3.8 Let K/k be an abelian extension, G = Gal(K/k) and ∆ a sub-
group of G. Let χ denote a character of ∆, M a power of p, a = l1 · · · li ∈ SM,K .
Let l = li and let λ be a fixed prime divisor of l in K. We write c for the class
of λ and assume that c ∈ A = A(K), where as usual A(K) denotes the p-Sylow
subgroup of the ideal class group of K.
Let B ⊆ A denote the subgroup generated by classes of prime divisors of

l1, . . . , li−1. Let x ∈ K×/ (K×)
M

such that [x]q = 0 for all primes q not

dividing a, and let W ⊆ K×/ (K×)
M

denote the Zp[G]-span of x. Assume that
there exist elements

E, g, η ∈ Zp[G]

satisfying

(i) E · ann(Zp[G])χ
(c̄χ) ⊆ g · (Zp[G])χ, where c̄χ is the image of c under A →

A/B → (A/B)χ.

(ii) #
(

(Zp[G])χ /g (Zp[G])χ

)

< ∞

(iii) M ≥ |Aχ|

∣
∣
∣
∣
η

(
Jl/MJl

[W ]l

)

χ

∣
∣
∣
∣
, where [W ]l denotes the subgroup of Jl/MJl

generated by elements [w]l, w ∈ W .
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Then there exists a G-homomorphism

ψ : Wχ −→ ((Z/MZ) [G])χ

such that
gψ(x)λχ = (E · η[x]l)χ

in (Jl/MJl)χ.

Proof Completely analoguous to the proof of [10, Lem. 3.12].

We will now sketch the main argument of the proof of Theorem 3.1. We fix a
natural number n ≥ 1 and let K = Kn = Fkn. We view ∆ as a subgroup of
G = Gal(K/k).
We let M denote a large power of p which we will specify in course of the proof.
By Lemma 3.6 there exists for each i = 1, . . . , k an ideal class ci ∈ Aχ such
that

τn(ci) = (0, . . . , 0, pc3 , 0, . . . , 0)

in
⊕k

i=1 Λn,χ/(ḡi) with pc3 at the ith position. Choose ck+1 arbitrary. By
Lemma 3.5 there exists an element ξ′ ∈ im(C̄n,χ) such that ϑn(ξ′) = (γn0

−
1)c1pc2h′

χ in Λn,χ. It is now easy to show that there exists an actual elliptic
unit ξ ∈ Cn such that

ϑn(ξ) = (γn0
− 1)c1pc2h′

χ(mod MΛn,χ). (6)

By [24, Prop. 1.2] there exists an Euler system α ∈ UK,M such that α(1) = ξ.
Set d := 3c+3, where c was defined in Theorem 3.4. Following Greither we will
use Theorem 3.4 to construct inductively prime ideals λi of K, 1 ≤ i ≤ k + 1,
such that

(a) [λi]χ = pdci

(b) li = λi ∩ k ⊆ SM,K

(c) one has the equalities

(vλ1
(κ(l1)))χ = u1|∆|(γn0

− 1)c1pd+c2h′
χ,

(gi−1vλi
(κ(l1 · · · li)))χ = ui|∆|(γn0

− 1)ci−1
1 pd+c3

(
vλi−1

(κ(l1 · · · li−1))
)

χ

for 2 ≤ i ≤ k + 1. These are equalities in Λn,χ/MΛn,χ. The elements
ui are units in Z/MZ and vλ(x) ∈ (Z/MZ) [G] ≃ Λn/MΛn is defined by
vλ(x)λ = [x]l in Jl/MJl, if l = λ ∩ k ∈ LM,K .

We briefly descibe this induction process. For i = 1 we let c ∈ A be a preimage
of c1 under the canonical epimorphism A → Aχ. We apply Theorem 3.4 with
the data c, W = E/EM (with E := O×

K) and

ψ : W
v

−→ Ēn,χ/ĒM
n,χ

ϑn−→ Λn,χ/MΛn,χ
εχ
−→ (Z/MZ) [G]
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where v ∈ (Z/MZ)
×

is such that each unit x ∈ K⊗kp satisfies xv ≡ 1 modulo
all primes above p. The map εχ is defined in [10, Lemma 3.13]. Theorem 3.4
provides a prime ideal λ = λ1 which obviously satisfies (a) and (b) and, in
addition,

ϕl(w) = pduψ(w)λ for all w ∈ E/EM .

From this equality we conclude further

vλ(κ(l))λ = [κ(l)]l = ϕl(κ(1)) = ϕl(ξ)

= pduψ(ξ)λ =
(
pduv(εχ ◦ ϑn)(ξ)

)
λ

in Jl/MJl = (Z/MZ) [G]λ. Projecting the equality vλ(κ(l)) = pduv(εχ ◦ϑn)(ξ)
to ((Z/MZ) [G])χ = Λn,χ/MΛn,χ and using [10, Lemma 3.13] together with
(6) we obtain equality (c) for i = 1.
For the induction step i−1 7→ i we set ai−1 := l1 · · · li−1. Using (c) inductively
we see that

(
vλi−1

(κ(ai−1))
)

χ
divides




|∆|i−1p(i−2)(d+c3)+(d+c2)

︸ ︷︷ ︸

=:Di

(γn0
− 1)c1+

Pi−2
s=1 cs

1h′
χ






χ

.

Without loss of generality we may assume that c1 ≥ 2. Then one has c1 +
∑i−2

i=1 cs
1 ≤ ci−1

1 , so that
(
vλi−1

(κ(ai−1))
)

χ
also divides Di(γn0

− 1)tih′
χ with

ti := ci−1
1 . The module

N = (γn0
− 1)ti

(
Jli−1

/
(
M, [κ(ai−1)]li−1

))

χ

is a cyclic as a Λn,χ-module and annihilated by Dih
′
χ. Consequently

|N | ≤ |Λn,χ/(Di)| · |Λn,χ/(h′
χ)|.

Note that by the definition of h′
χ the quotient Λn,χ/(h′

χ) is finite. If we choose
M such that

M ≥ max
(
|Aχ| · |Λn,χ/(Dk+1)| · |Λn,χ/(h′

χ)|, pn
)

then one has |N | ≤ M |Aχ|
−1.

We now apply Lemma 3.8 with a = ai−1, g = gi−1, x = κ(ai−1), E = pc3

and η = (γn0
− 1)ti . Following Greither it is straight forward to check the

hypothesis (a), (b) and (c) of Lemma 3.8. Note that for (b) one has to use
the fact that char(A∞,χ) is relatively prime to γn − 1 for all n, which is an
immediate consequence of Lemma 3.5. We let W denote the Zp[G]-span of

κ(ai−1) in K×/ (K×)
M

and obtain a homomorphism

ψi : Wχ −→ ((Z/MZ) [G])χ
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such that gi−1ψi(κ(ai−1)) =
(
pc3(γn0

− 1)tivλi−1
(κ(ai−1))

)

χ
. We let c denote

a preimage of ci and consider the homomorphism

ψ : W −→ Wχ
ψi
−→ Λn,χ/MΛn,χ

εχ
−→ (Z/MZ) [G]

We again apply Theorem 3.4 and obtain λi satifying (a), (b) and also

ϕli(κ(ai−1)) = pduψ(κ(ai−1))λi.

As in the case i = 1 one now establishes equality (c). This concludes the
inductive construction of λ1, . . . , λk+1.
Using (c) successively we obtain (suppressing units in Z/MZ)

(
g1 · · · gkvλk+1

(κ(l1 · · · lk+1))
)

= ηh′
χ

(as an equality in Λn,χ/MΛn,χ) with

η =
(

|∆|k+1pk(d+c3)+d+c2(γn0
− 1)c1+

Pk
s=1 cs

1

)

χ
.

Therefore g = g1 · · · gk divides ηh′
χ in Λn,χ/MΛn,χ, and since pn | M we also see

that g divides ηh′
χ in Λn,χ/pnΛn,χ. As in [31, page 371, last but one paragraph]

we deduce that g divides ηh′
χ in Λχ.

By [6, III.2.1, Theorem] (together with [6, III.1.7, (13)]) we know that the
µ-invariant of A∞,χ is trivial. Hence g = char(A∞,χ) is coprime with p. By
Lemma 3.7 it is also coprime with γn0

− 1, and consequently |Λχ/(g, η)| < ∞.
Therefore there exist α, β ∈ Λχ and N ∈ N such that pN = αg +βη and we see
that g divides pNh′

χ. Since g is prime to p we obtain g | h′
χ.

Remark 3.9 There are several steps in the proof where we use the assumption
that p splits in k/Q. Among these the vanishing of µ(A∞,χ) is most important.
The proof of this uses an important result of Gillard [9]. If p is not split in k/Q
our knowledge about µ(A∞,χ) seems to be quite poor.

4 The conjecture

In this section we fix an integral Ok-ideal f such that w(f) = 1 and write

M = h0(Spec(k(f)), A = Q[Gf], A = Z[Gf],

where for any Ok-ideal m we let Gm denote the Galois group Gal(k(m)/k).
For any commutative ring R we write D(R) for the derived category of the
homotopy category of bounded complexes of R-modules and Dp(R) for the
full triangulated subcategory of perfect complexes of R-modules. We write
Dpis(R) for the subcategory of Dp(R) in which the objects are the same, but
the morphisms are restricted to quasi-isomorphisms.
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We let P(R) denote the category of graded invertible R-modules. If R is
reduced, we write DetR for the functor from Dpis(R) to P(R) introduced by
Knudsen and Mumford [14]. To be more precise, we define

DetR(P ) :=





rkR(P )
∧

R

P, rkR(P )



 ∈ Ob(P(R))

for any finitely generated projective R-module P and for a bounded complex
P • of such modules we set

DetR(P •) :=
⊗

i∈Z

Det
(−1)i

R (P i).

If R is reduced, then this functor extends to a functor from Dpis(R) to P(R).
For more information and relevant properties the reader is refered to [5, §2], or
the original papers [14] and [15].
For any finite set S of places of k we define YS = YS(k(f)) = ⊕w∈S(k(f))Zw.
Here S(k(f)) denotes the set of places of k(f) lying above places in S. We let
XS = XS(k(f)) denote the kernel of the augmentation map YS → Z, w 7→ 1.
The fundamental line Ξ(AM) is given by

Ξ(AM)# = Det−1
A

(

O×
k(f)⊗ZQ

)

⊗ADetA

(
X{v|∞}⊗ZQ

)
,

where the superscript # means twisting the action of Gf by g 7→ g−1. We let

R = Rk(f) : O×
k(f)⊗ZR −→ X{v|∞}⊗ZR,

u 7→ −
∑

v|∞

log |u|v · v

denote the Dirichlet regulator map. Let

Aϑ∞ : R[Gf] −→ Ξ(AM)#⊗QR

be the inverse of the canonical isomorphism

Det−1
R[Gf]

(

O×
k(f)⊗ZR

)

⊗R[Gf]DetR[Gf]

(
X{v|∞}⊗ZR

)

det(R)⊗1
−→ Det−1

R[Gf]

(
X{v|∞}⊗ZR

)
⊗R[Gf]DetR[Gf]

(
X{v|∞}⊗ZR

)

eval
−→ (R[Gf], 0) .

Following [19] we define for integral Ok-ideals g, g1 with g | g1 and each abelian
character η of Gg ≃ cl(g) (cl(g) denoting the ray class group modulo g)

Sg(η, g1) =
∑

c∈cl(g1)

η(c−1) log |ϕg(c)|,
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where η is regarded as a character of cl(g1) via inflation. For the definition of
the ray class invariants ϕg(c) we choose an integral ideal c in the class c and
set

ϕg(c) = ϕg(c) =

{

ϕ12N(g)(1; gc−1), if g 6= 1,
∣
∣
∣
N(c−1)6∆(c−1)

(2π)12

∣
∣
∣ , if g = 1,

where ϕ was defined in (1). Note that this definition does not depend on the
choice of the ideal c (see [20, pp. 15/16]).
For an abelian character η of cl(g) we write fη for its conductor. We write
L∗(η) for the leading term of the Taylor expansion of the Dirichlet L-function
L(s, η) at s = 0.
From [20, Th. 3] and the functional equation satisfied by Dirichlet L-functions
we deduce

L∗(η−1) = −
Sfη

(η, fη)

6N(fη)w(fη)
. (7)

We denote by ĜQ
f the set of Q-rational characters associated with the Q-

irreducible representations of Gf. For χ ∈ ĜQ
f we set eχ =

∑

η∈χ eη ∈ A,
where we view χ as an Gal(Qc/Q)-orbit of absolutely irreducible characters of
Gf. Then the Wedderburn decompostion of A is given by

A ≃
∏

χ∈ĜQ
f

Q(χ). (8)

Here, by a slight abuse of notation, Q(χ) denotes the extension generated by
the values of η for any η ∈ χ. For any character χ ∈ ĜQ

f the conductor fχ,
defined by fχ := fη for any η ∈ χ, is well defined.
We put L∗(χ) :=

∑

η∈χ L∗(η)eη and note that L∗(χ)# :=
∑

η∈χ L∗(η−1)eη.

The statement L∗(χ)# ∈ Aeχ (compare to [8, page 8]) is not obvious, but
needs to be proved. This is essentially Stark’s conjecture.
We fix a prime ideal p of Ok and also choose an auxiliary ideal a of Ok such
that (a, 6fp) = 1. For each η 6= 1 we define elements

ξη :=

{

ψ(1; fη, a), if fη 6= 1,
δ(Ok,a−1)
δ(p,pa−1) , if fη = 1, η 6= 1,

(9)

where δ denotes the function of lattices defined in [21, Th. 1]. We set ξχ := ξη

for any η ∈ χ.
We fix an embedding σ : Qc →֒ C and write w∞ = σ|k(f). A standard compu-
tation leads to

R(eηξη)

=

{

(Na − η(a))w(fη)[k(f) : k(fη)]L∗(η−1)eηw∞, fη 6= 1,

(1 − η(p)−1)(Na − η(a))w(1)[k(f) : k(1)]L∗(η−1)eηw∞, fη = 1, η 6= 1.
(10)
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For the reader’s convenience we briefly sketch the computation for characters
η 6= 1 with fη = 1. By definition of the Dirichlet regulator map and [21, Cor. 2]
we obtain

R(eηξη) = −
1

6
[k(f) : k(1)]

∑

c∈cl(1)

log

∣
∣
∣
∣

∆(c)Na∆(a−1cp)

∆(a−1c)∆(cp)Na

∣
∣
∣
∣
η(c)eηw∞. (11)

Since
∑

c∈cl(1) Cη(c) = 0 for any constant C we compute further

∑

c∈cl(1)

log

∣
∣
∣
∣

∆(c)Na∆(a−1cp)

∆(a−1c)∆(cp)Na

∣
∣
∣
∣
η(c)

=
∑

c∈cl(1)

log

∣
∣
∣
∣
∣

(
(Nc)6∆(c)

(2π)12

)Na
∣
∣
∣
∣
∣
η(c) +

∑

c∈cl(1)

log

∣
∣
∣
∣

(Na−1cp)6∆(a−1cp)

(2π)12

∣
∣
∣
∣
η(c) −

−
∑

c∈cl(1)

log

∣
∣
∣
∣
∣

(
(Ncp)6∆(cp)

(2π)12

)Na
∣
∣
∣
∣
∣
η(c) −

∑

c∈cl(1)

log

∣
∣
∣
∣

(Na−1c)6∆(a−1c)

(2π)12

∣
∣
∣
∣
η(c)

= Na
∑

c∈cl(1)

log
∣
∣ϕ1(c

−1)
∣
∣ η(c) +

∑

c∈cl(1)

log
∣
∣ϕ1(ac−1p−1)

∣
∣ η(c) −

−Na
∑

c∈cl(1)

log
∣
∣ϕ1(p

−1c−1)
∣
∣ η(c) −

∑

c∈cl(1)

log
∣
∣ϕ1(ac−1)

∣
∣ η(c).

Recalling that ϕg(c) is a class invariant we obtain

∑

c∈cl(1)

log

∣
∣
∣
∣

∆(c)Na∆(a−1cp)

∆(a−1c)∆(cp)Na

∣
∣
∣
∣
η(c) = (Na − η(a))(1 − η(p)−1)S1(η, 1)eηw∞,

so that (10) is an immediate consequence of (7) and (11).
According to the decomposition (8) we decompose Ξ(AM)# character by char-
acter and obtain a canonical isomorphism

Ξ(AM)# −→






∏

χ∈ĜQ
f

(

Det−1
Q(χ)(O

×
k(f)⊗AQ(χ))⊗Q(χ)DetQ(χ)(X{v|∞}⊗AQ(χ))

)




 .

As in the cyclotomic case one has

dimQ(χ) eχ

(

O×
k(f)⊗AQ(χ)

)

= dimQ(χ) eχ

(
X{v|∞}⊗AQ(χ)

)
=

{

1, χ 6= 1,

0, χ = 1.

(12)
Upon recalling that DetQ(0) = (Q, 0) in P(Q) we get a canonical isomorphism

Ξ(AM)# −→ Q ×




∏

χ6=1

(

(O×
k(f)⊗AQ(χ))(−1)⊗Q(χ)(X{v|∞}⊗AQ(χ))

)



 .
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From (10) we deduce

(

Aϑ∞(L∗(AM, 0)−1)
)

χ

=







w(fχ)[k(f) : k(fχ)](Na − σ(a))eχξ−1
χ ⊗w∞, fχ 6= 1,

w(1)[k(f) : k(1)](1 − σ(p)−1)(Na − σ(a))eχξ−1
χ ⊗w∞, fχ = 1, χ 6= 1

L(χ, 0)−1, χ = 1.

In particular, this proves the equivariant version of [8, Conjecture 2].
We fix a prime p and put Ap := A⊗QQp = Qp[Gf], Ap := A⊗ZZp = Zp[Gf].
Let S = Sram ∪ S∞ be the union of the set of ramified places and the set of
archimedian places of k. Let Sp = S ∪ {p | p} and put

∆(k(f)) := RHomZp
(RΓc(Ok(f),Sp

, Zp), Zp)[−3]

Then ∆(k(f)) can be represented by a perfect complex of Ap-modules whose
cohomology groups Hi(∆(k(f)) are trivial for i 6= 1, 2. For i = 1 one finds

H1(∆(k(f)) ≃ O×
k(f),Sp

⊗ZZp,

and H2 fits into an short exact sequence

0 −→ Pic(Ok(f),Sp
)⊗ZZp −→ H2(∆(k(f))) −→ X{w|fp∞}⊗ZZp −→ 0

We have an isomorphism

Aϑp : Ξ(AM)#⊗QQp −→ DetAp

(
∆(k(f))⊗Zp

Qp

)

given by the composite

Det−1
Ap

(O×
k(f)⊗ZQp)⊗Ap

DetAp
(X{v|∞}⊗ZQp)

ϕ1
−→ Det−1

Ap
(O×

k(f),Sp
⊗ZQp)⊗Ap

DetAp
(X{v|fp∞}⊗ZQp)

ϕ2
−→ Det−1

Ap
(O×

k(f),Sp
⊗ZQp)⊗Ap

DetAp
(X{v|fp∞}⊗ZQp)

ϕ3
−→ DetAp

(
∆(k(f))⊗Zp

Qp

)
.

Here ϕ1 is induced by the split short exact sequences

0 −→ O×
k(f)⊗ZQp −→ O×

k(f),Sp
⊗ZQp −→ Y{w|fp}⊗ZQp −→ 0 (13)

0 −→ X{w|∞}⊗ZQp −→ X{w|fp∞}⊗ZQp −→ Y{w|fp}⊗ZQp −→ 0 (14)

The isomorphism ϕ2 is multiplication with the Euler factor
∏

v∈Sp
E#

v ∈ A×

where Ev is defined by

Ev =
∑

η|Dv =1

|Dv/Iv| eη +
∑

η|Dv 6=1

(1 − η(fv))
−1

eη, (15)
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where fv ∈ Dv denotes a lift of the Frobenius element in Dv/Iv and Iv ⊆
Dv ⊆ Gf are the inertia and decomposition subgroups for a place w | v in
k(f)/k. Finally ϕ3 arises from the explicit description of the cohomology groups
Hi(∆(k(f))), i = 1, 2, and the canonical isomorphism

DetAp
(∆(k(f))⊗Ap

Qp) ≃
⊗

i∈Z

Det
(−1)i

Ap

(
Hi(∆(k(f))⊗Ap

Qp)
)

(16)

([14, Rem. b) following Th. 2]).
We are now in position to give a very explicit description of the equivariant
version of [8, Conjecture 3].

Conjecture 4.1 Aϑp

(

Aϑ∞(L∗(AM, 0)−1)
)
Ap = DetAp

(∆(k(f))).

The main result of this article reads:

Theorem 4.2 Let k denote a quadratic imaginary field and let p be an odd
prime which splits in k/Q and which does not divide the class number hk of k.
Then Conjecture 4.1 holds.

Corollary 4.3 Let k denote a quadratic imaginary field and let p be an odd
prime which splits in k/Q and which does not divide the class number hk of k.
Let L be a finite abelian extension of k and k ⊆ K ⊆ L. Then the p-part of
the ETNC holds for the pair (h0(Spec(L), Z[Gal(L/K)])).

Proof This is implied by well known functorial properties of the ETNC.

5 The limit theorem

Following [8] or [5] we will deduce Theorem 4.2 from an Iwasawa theoretic
result which we will describe next. Let now p = pp̄ denote a split rational
prime and f an integral Ok-ideal such that w(f) = 1. In addition, we assume
that p̄ divides f whenever p divides f. We write f = f0p

ν , p ∤ f0. We put
∆ := Gal(k(f0p)/k) = Gf0p and let

Λ = lim
←
n

Zp[Gfpn ] ≃ Zp[∆][[T ]]

denote the completed group ring. The element T = γ−1 depends on the choice
of a topological generator γ of Γ := Gal(k(f0p

∞)/k(f0p)) ≃ Zp.
We will work in the derived category Dp(Λ) and define

∆∞ := lim
←
n

∆(k(f0p
n)).

Then ∆∞ can be represented by a perfect complex of Λ-modules. For its
cohomology groups one obtains Hi(∆∞) = 0 for i 6= 1, 2,

H1(∆∞) ≃ U∞
Sp

:= lim
←
n

(

O×
k(f0pn),Sp

⊗ZZp

)
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and H2(∆∞) fits into the short exact sequence

0 −→ P∞
Sp

−→ H2(∆∞) −→ X∞
{w|f0p∞} −→ 0,

where

P∞
Sp

:= lim
←
n

(
Pic(Ok(f0pn),Sp

)⊗ZZp

)
,

X∞
{w|f0p∞} := lim

←
n

(
X{w|f0p∞}(k(f0p

n))⊗ZZp

)
.

The limits over the unit and Picard groups are taken with respect to the norm
maps; the transition maps for the definition of X∞

{w|f0p∞} are defined by sending
each place to its restriction.
For g | f0 we put

ηg :=
{
ψ(1; gpn+1, a)

}

n≥0
∈ U∞

Sp
,

σ∞ :=
{
σ|k(f0pn+1)

}

n≥0
∈ Y ∞

{w|fp∞},

where σ is our fixed embedding Qc →֒ C.
For any commutative ring R we write Q(R) for its total ring of fractions. Then
Q(Λ) is a finite product of fields,

Q(Λ) ≃
∏

ψ∈∆̂Qp

Q(ψ), (17)

where ∆̂Qp denotes the set of Qp-rational characters of ∆ which are associated

with the set of Qp-irreducible representations of ∆. For each ψ ∈ ∆̂Qp one has

Q(ψ) = Q

(

Zl(ψ)[[T ]][
1

p
]

)

.

As in [8] one shows that for each ψ ∈ ∆̂Qp one has

dimQ(ψ)

(

U∞
Sp
⊗ΛQ(ψ)

)

= dimQ(ψ)

(

Y ∞
{w|fp∞}⊗ΛQ(ψ)

)

= 1

It follows that the element eψ(η−1
f0

⊗σ∞) is a Q(ψ)-basis of

DetQ(ψ)(∆
∞⊗ΛQ(ψ)) ≃ Det−1

Q(ψ)(U
∞
Sp
⊗ΛQ(ψ))⊗DetQ(ψ)(X

∞
{w|fp∞}⊗ΛQ(ψ)).

Theorem 5.1 Λ · L = DetΛ(∆∞) with L = (Na − σ(a))
(

η−1
f0

⊗σ∞

)

.

Proof By [8, Lem. 5.3] it suffices to show that the equality

Λq · L = DetΛq
(∆∞⊗ΛΛq) (18)
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holds for all height 1 prime ideals of Λ. Such a height 1 prime is called regular
(resp. singular) if p 6∈ q (resp. p ∈ q).
We first assume that q is a regular prime. Then Λq is a discrete valuation ring,
in particular, a regular ring. Hence we can work with the cohomology groups
of ∆∞, and in this way, the equality Λq · L = DetΛq

(∆∞⊗ΛΛq) is equivalent
to

(Na − σ(a))FittΛq
(Zp,q) FittΛq

(

U∞
Sp,q/ηf0Λq

)

= FittΛq

(

P∞
Sp,q

)

FittΛq

(

Y ∞
{w|f0p∞},q/Λqσ∞

)

. (19)

Attached to each regular prime q there is a unique character ψ = ψq ∈ ∆̂Qp .
To understand this notion we recall that

Λ[
1

p
] ≃

∏

ψ∈∆̂Qp

(Zp(ψ)[[T ]]) [
1

p
].

If p 6∈ q, then Λq is just a further localisation of Λ[ 1p ], so that exactly one of
the above components survives the localization process.
We set

U∞ := lim
←
n

(

O×
k(f0pn)⊗ZZp

)

,

P∞ := lim
←
n

(
Pic(Ok(f0pn))⊗ZZp

)
.

Remark 5.2 Note that, using the notation of Section 3, one has P∞ = A∞.
We put Kn := k(f0p

n+1). Mimicking the proof of Leopoldt’s conjecture, one
can show that for each n ≥ 0 the natural map O×

Kn
⊗ZZp → Un (semi-local

units in Kn⊗kkp which are congruent to 1 mod p) is an injection. It follows
that U∞ = Ē∞, where Ē∞ is, as in Section 3, the projective limit over the
closures of the global units.

There is an exact sequence of Λ-modules

0 −→ U∞ −→ U∞
Sp

−→ Y ∞
{w|f0p},β −→ P∞ −→ P∞

Sp
−→ 0, (20)

where
Y ∞
{w|f0p},β = lim

←
n

(
Y{w|f0p}(k(f0p

n))⊗Zp

)

with respect to the transition maps

Y{w|f0p}(k(f0p
n+1)

βn+1/n
−→ Y{w|f0p}(k(f0p

n))

induced by w 7→ fw|vv, if v denotes the restriction of w and fw|v the residue
degree.
If now b is a prime divisor of f0 and n0 ∈ N such that there is no further splitting
of primes above b in k(f0p

∞)/k(f0p
n0), then βm|n(w) = pm−nw|k(f0pn+1) for all
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m ≥ n ≥ n0. Letting m tend to infinity this shows that Y ∞
{w|b},β = 0. Hence

we have an exact sequence of Λ-modules

0 −→ U∞ −→ U∞
Sp

−→ Y ∞
{w|p},β −→ P∞ −→ P∞

Sp
−→ 0. (21)

In addition, one has the exact sequence

0 −→ X∞
{w|f0}

−→ X∞
{w|f0p∞} −→ Y ∞

{w|p} ⊕ Y ∞
{w|∞} −→ 0. (22)

Remark 5.3 Note that the transition maps in the first two limits are induced
by restriction, which coincides with βn+1|n for the places above p and ∞. Hence
Y{w|∞} = Y{w|∞},β and Y{w|p} = Y{w|p},β .

We observe that Y ∞
{w|∞},q = Λq · σ∞. Putting together (21) and (22) we there-

fore deduce that (19) is equivalent to

(Na − σ(a))FittΛq

(
U∞

q /ηf0Λq

)
= FittΛq

(
P∞

q

)
FittΛq

(
X{w|f0},q

)
. (23)

Let d be a divisor of f0 such that ψq has conductor d or dp. For any prime
divisor l | f0 we write Il ⊆ Dl ⊆ Gf0p∞ for the inertia and decomposition
subgroups at l. Let Frl denote a lift of the Frobenius element in Dl/Il. We
view ψ as a character of Gf0p∞ via inflation and note that if l ∤ d (i.e. ψ|Il

= 1),
then Frl is a well defined element in Λq.

Lemma 5.4 Let

ε =

{

0, ψ 6= 1,

1, ψ = 1.

Then:

FittΛq
(ΛqT

εηd/Λqηf0) = T−ε
∏

l|f0,l∤d

(1 − Fr−1
l )Λq = FittΛq

(X∞
{w|f0},q).

Lemma 5.5

FittΛq
(U∞

q /ΛqT
εηd) = (Na − σ(a))FittΛq

(P∞
q )

Proof of Lemma 5.5: Let ψ = ψq. By the Iwasawa main conjecture (Theo-
rem 3.1) and Remark 5.2 we have

char(P∞
ψ ) = char

(
(U∞/C̄∞)ψ

)
,

where (again by a slight abuse of notation) for a Λ-module M we set Mψ := Mη

for any η ∈ ψ.
The corollary to [16, App. Prop. 2] implies that

FittΛq
(P∞

q ) = FittΛq

(
(U∞/C̄∞)q

)
.
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Hence it suffices to show that

C̄∞(a)q = Λq · T
εηd, (24)

FittΛq
(C̄∞,q/C̄∞(a)q) = (Na − σ(a))Λq. (25)

Here C̄∞(a) is the projective limit over

C̄n(a) = closure of 〈ψ(1; gpn+1, a) : g | f0〉Z[Gal(k(f0pn+1)/k)] ∩ En.

(Note that Λqηd is for ψ 6= 1 a group of units. This is true even for d = 1,
because Λqη1 = Λqeψη1 and eψ has augmentation 0.)
In order to prove (24) we set

ψn := ψ(1; dpn+1, a), Gn := Gal(k(f0p
n+1)/k), Λn := Zp[Gn].

If bn denotes the annihilator of ψn in Λn, then we have the following exact
sequence of inverse systems of finitely generated Zp-modules

0 −→ (Λn/bn)n −→
(
C̄n(a)

)

n
−→

(
C̄n(a)/Λnψn

)

n
−→ 0.

The topology of Zp induces on each of these modules the structure of a compact
topological group, so that [27, Prop. B.1.1] implies that lim

←
n

is exact. Hence we

obtain the short exact sequence of Λ-modules

0 −→ lim
←
n

(Λn/bn) −→ C̄∞(a) −→ lim
←
n

(
C̄n(a)/Λnψn

)
−→ 0.

Again by [27, Prop. B.1.1] we obtain

lim
←
n

(Λn/bn) ≃ Λ/ lim
←
n

bn ≃ Ληd,

so that

C̄∞(a)/Ληd ≃ lim
←
n

(C̄n(a)/Λψn). (26)

For d | f0 we identify Gal(k(f0p
n+1)/k(dpn+1)) and Gal(k(f0p)/k(dp)). Then

one has (in additive notation) for any g with d | g | f0 the distribution relation

Nk(f0p)/k(dp)

(
ψ(1; gpn+1, a)

)

= [k(f0p) : k(gp)]




∏

l|g,l∤d

(1 − Fr−1
l )



 ψ(1; dpn+1, a). (27)

In addition, one obviously has

[k(f0p) : k(gp)]ψ(1; gpn+1, a) = Nk(f0p)/k(gp)

(
ψ(1; gpn+1, a)

)
. (28)
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Note that for ψ 6= 1 and d ∤ g one has ψ(Nk(f0p)/k(gp)) = 0. Hence, if ψ 6= 1,
then (27), (28) and (26) show that

A :=




∏

g|f0,d∤g

[k(f0p) : k(gp)]



 · Nk(f0p)/k(dp)

annihilates C̄∞(a)/Ληd. Since ψ(A) ∈ Zp is non-trivial and p is invertible in
Λq, the element A is a actually a unit in Λq, which implies C̄∞(a)q = Λqηd.
If ψ = 1 we proceed in almost the same way, but now set ψn := ψ(1; pn+1, a)γ−1.
In this case we have d = 1.

Sublemma: Let {Cn, fn}n≥0 be a projective system of finitely generated
Zp[Gn]-modules and set C∞ = lim

←
n

Cn. Let q denote a regular prime and let

ψ = ψq. Then:
C∞,q ≃ (lim

←
n

Cn,ψ)q.

Proof of Sublemma: The natural map Cn −→ ⊕χ∈∆̂Qp Cn,χ has kernel

and cokernel annihilated by |∆|. Passing to the limit we obtain (again by [27,
B.1.1]) an exact sequence of Λ-modules

0 −→ W∞ −→ C∞ −→
⊕

χ∈∆̂Qp

lim
←
n

Cn,χ −→ X∞ −→ 0,

where W∞ and X∞ are annihilated by |∆|. Since |∆| ∈ Λ×
q we obtain

C∞,q ≃




⊕

χ∈∆̂Qp

lim
←
n

Cn,χ





q

=

(

lim
←
n

Cn,ψ

)

q

.

Arguing as in the case ψ 6= 1 and applying the Sublemma we obtain

(
C̄∞(a)/ΛTηd

)

q
≃

(

lim
←
n

(C̄n(a)/Λnψn)

)

q

≃

(

lim
←
n

(C̄n(a)/Λnψn)ψ

)

q

.

Hence it suffices to show that each of the modules (C̄n(a)/Λnψn)ψ is annihilated
by the unit Nk(f0p)/k(p). If

∏

g6=1

ψ(1; gpn+1, a)αg · ψ(1; pn+1, a)α1 with α1, αg ∈ Zp[Gn]

is a unit in Kn = k(f0p
n+1), then the prime ideal factorization of the singular

values ψ(1; gpn+1, a) (see [1, Th. 2.4]) implies that α1 has augmentation 0. It
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follows that ψ(α1) ∈ Zp[Gal(Kn/K0)] is divisible by γ−1. For any element σ ∈
Gn we write σ = γ(σ)δ(σ) according to the decomposition Gn = Gal(Kn/K0)×
∆. If g 6= 1 each of the factors ψ(1 − Fr−1

l ) = 1 − γ(Frl)
−1 in (27) is divisible

by γ − 1.
Altogether this implies that Nk(f0p)/k(p) annihilates

(
C̄∞(a)/ΛTηd

)

q
, hence

C̄∞(a)q = ΛqTηd.
It finally remains to prove (25). For any integral ideal m and any two integral
ideals a and b such that (ab, 6m) = 1 one has the relation

ψ(1;m, a)Nb−σ(b) = ψ(1;m, b)Na−σ(a). (29)

This is a straightforward consequence of [1, Prop. 2.2] and the definition of ψ,
see in particular [20, Théorème principal (b) and Remarque 1 (g)]. Equality
(29) shows that Na−σ(a) annihilates C̄∞,q/C̄∞(a)q. Using the same arguments
as in the proof of Lemma 3.5 (see that paragraph following Claim 2), one shows
that this module is generated by one element. By [16, App. 3 and 8 ] it therefore
suffices to show that (Na− σ(a))Λq is the exact annihilator. From Lemma 5.6
below we obtain finitely many ideals a1, . . . , as and n1, . . . , ns ∈ Λq such that

1 =

s∑

i=1

ni(Nai − σ(ai)).

Consider the element η := T ε
∏s

i=1 ηd(ai)
ni , where ηd(ai) :=

{ψ(1; dpn+1, ai)}
∞
n=0. One has

ηNa−σ(a) = T εηd.

As a consequence of Lemma 3.5, Claim 2, the module C̄∞(a)q = ΛqT
εηd

is Λq-free. It follows that no divisor of Na − σ(a) annihilates the quotient
C̄∞,q/C̄∞(a)q.
To complete the proof for the localization at regular primes q we add the
following

Lemma 5.6 Let ψ ∈ ∆̂Qp , η ∈ ψ and write R = Zl(ψ) = Zl(η). Let I denote
the ideal of Λψ = R[[Γ]] generated by the elements Na−σ(a) = Na−η(a)γ(a),
where a runs through the integral ideals of Ok such that (a, 6fp) = 1. Then
IΛψ[ 1p ] = Λψ[ 1p ].

Proof As usual we identify R[[Γ]] with R[[T ]] by identifying γ with 1 + T .
We note that Λψ[ 1p ] is a principal ideal domain whose irreducible elements are

given by the irreducible distinguished polynomials f ∈ R[T ]. We fix such f
and write

f(T ) = γs + as−1γ
s−1 + . . . + a1γ + a0, ai ∈ R.

For any n there exist ideals a0, . . . , as (depending on n) such that (ai, 6fp) = 1
and σ(ai)|Kn

= γi|Kn
. In particular, this implies η(ai) = γi and

s∑

i=0

ai(Nai − σ(ai)) ≡

s∑

i=0

aiNai − f(T )(mod (γpn

− 1)Λψ).
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Inverting p we derive

s∑

i=0

a′
i(Nai − σ(ai)) ≡ 1 − cf(T )(mod (γpn

− 1)Λψ[
1

p
])

with a′
1, . . . , a

′
s, c ∈ Qp(ψ) = Qp(η). Therefore

1 ∈ IΛψ[
1

p
] + fΛψ[

1

p
] +

⋂

n

(γpn

− 1)Λψ[
1

p
].

Since (γpn

− 1)Λψ[ 1p ] is a strictly decreasing sequence of ideals in a principal

ideal domain we obtain
⋂

n(γpn

− 1)Λψ[ 1p ] = (0). Consequently,

IΛψ[ 1p ] + fΛψ[ 1p ] = Λψ[ 1p ] for every irreducible distinguished polynomial f and

the lemma is proved.

We now assume that q is a singular prime. We write ∆ = ∆′ × P with p ∤ |∆′|
and note that the singular primes q are in one-to-one correspondence with the
Qp-rational irreducible characters of ∆′ ([5, Lem. 6.2(i)]). Assume that in this

way q is associated with ψ ∈ ∆̂′Qp and set χ = ψ×η, where η ∈ P̂ is arbitrarily
chosen. From [6, III,2.1 Theorem] and [6, III,1.7 (13)] we know that the µ-
invariant of P∞

χ := P∞⊗Zp[∆]Zp(χ) vanishes. By [8, Lem. 5.6] it follows that
P∞

q = 0. The module X∞
{w|f0p} is Zp[[T ]]-torsion and free over Zp, hence has

vanishing µ-invariant (as Zp[[T ]]-module). Again by [8, Lem. 5.6] we derive
X∞

{w|f0p},q = 0. Since P∞
Sp

is an epimorphic image of P∞ and because of the
exactness of

0 −→ X∞
{w|f0p} −→ X∞

{w|f0p∞} −→ Y ∞
{w|∞} −→ 0

we derive
H2(∆∞)q = Y ∞

{w|∞},q ≃ Λqσ∞.

We now compute H1(∆∞)q. Consider the filtration

Λ · ηf0 ⊆ C̄∞(a) ⊆ C̄∞ ⊆ U∞ ⊆ U∞
Sp

= H1(∆∞).

By (21) the quotient U∞
Sp

/U∞ injects into Y ∞
{w|p}. This module is a finite free

Zp-module and hence has vanishing µ-invariant. The module U∞/C̄∞ (or rather
any of its χ-components) also has vanishing µ-invariant by [6, III, 2.1 Theorem
and 1.7 (13)]. As shown above, the graded piece C̄∞/C̄∞(a) is annihilated by
Na − σ(a). We claim that Na − σ(a) ∈ Λ×

q . In order to prove the claim we
note that Na − σ(a) = Na − δ(a)(1 + T )w with w ∈ Zp and w 6= 0 (since σ(a)
has infinite order in Gf0p∞). Let π denote a prime element in Zp(ψ). Then the
explicit description of q given in [5, Lem. 6.2] easily implies q = (π,∆P )[[T ]],
where ∆P is the kernel of the augmentation map Zp(ψ)[P ] → Zp(ψ). Therefore
Λ/q ≃ (Zp(ψ)/π))[[T ]]. Hence it suffices to show that the image of Na − σ(a)
under

Λ −→ Zp(ψ)[[T ]] −→ (Zp(ψ)/π) [[T ]] = Λ/q
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given by Na − ψ(a)(1 + T )w is non-trivial. This, in turn, is an easy exercise.
Finally we will use the distribution relation

Nk(f0pn+1)/k(frgpn+1)ψ(1; f0p
n+1, a) =




∏

l|f0,l∤g

(1 − Fr−1
l )



 ψ(1; gpn+1, a) (30)

to show that C̄∞(a)q/Λqηf0 is trivial. Indeed, a statement similar to (26) shows
that this quotient is annihilated by

∏

l|f0
(1−Fr−1

l ), which is a unit in Λq (same

argument as with Na − σ(a) as above).
In conclusion, we have now shown that ∆∞

q has perfect cohomology, so that
again (18) is equivalent to (19), which is trivially valid because all modules
involved have trivial µ-invariants.

In the following we want to deduce Conjecture 4.1 from Theorem 5.1. Again
we can almost word by word rely on Flach’s exposition [8].
We have a ring homomorphism

Λ −→ Zp[Gf] = Ap ⊆ Ap =
∏

χ∈Ĝ
Qp
f

Qp(χ),

a canonical isomorphism of complexes

∆∞⊗L

ΛAp ≃ ∆(k(f)), (31)

and a canonical isomorphism of determinants

(DetΛ∆∞)⊗ΛAp ≃ DetAp
(∆(k(f)))

It remains to verify that the image of the element L⊗1 in DetAp
(∆(k(f))) ⊆

DetAp

(
∆(k(f))⊗Zp

Qp

)
agrees with Aϑp

(

Aϑ∞(L∗(AM, 0)−1)
)
. Let δ denote

the morphism such that the following diagram commutes

DetQ(Λ)(∆
∞⊗ΛQ(Λ))⊗Q(Λ)Ap

≃
//

≃

²²

DetQ(Λ)(H
•(∆∞⊗ΛQ(Λ)))⊗Q(Λ)Ap

δ

²²

DetAp
(∆(k(f))⊗Zp

Qp)
≃

// DetAp
(H•(∆(k(f))⊗Zp

Qp))

We let

φ : DetQp(χ)

(
∆(k(f))⊗Ap

Qp(χ)
)

≃

{

Det−1
Qp(χ)(O

×
k(f)⊗Ap

Qp(χ))⊗Qp(χ)DetQp(χ)(X{v|∞}⊗Ap
Qp(χ)), χ 6= 1,

Q, χ = 1
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denote the isomorphism induced by ϕ−1
1 and ϕ−1

3 (see (13), (14) and (16)).
Note that φ is defined in terms of cohomology. Then we have to show that




∏

v∈Sp

(
E#

v

)−1



 φ(δ(L⊗1)) (32)

=







w(fχ)[k(f) : k(fχ)](Na − χ(a))eχξ−1
χ ⊗w∞, fχ 6= 1,

w(1)[k(f) : k(1)](1 − χ(p)−1)(Na − χ(a))eχξ−1
χ ⊗w∞, fχ = 1, χ 6= 1

L(χ, 0)−1, χ = 1.

By abuse of notation we also write χ for the composite ring homomorphism
Λ → Qp(χ) and denote its kernel by qχ. Then qχ is a regular prime of Λ and
Λqχ

is a discrete valuation ring with residue field Qp(χ). We consider χ as a

character of Gal(k(f0p
∞)/k). If χ = ψ × η with ψ ∈ ∆̂ and η a character of

Gal(k(f0p
∞)/k(f0p)), then the quotient field of Λqχ

is given by Q(ψ) (notation
as in (17)). We set

f1 =

{

f, if p | f,

fp, if p ∤ f.

Let pn be the degree of k(f1)/k(f0p).

Lemma 5.7 The element ω̄ := 1 − γpn

is a uniformizing element for Λqχ
.

Proof We have to show that after localisation at qχ the kernel of χ is
generated by ω̄. Since the idempotents eψ and eη associated with ψ and η,

respectively, are units in Λqχ
, one has

(

Λ[ 1p ]
)

qχ

=
(

(Zp(ψ)[[T ]][ 1p ]
)

qχ

and

(Qp(ψ)][Γn])
qχ

= Qp(χ). This immediately implies the result.

We apply [8, Lem. 5.7] to

R = Λqχ
, ∆ = ∆∞

qχ
, ω̄ = 1 − γpn

.

For a R-module M we put Mω̄ := {m ∈ M | ω̄m = 0} and M/ω̄ := M/ω̄M .
As we already know, the cohomology of ∆ is concentrated in degrees 1 and 2.
We will see that the R-torsion subgroup of Hi(∆), i = 1, 2, is annihilated by
ω̄, hence Hi(∆)tors = Hi(∆)ω̄. We define free R-modules M i, i = 1, 2, by the
short exact sequences

0 −→ Hi(∆)ω̄ −→ Hi(∆) −→ M i −→ 0,

and consider the exact sequences of Qp(χ)-vector spaces

0 −→ Hi(∆)/ω̄ −→ Hi(∆⊗L

RQp(χ)) −→ Hi+1(∆)ω̄ −→ 0

induced by the distinguished triangle

∆
ω̄

−→ ∆ −→ ∆⊗L

RQp(χ) −→ ∆[1].
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Then the map φω̄ of [8, Lem. 5.7] is induced by the exact sequence of Qp(χ)-
vector spaces

0 −→ M1/ω̄ −→ H1(∆⊗L

RQp(χ))
βω̄
−→ H2(∆⊗L

RQp(χ)) −→ M2/ω̄ −→ 0,
(33)

where the Bockstein map βω̄ is given by the composite

H1(∆⊗L

RQp(χ)) −→ H2(∆)ω̄ −→ H2(∆)/ω̄ −→ H2(∆⊗L

RQp(χ)).

Note that for the exactness of (33) on the left we need to show that H1(∆) is
torsion-free.
We recall that Gal(k(f0p

n+1)/k(f0p)) = Gal(Kn/K0) is isomorphic to (1 +
f0p)/(1 + f0p

n+1) ≃ (1 + pZp)/(1 + pn+1Zp) via the Artin map. As before we
denote this isomorphism by σ : (1 + pZp)/(1 + pn+1Zp) → Gal(Kn/K0) and
also write σ : 1 + pZp → Γ. Passing to the limit we obtain a character

χell : Γ −→ 1 + pZp

uniquely defined by σ(χell(τ) mod (1 + pn+1Zp)) = τ |Kn
for all τ ∈ Γ. Note

that one has
ψ(1; f0p

n+1, a)τ = ψ(χell(τ); f0p
n+1, a)

for all n ≥ 0 and τ ∈ Γ.
For a place w | p in k(f)/k and u ∈ k(f) we write uw = σw(u), where σw : Qc →
Qc

p defines w.

Lemma 5.8 Define for l | f0 the element cl ∈ Zp by γclp
n

= Fr−fl

l , where fl ∈ Z
is the residue degree at l of k(f)/k. Put cp = logp(χell(γ

pn

))−1 ∈ Qp. Then βω̄

is induced by the map

H1(∆(k(f)))⊗Qp = O×
k(f),Sp

⊗Qp −→ X{w|fp∞}⊗Qp = H2(∆(k(f)))⊗Qp

given by

u 7→
∑

l|f0

cl

∑

w|l

ordw(u) · w + cp

∑

w|p

Trk(f)w/Qp

(
logp(uw)

)
· w.

Proof As in [8, Lem. 5.8].

Let a1, a2 denote integral Ok-ideals and set b = lcm(a1, a2), c = gcd(a1, a2). In
the following we will frequently apply the formulas

[k(b) : k(a1)k(a2)] =
w(b)w(c)

w(a1)w(a2)
, k(a1) ∩ k(a2) = k(c),

which follow easily from [28, (15)]. Without loss of generality we may assume
that w(f0) = 1. We also note that w(p) = 1, because p ∤ 2 and p 6= p̄. This
implies w(g) = 1 for any multiple g of f0 or p.
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After these preparations we will now prove equality (32). Recall that this equal-
ity is equivalent to the statement that the image of L⊗1 in DetAp

(∆(k(f))) ⊆
DetAp

(
∆(k(f))⊗Zp

Qp

)
is equal to Aϑp

(

Aϑ∞(L∗(AM, 0)−1)
)
. This suggests to

think of L as a p-adic L-function. The connection with the usual p-adic L-
function is hidden in the fact that for each character χ the characteristic power
series of the module of “semi-local units modulo elliptic units” is generated by
the p-adic L-function (see [24, Remark after Theorem 4.1]).
It is therefore intuitively clear that our descent considerations will be most
difficult (and interesting) in the case of “trivial zeros” of the associated p-adic
L-function.

The case of χ|Dp
6= 1. We let χ ∈ Ĝ

Qp

f be a non-trivial character such that
χ|Dp

6= 1. This should be considered as the case of no trivial zeros.
We first show that P∞

qχ
= 0. From Lemma 3.7 we know that multiplication by

γpn

− 1 on P∞ has finite kernel and cokernel. It follows that the characteristic
power series h ∈ Zp[[Γ]] of P∞ (considered as a module over Zp[[Γ]]) is coprime
with γpn

− 1. Hence h is a unit in Λqχ
which annihilates P∞

qχ
.

From (21) and Remark 5.3 we obtain the short exact sequence

0 −→ U∞
qχ

−→ U∞
Sp,qχ

−→ Y ∞
{w|p},qχ

−→ 0

Moreover, Y ∞
{w|p} = Zp[G∞/Dp], so that χ|Dp

6= 1 implies Y ∞
{w|p},qχ

= 0. It

follows that H1(∆) = U∞
Sp,qχ

≃ U∞
qχ

and Lemma 5.5 implies

U∞
qχ

= (Na − σ(a))(1 − γ)εηfχ,0
· Λqχ

,

where fχ,0 is the divisor of f0 such that ψ has conductor fχ,0 or fχ,0p. Recall
also that

ε =

{

0, ψ 6= 1,

1, ψ = 1.

If ψ = 1, then η 6= 1 and 1 − χ(γ) = 1 − η(γ) 6= 0, so that 1 − γ is a unit in
Λqχ

. Since also Na − σ(a) ∈ Λ×
qχ

, we may choose β1 = ηfχ,0
as Λqχ

-basis of

M1 = U∞
qχ

.

Since P∞
{w|fp} is a quotient of P∞ we obtain P∞

{w|fp},qχ
= 0. Therefore H2(∆) =

X∞
{w|f0p∞},qχ

. From the short exact sequence

0 −→ X∞
{w|f0p} −→ X∞

{w|f0p∞} −→ Y ∞
{w|∞} −→ 0

together with the fact that X∞
{w|f0p} is Λ-torsion, we derive

M2 = Y ∞
{w|∞} = Λqχ

· β2 with β2 = σ∞.

We now apply [8, Lem. 5.7] with ω̄ = 1 − γpn

. Recall that H2(∆)tors =
X∞

{w|f0p},qχ
and this module is annihilated by ω̄. Indeed, ω̄ ∼ 1 − γpm

for
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m ≥ n. For large m one has γpm

∈ Dl for each l | f0p. It follows that 1 − γpm

annihilates X∞
{w|f0p}, so that the assumptions of [8, Lem. 5.7] are satisfied. The

element β̄1 ∈ M1/ω̄ is the image of the norm-compatible system

ηfχ,0
=

{
ψ(1; fχ,0p

n+1, a)
}

n≥0

in M1/ω̄ ⊆ O×
k(f),Sp

⊗Z[Gf]Qp(χ). We write

f = f0p
ν , fχ = fχ,0p

ν′

.

and recall the definition of ξχ in (9). We will show that

β̄1 = Tχξχ⊗[k(f) : k(f0p
ν′

)]−1

with

Tχ =

{

(1 − χ−1(p)), if fχ 6= 1,

1, if fχ = 1.

If ν = 0, then f1 = fp, fχ,0 = fχ and we have the following diagram of fields

k(f1)

w(fχ)

t
t
t
t
t
t
t
t
t

k(f)k(fχp)

t
t
t
t
t
t
t
t
t
t

k(f) k(fχp)

t
t
t
t
t
t
t
t
t

k(fχ)

Hence we obtain from[1, Th. 2.3]

β̄1 = Nk(f1)/k(f)ψ(1; fχp, a)⊗1 = Tχξχ⊗1.

Note that in this case [k(f) : k(f0p
ν′

)] = 1.
If ν > 0 and ν′ = 0 we obtain the diagram

k(f0p
ν) = k(f)

w(fχ)

w(fχpν )

n
n
n
n
n
n
n
n
n
n
n
n

k(f0)k(fχpν)

n
n
n
n
n
n
n
n
n
n
n
n
n

k(f0) k(fχpν)

n
n
n
n
n
n
n
n
n
n
n
n

k(fχ,0) = k(fχ)
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Writing |Gf|eχ = tχ and t̄χ for the image of tχ in Z[Gal(k(fχ)/k)] we therefore
have

β̄1 = ψ(1; fχpν , a)⊗1

= tχψ(1; fχpν , a)⊗1/|Gf|

= t̄χTχξχ⊗
w(fχpν)

w(fχ)

1

[k(fχpν) : k]

= Tχξχ⊗
w(fχpν)

w(fχ)

1

[k(fχpν) : k(fχ)]

= Tχξχ⊗[k(f) : k(f0)]
−1.

The case ν, ν′ > 0 is similar. Note that in this case χ(p) = 0.

For each l | f0 we choose a place wl above l in k(f)/k. It is easy to see that

Y{w|l}⊗AQp(χ) =

{

0, χ|Dl
6= 1,

Qp(χ) · wl, χ|Dl
= 1.

We choose for each l | f0 with χ|Dl
= 1 an element xl ∈ k(f)× such that

ordwl
(xl) 6= 0

ordw(xl) = 0 for all w 6= wl.

Then Qp(χ)xl
val
−→ Y{w|l}⊗Zp[Gf]Qp(χ) = Qp(χ)wl is an isomorphism. We set

J = {l | f0 : χ|Dl
= 1}, xJ :=

∧

l∈J

xl, wJ :=
∧

l∈J

wl and cχ :=
∏

l∈J

cl.

Since O×
k(f)⊗AQp(χ) is a Qp(χ)-vector space of of dimension 1, the element

β̄1 is necessarily a generator. Therefore {β̄1} ∪ {xl : l ∈ J} is a Qp(χ)-basis
of H1(∆⊗L

RQp(χ)) = O×
k(f),Sp

⊗AQp(χ). Moreover, {β̄2} ∪ {wl : l ∈ J} is a

Qp(χ)-basis of Y{w|f0p∞}⊗AQp(χ). Finally note that β̄2 = σ|k(f). From (33)
we deduce

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2) = φ(β̄−1
1 ∧ x−1

J ⊗βω̄(xJ) ∧ β̄2)

Applying Lemma 5.8 we obtain further

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2) = cχφ(β̄−1
1 ∧ x−1

J ⊗val(xJ) ∧ β̄2)

= cχ(β̄−1
1 ⊗β̄2) (34)

= cχ[k(f) : k(f0p
ν′

)]T−1
χ ξ−1

χ ⊗σ|k(f)
︸ ︷︷ ︸

=:A

.
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In order to apply [8, Lem. 5.7] we compute the exponent e such that ω̄eβ−1
1 ⊗β2

is a Λqχ
-basis of DetΛqχ

(∆∞
qχ

). By the proof of [8, Lem. 5.7] one has

e =
∑

i∈Z

(−1)i+1 dimQp(χ)

(
Hi(∆)ω̄

)

= −dimQp(χ)

(

X∞
{w|f0p}⊗AQp(χ)

)

χ6=1
= −dimQp(χ)




⊕

l|f0p

Zp[G∞/Dl]⊗AQp(χ)





= −|J |.

As elements of (DetΛ(∆∞))qχ
we have

L = (Na − σ(a))η−1
f0

⊗σ∞

= (Na − σ(a))[k(f0p) : k(fχ,0p)][Trk(f0p)/k(fχ,0p)ηf0 ]
−1⊗σ∞,

because Trk(f0p)/k(fχ,0p) = [k(f0p) : k(fχ,0p)] as elements of Λqχ
(multiply both

sides with eχ). From the distribution relation we derive further

L = (Na − σ(a))[k(f0p) : k(fχ,0p)]
∏

l|f0,l∤fχ,0

1

1 − Fr−1
l

η−1
fχ,0

⊗σ∞

= (Na − σ(a))[k(f0p) : k(fχ,0p)]
∏

l|f0,l∤fχ,0

χ(l) 6=1

1

1 − Fr−1
l

∏

l∈J

ω̄

1 − Fr−1
l

︸ ︷︷ ︸

=:B

(
ω̄eβ−1

1 ⊗β2

)
.

Now [8, Lem. 5.7] implies

φω̄(B−1(L⊗1)) = β̄−1
1 ⊗β̄2,

which in conjunction with (34) shows that φ(B−1(L⊗1)) = A or φ(L⊗1) = AB.

For l ∈ J we have by definition of cl the equality Fr−fl

l = γclp
n

and therefore

χ

(
ω̄

1 − Fr−1
l

)

= χ

(

(1 − γpn

)(1 + Fr−1
l + . . . + Fr−fl+1

l )

1 − γclpn

)

=
fl

cl

. (35)

Using [k(f) : k(f0p
ν′

)][k(f0p) : k(fχ,0p)] = w(fχ)[k(f) : k(fχ)] it follows that

AB =

(Na − σ(a))w(fχ)[k(f) : k(fχ)]







∏

l|f0,l∤fχ,0

χ(l) 6=1

1

1 − Fr−1
l







(
∏

l∈J

fl

)

T−1
χ ξ−1

χ ⊗σ|k(f).
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Recalling the definition of the elements Ev from (15) we observe that this is
exactly the equality (32).

The case of χ 6= 1 and χ|Dp
= 1. We let χ ∈ Ĝ

Qp

f be a non-trivial character
such that χ|Dp

= 1. This should be considered as the case of trivial zeros. Note
that in this case p ∤ fχ, i.e. fχ,0 = fχ.

Before going into detail we brievely explain the strategy of the proof. We first
point out that in one respect the elliptic case is easier than the cyclotomic case:
there is no distinction between odd and even characters. Indeed, in the elliptic
setting every non-trivial character behaves like an even character. Nevertheless,
the strategy of the proof becomes most clear, if one recalls what happens in
the cyclotomic case for odd characters. In order to avoid the trivial zero one
divides the p-adic L-function by γ−1. As a consequence of a theorem of Ferrero
and Greenberg [7] (which gives a formula for the first derivative of the p-adic
L-function) one obtains that this quotient interpolates essentially the global
L-function L(χ−1, s) at s = 0 (for more details see [8, Lemma 5.11]).

For even characters the strategy can be motivated by the fact that the p-adic L-
function is closely related to norm-coherent sequences of cyclotomic (or in our
case, of elliptic) units. In order to “avoid the trivial zero” we again divide by
γ − 1, which means that we have to take the (γ − 1)-st root of a norm-coherent
sequence of cyclotomic or elliptic units. In the cyclotomic case this is achieved
by using a result of Solomon [29] which also provides enough information to
work out the relation to the value of L(χ−1, s) at s = 0. In the elliptic case we
will use an analoguous result proved by the author in [1].

For any subgroup H of G∞ we define JH to be the kernel of the canonical map
Zp[[G∞]] → Zp[[G∞/H]].

As in the case of no trivial zeros we can show that P∞
qχ

= 0. From (21) we
obtain the short exact sequence

0 −→ U∞
qχ

−→ U∞
Sp,qχ

−→ Y ∞
{w|p},qχ

−→ 0 (36)

where now Y ∞
{w|p},qχ

≃ Zp[G∞/Dp]⊗ΛΛqχ
≃ Λ/JDp

⊗ΛΛqχ
≃ Λqχ

/JDp
Λqχ

.

Since Γ ⊆ Dp one has γpn

− 1 ∼ γ − 1. It follows that Y ∞
{w|p},qχ

≃ Qp(χ),

and in addition, the structure theorem for modules over principal ideal rings
implies (γ − 1)U∞

Sp,qχ
= U∞

qχ
.

For a finite set S of places of k we set U∞
k(fχ),S = lim

←
n

(

O×
k(fχpn+1),S⊗ZZp

)

.

Lemma 5.9 a) The sequence

0 −→ U∞
k(fχ),Sp

γ−1
−→ U∞

k(fχ),Sp
−→ U∞

k(fχ),Sp,Γ −→ 0

is exact.

b) The canonical map U∞
k(fχ),Sp,Γ −→ O×

k(fχp),Sp
⊗ZZp is injective.
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Proof One has
(

U∞
k(fχ),Sp

)Γ

= lim
←
n

(

O×
k(fχp),Sp

⊗ZZp

)

= 0. Hence a) is imme-

diate. For b) one has to prove

(γ − 1)U∞
k(fχ),Sp

= {u ∈ U∞
k(fχ),Sp

| u0 = 1}.

The inclusion ”⊆” is obvious. Suppose that u0 = 1. Then for each n Hilbert’s
Theorem 90 provides an element βn ∈ k(fχpn+1)×/k(fχp)× such that

βγ−1
n = un and Nk(fχpn+2)/k(fχpn+1)(βn+1) ≡ βn(mod k(fχp)×).

Let S be a finite set of places of k containing Sp and such that Pic(Ok(fχp),S) =
0. Then we may assume that

βn ∈ O×
k(fχpn+1),S/O×

k(fχp),S .

In the following diagram all vertical maps are induced by the norm,

0 // O×
k(fχp),S⊗Zp //

²²

O×
k(fχpn+2),S⊗Zp //

²²

O×

k(fχpn+2),S
⊗Zp

O×
k(fχp),S

⊗Zp

//

²²

0

0 // O×
k(fχp),S⊗Zp // O×

k(fχpn+1),S⊗Zp //
O×

k(fχpn+1),S
⊗Zp

O×
k(fχp),S

⊗Zp

// 0

The natural topology of Zp induces on each finitely generated Zp-module the
structure of a compact topological group. By [17, Satz IV.2.7] the functor lim

←
n

is

therefore exact on the above exact sequence of projective systems. In addition,
the projective limit over the modules on the left hand side is obviously trivial
and therefore

U∞
k(fχ),S ≃ lim

←
n

O×
k(fχpn+1),S⊗Zp

Ok(fχp),S⊗Zp
.

Moreover, the argument used to prove (21) also shows that U∞
k(fχ),S ≃

U∞
k(fχ),Sp

≃ U∞
k(fχ),{w|p∞} for any set S ⊇ Sp, so that the inclusion ”⊇” fol-

lows.

We now choose an auxiliary prime ideal b of Ok such that

(b, fp) = 1, w(b) = 1, χ(b) 6= 1.

In order to be able to deal also with the case fχ = 1 we introduce the element

η = {ψ(1; fχbpn+1, a)}∞n=0 ∈ lim
←
n

O×
k(fχbpn+1).

With respect to the injection U∞
k(fχ),Sp,Γ −→ O×

k(fχp),Sp
⊗Zp the element

Nk(fχbp)/F (η) maps to Nk(fχbp)/F (η0), where here F denotes the decomposi-
tion subfield at p in k(fχ)/k. One has the following diagram of fields
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k(f)

w
w
w
w
w
w
w
w
w

•

s
s
s
s
s
s
s
s
s
s

k(f)
Dp k(fχ)

t
t
t
t
t
t
t
t
t
t

F

k(f)
ker(χ)

Since by definition of F one has σ(p)|F = id, we derive from the distribution
relation

Nk(fχbp)/F (η0) = (1 − σ(p)−1)Nk(fχb)/F ψ(1; fχb, a) = 1,

so that Lemma 5.9 yields a unique element z∞ ∈ U∞
k(fχ),Sp

⊗Zp
Qp such that

(γ − 1)z∞ =
1

[k(fχbp) : F ]
Nk(fχbp)/F (η). (37)

From Lemma 5.5 and Na−σ(a) ∼ 1 we deduce U∞
qχ

= Λqχ
ηfχ

. Again from the
distribution relations [1, Th. 2.3] we deduce

Nk(fχbp)/F η = (1 − Fr−1
b )Nk(fχp)/F ηfχ

.

Combining (36) and (37) we see that

H1(∆) = U∞
Sp,qχ

= Λqχ
· β1 with β1 = z∞.

Note that

β̄1 =

{

zµ, if p | f, f = f0p
µ+1, µ ≥ 0,

Nk(fp)/k(f)(z0), if p ∤ f,

when we regard β̄1 as an element in O×
k(f),Sp

⊗Zp.

Let v denote a place of k(f) above w, where w | p in F/k. Using the above
diagram we compute

Trk(f)v/Qp

(
logp

(
Nk(fχb)/k(fχ) (ψ(1; fχb, a))

))

=
|Dp|

[k(fχ) : F ]
logp

(
Nk(fχb)/F (ψ(1; fχb, a))

)

=
|Dp|

[k(fχ) : F ]
logp(χell(γ))

1

logp(χell(γ))
logp

(
Nk(fχb)/F (ψ(1; fχb, a))

)

︸ ︷︷ ︸

=:B
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By the main result of [1] the quantity B is well known. We briefly recall
the construction of [1]. Let k∞ denote the unique Zp-extension of k which is
unramified outside p. Let kn ⊆ k∞ denote the extension of degree pn above k.
We put Fn := Fkn and consider the diagram of fields

k(fχbpn+1)

r
r
r
r
r
r
r
r
r
r

k(fχbp) •

q
q
q
q
q
q
q
q
q
q
q
q

k(fχb) Fn

q
q
q
q
q
q
q
q
q
q
q
q

F = F0

For each n Hilbert’s Theorem 90 provides an element βn ∈ F×
n /F× such that

βγ−1
n = Nk(fχbpn+1)/Fn

(
ψ(1; fχbpn+1, a)

)
.

If we put κn := NFn/F (βn) ∈ F×/ (F×)
pn

and κ∞ := {κn}
∞
n=0 ∈

lim F×/ (F×)
pn

, then the main result of [1] says

B = ordw(κ∞).

From the construction of z∞ it is clear that one has

βn = Nk(fχbpn+1)/Fn
(zn) in F×

n /F×,

and consequently,

κ∞ = {Nk(fχbp)/F (z0)}
∞
n=0.

We let w′ | w denote the place in k(fχ)/F defined by v and set cp(γ) :=
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logp(χell(γ))−1. Then

Trk(f)v/Qp

(
logp

(
Nk(fχb)/k(fχ) (ψ(1; fχb, a))

))

=
|Dp|

[k(fχ) : F ]
cp(γ)−1ordw(Nk(fχbp)/F z0)

=
|Dp|cp(γ)−1

[k(fχ) : F ]
ordw(Nk(fχp)/F Nk(fχbp)/k(fχp)z0)

=
|Dp|cp(γ)−1[k(fχbp) : k(fχp)]

[k(fχ) : F ]
ordw(Nk(fχp)/F z0)

=
|Dp|cp(γ)−1w(1)[k(b) : k(1)]

[k(fχ) : F ]
ordw(Nk(fχ)/F (Nk(fχp)/k(fχ)z0))

=
|Dp|cp(γ)−1w(1)[k(b) : k(1)]

[k(fχ) : F ]
fw′/wordw′(Nk(fχp)/k(fχ)z0)

= |Dp|cp(γ)−1w(1)[k(b) : k(1)]e−1
v/w′ordv(Nk(fχp)/k(fχ)z0)

= fpcp(γ)−1w(1)[k(b) : k(1)]ordv(Nk(fχp)/k(fχ)z0)

We now apply Lemma 5.8. The congruence in the following computation is
modulo Y{w|f0}⊗Zp

Qp.

βω̄

(
Nk(fχb)/k(fχ)(ψ(1; fχb, a))

)

≡ cp

∑

v|p

Trk(f)v/Qp

(
logp(Nk(fχb)/k(fχ)(ψ(1; fχb, a)))

)
· v

=
cp

cp(γ)
fpw(1)[k(b) : k(1)]

∑

v|p

ordv

(
Nk(fχp)/k(fχ)(z0)

)
· v

=

{
fp

pn [k(b) : k(1)] w(1)
w(fχ)

∑

v|p ordv(Nk(f0p)/k(f0)z0) · v, if p ∤ f,
fp

pn w(1)[k(b) : k(1)][k(fχp) : k(fχ)]
∑

v|p ordv (z0) · v, if p | f

=







fp

pn [k(b) : k(1)] w(1)
w(fχ)

∑

v|p ordv(Nk(f0p)/k(f0)z0) · v, if p ∤ f,
fp

pn w(1)[k(b) : k(1)][k(fχp) : k(fχ)][k(fχpµ+1) : k(fχp)]
∑

v|p ordv (zµ) · v,

if p | f

=

{
fp

pn [k(b) : k(1)] w(1)
w(fχ)

∑

v|p ordv(Nk(f0p)/k(f0)z0) · v, if p ∤ f,
fp

pn w(1)[k(b) : k(1)][k(fχpµ+1) : k(fχ)]
∑

v|p ordv

(
β̄1

)
· v, if p | f

=

{
fp

pn

w(1)
w(fχ) [k(b) : k(1)]

∑

v|p ordv(β̄1) · v, if p ∤ f,
fp

pn w(1)[k(b) : k(1)][k(fχpν) : k(fχ)]
∑

v|p ordv

(
β̄1

)
· v, if p | f
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We first assume that p | f and use this data to compute

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2)

= φ
(
β̄−1

1 ∧ [Nk(fχb)/k(fχ)ψ(1; fχb, a)]−1

∧x−1
J ⊗βω̄(xJ ) ∧ βω̄(Nk(fχb)/k(fχ)(ψ(1; fχb, a))) ∧ β̄2

)

= cχ
fp

pn
w(1)[k(b) : k(1)][k(fχpν) : k(fχ)] ×

φ
(
β̄−1

1 ∧ [Nk(fχb)/k(fχ)(ψ(1; fχb, a))]−1 ∧ x−1
J ⊗val(xJ) ∧ val(β̄1) ∧ β̄2

)

= −cχ
fp

pn
w(1)[k(b) : k(1)][k(fχp

ν) : k(fχ)][Nk(fχb)/k(fχ)(ψ(1; fχb, a))]−1⊗σ∞|k(f)

| {z }

=:A

.

On the other hand we note that fχ = fχ,0 and compute

L = (Na − σ(a))[k(f0p) : k(fχp)]
∏

l|f0,l∤fχ

1

1 − Fr−1
l

η−1
fχ

⊗σ∞.

In addition, one has

(γ − 1)β1 = (γ − 1)z∞ =
1

[k(fχbp) : F ]
Nk(fχbp)/F (η)

and
ω̄

1 − γ
= T := 1 + γ + . . . + γpn−1.

This implies the equality

ω̄β1 = (1 − γ)Tβ1 = −T
1

[k(fχbp) : k(fχp)]
Nk(fχbp)/k(fχp)(η)

= −T
1

[k(fχbp) : k(fχp)]
(1 − σ(b)−1)ηfχ

= −T
1

w(1)[k(b) : k(1)]
(1 − σ(b)−1)ηfχ

in U∞
Sp,qχ

. Since e = −(|J | + 1) we obtain L = Bω̄e(β−1
1 ⊗β2) with

B = −T (Na − σ(a))[k(f0p) : k(fχp)](w(1)[k(b) : k(1)])−1 ×

(1 − σ(b)−1)
∏

l|f0,l∤fχ

χ(l) 6=1

1

1 − Fr−1
l

∏

l∈J

ω̄

1 − Fr−1
l

.

Again we deduce from [8, Lem. 5.7] that φ(L⊗1) = AB. From

[k(fχpν) : k(fχ)][k(f0p : k(fχp)] = [k(f) : k(fχ)]
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(recall again that w(p) = w(f) = 1) and

Nk(fχb)/k(fχ)(ψ(1; fχb, a)w(fχ)) =

{

(1 − σ(b)−1)ψ(1; fχ, a), if fχ 6= 1,
δ(Ok,a−1)
δ(b,a−1b) , if fχ = 1,

we compute

AB =

= w(fχ)[k(f) : k(fχ)](Na − σ(a))
∏

l|f0
χ(l) 6=1

1

1 − Fr−1
l

∏

l∈J∪{p}

fl ×

{

ψ(1; fχ, a)−1⊗σ∞|k(f), if fχ 6= 1,

(1 − σ(b)−1) δ(Ok,a−1)
δ(b,a−1b) ⊗σ∞|k(f), if fχ = 1.

Finally we use in the case fχ = 1 the relation

(
δ(Ok, a−1)

δ(b, a−1b)

)1−σ(p)−1

=

(
δ(Ok, a−1)

δ(p, a−1p)

)1−σ(b)−1

and recover the equation (32). The case p ∤ f is completely analogous.

The case of the trivial character In this case β1 = η1 and we first have
to compute β̄1. If p ∤ f, the β̄1 = Nk(fp)/k(f)(ψ(1; q, a)) and the distribution
relation [1, Th. 2.3 b)] implies

β̄1 = Nk(q)/k(1)(ψ(1; q, a)w(1)) =
δ(Ok, a−1)

δ(p, pa−1)
,

where δ denotes the function of lattices defined in [21, Th. 1]. We recall that

δ(L,L)12 =
∆(L)[L:L]

∆(L)
.

If p | f, then β̄1 = ψ(1; pν , a), where again f = f0p
ν .

We now want to compute (φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2). Since χ is now trivial we no
longer have X{w|∞}⊗AQp(χ) = Y{w|∞}⊗AQp(χ), and therefore have to take
into account the short exact sequence

0 −→ X∞
{w|f0p} −→ X∞

{w|f0p∞} −→ Y ∞
{w|∞} −→ 0 (38)

in the definition of φω̄. Recall here that H2(∆) = X∞
{w|f0p∞} and Y ∞

{w|∞} = M2.

A lift of σ|k(f) ∈ M2/ω̄ = Y{w|∞} is given by σ|k(f) − wp, where wp denotes a
fixed place of k(f) above p. We obtain

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2) = φ(β̄−1
1 ∧ x−1

J ⊗βω̄(xJ) ∧ (σ|k(f) − wp))

= cχφ(β̄−1
1 ∧ x−1

J ⊗val(xJ) ∧ (σ|k(f) − wp))
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Next, we compute val(β̄1) and express the result in terms of σ|k(f)−wp. If p ∤ f,
then

val(β̄1) =
1

12
(Na − 1)val

(
∆(Ok)

∆(p)

)

.

We use ∆(Ok)/∆(p) ∼ p12 and obtain in Y{w|f0p}⊗AQp(χ)

val(β̄1) = (Na − 1)
∑

w|p

ordw(p) · w

= (Na − 1)|Ip|
∑

w|p

w

= (Na − 1)|Ip|
|Gf|

|Dp|
wp

= (Na − 1)
[k(f) : k]

fp

wp

An explicit splitting of the short exact sequence (14) is given by

w 7→ w −
1

[k(f) : k]
Trk(f)/kσ|k(f).

Under this map val(β̄1) maps to −(Na − 1) [k(f):k]
fp

(σ|k(f) − wp) in

X{w|fp∞}⊗AQp(χ).

Recall that ϕOk
denotes the Euler function attached to the ring Ok. In the

case p | f we compute from [1, Th. 2.4]

val(β̄1) =
Na − 1

ϕOk
(pν)

∑

w|p

ordw(p) · w

=
Na − 1

ϕOk
(pν)

[k(f) : k]

fp

wp.

So we derive the closed formula

val(β̄1) = −
Na − 1

ϕOk
(pν)

[k(f) : k]

fp

(σ|k(f) − wp)

as elements of X{w|fp∞}⊗AQp(χ).

This implies

(φ ◦ φ−1
ω̄ )(β̄−1

1 ) = −cχ
ϕOk

(pν)

Na − 1

fp

[k(f) : k]
︸ ︷︷ ︸

=:A
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On the other hand we compute for L⊗1

L⊗1 = (Na − σ(a))η−1
f0

⊗σ

= (Na − σ(a)) [k(f0) : k(1)]
w(1)

w(f0)

[

Trk(f0pn+1)/k(pn+1)η
−1
f0

]−1

⊗σ

= (Na − σ(a)) [k(f0) : k(1)]
w(1)

w(f0)

∏

l|f0

1

1 − Fr−1
l

η−1
1 ⊗σ

= (Na − σ(a)) [k(f0) : k(1)]
w(1)

w(f0)

∏

l|f0

ω̄

1 − Fr−1
l

︸ ︷︷ ︸

=:B

ω̄e(β−1
1 ⊗β̄2).

It follows from (35) together with

[k(f) : k] = hk
w(f)

w(1)
ϕOk

(f), [k(f0) : k(1)] =
w(f0)

w(1)
ϕOk

(f0)

that φ(L⊗1) = AB = −fp

(
∏

l|f0
fl

)
w(1)
hk

. Since ζ∗k(0) = − hk

w(1) this concludes

the proof.
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