
ON THE ERGODICITY OF THE ADAPTIVE METROPOLIS

ALGORITHM ON UNBOUNDED DOMAINS

EERO SAKSMAN AND MATTI VIHOLA

Abstract. This paper describes sufficient conditions to ensure the correct
ergodicity of the Adaptive Metropolis (AM) algorithm of Haario, Saksman,
and Tamminen [9], for target distributions with a non-compact support. The
conditions ensuring a strong law of large numbers and a central limit theorem
require that the tails of the target density decay super-exponentially and have
regular contours. The result is based on the ergodicity of an auxiliary process
that is sequentially constrained to feasible adaptation sets, and independent
estimates of the growth rate of the AM chain and the corresponding geometric
drift constants. The ergodicity result of the constrained process is obtained
through a modification of the approach due to Andrieu and Moulines [1].

1. Introduction

The Markov chain Monte Carlo (MCMC) method, first proposed by [13], is a
commonly used device for numerical approximation of integrals of the type

π(f) =

∫
f(x)π(x)dx

where π is a probability density function. Intuitively, the method is based on
producing a sample (Xk)

n
k=1 of random variables from the distribution π defines.

The integral π(f) is approximated with the average In := n−1
∑n

k=1 f(Xk). In
particular, the random variables (Xk)

n
k=1 are a realisation of a Markov chain,

constructed so that the chain has π as the unique invariant distribution.
One of the most commonly applied constructions of such a chain in R

d is to let
X0 ≡ x0 with some fixed point x0 ∈ R

d, and recursively for n ≥ 1,

(1) simulate Yn = Xn−1 + Un, where Un is an independent random variable
distributed according to some symmetric proposal distribution q, e.g. a
zero-mean Gaussian, and

(2) with probability min{1, π(Yn)/π(Xn−1)}, the proposal is accepted and
Xn = Yn; otherwise the proposal is rejected and Xn = Xn−1.
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This symmetric random-walk Metropolis algorithm is often efficient enough, even
in a relatively complex and high-dimensional situation, provided that the pro-
posal distribution q is selected properly. Finding a good proposal for a particular
problem can, however, be a difficult task.

Recently, there has been a number of publications describing different adapta-
tion techniques aiming to find a good proposal automatically [9, 2, 5, 1, 15]; see
also the review article [3]. It has been a common practice to perform trial runs,
and determine the proposal from the outcome. The recently proposed methods are
different in that they adapt on-the-fly, continuously during the estimation run. In
this paper, we focus on the forerunner of these methods, the Adaptive Metropolis
(AM) algorithm [9], which is a random-walk Metropolis sampler with a Gauss-
ian proposal qv having a covariance v. The proposal covariance v is updated
continuously during the run, according to the history of the chain. In general,
such an adaptation may, if carelessly implemented, destroy the correct ergodicity
properties, i.e. that In does not converge to π(f) as n → ∞ (see, e.g., [15] for
an example). For practical considerations of the AM algorithm, the reader may
consult [10, 16].

In the original paper [9] presenting the AM algorithm, the first ergodicity re-
sult for such adaptive algorithms was obtained. More precisely, a strong law of
large numbers was proved for bounded functionals, when the algorithm is run on a
compact subset of R

d. After that, several authors have obtained more general con-
ditions under which an adaptive MCMC process preserves the correct ergodicity
properties. Andrieu and Robert [2] established the connection between adap-
tive MCMC and stochastic approximation, and proposed a general framework for
adaptation. Atchadé and Rosenthal [5] developed further the technique of [9].
Andrieu and Moulines [1] made important progress by generalising the Poisson
equation and martingale approximation techniques to the adaptive setting. They
proved the ergodicity and a central limit theorem for a class of adaptive MCMC
schemes. Roberts and Rosenthal [15] use an interesting approach based on cou-
pling to show a weak law of large numbers. However, in the case of AM, all the
techniques essentially assume that the adapted parameter is constrained to a pre-
defined compact set, or do not present concrete verifiable conditions. The only
result to overcome this assumption is the one by Andrieu and Moulines [1]. Their
result, however, requires a modification of the algorithm, including additional
re-projections back to some fixed compact set.

This paper describes sufficient conditions under which the AM algorithm pre-
serves the correct ergodicity properties, and In → π(f) almost surely as n → ∞
for any function f that is bounded on compact sets and grows at most exponen-
tially as ‖x‖ → ∞. In addition, we prove a central limit theorem, stating that
n−1/2

∑n
k=1[f(Xk) − π(f)] converges to a Gaussian random variable in distribu-

tion. Our main result (Theorem 13) holds for the original AM process (without
re-projections) having a target distribution supported on R

d. Essentially, the tar-
get density π must have asymptotically lighter tails than π(x) = ce−‖x‖p

for some
p > 1, and for large enough ‖x‖, the sets Ax = {y ∈ R

d : π(y) ≥ π(x)} must
have uniformly regular contours. Our assumptions are very close to the well-
known conditions proposed by Jarner and Hansen [12] to ensure the geometric
convergence of a (non-adaptive) Metropolis process.
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The ergodicity results for the AM process rely on three main contributions.
First, in Section 2, we describe an adaptive MCMC framework, in which the
adaptation parameter is constrained at each time to a feasible adaptation set. In
Section 3, we prove a strong law of large numbers and a central limit theorem for
such a process, through a modification of the technique of Andrieu and Moulines
[1]. Second, we propose an independent estimate for the growth rate of a process
satisfying a general drift condition in Section 4. Third, in Section 5, we provide an
estimate for constants of geometric drift for a symmetric random-walk Metropolis
process, when the target distribution has super-exponentially decaying tails with
regular contours.

The paper is essentially self-contained, and assumes little background knowl-
edge. Only the basic martingale theory is needed to follow the argument, with
the exception of Theorem 21 by Meyn and Tweedie [14], restated in Appendix A.
Even though we consider only the AM algorithm, our techniques apply also to
many other adaptive MCMC schemes of similar type.

2. General Framework and Notations

We consider an adaptive Markov chain Monte Carlo (MCMC) chain evolving
in space X×S, where X is the state space of the “MCMC” chain (Xn)n≥0 and the
adaptation parameter (Sn)n≥0 evolves in S ⊂ S, where S is a separable normed
vector space. We assume an underlying probability space (Ω,FΩ,P), and denote
the expectation with respect to P by E. The natural filtration of the chain is
denoted with F := (Fk)k≥0 ⊂ FΩ where Fk := σ(Xj, Sj : 0 ≤ j ≤ k). We also
assume that we are given an increasing sequence K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ S of
subsets of the adaptation parameter space S. The random variables (Xn, Sn)n≥0

form a stochastic chain, starting from S0 ≡ s0 ∈ K0 ⊂ S and X0 ≡ x0 ∈ X, and
for n ≥ 0, satisfying the following recursion,

Xn+1 ∼ PSn
(Xn, · )(1)

Sn+1 = σn+1 (Sn, ηn+1H(Sn, Xn+1))(2)

where Ps is a transition probability for each s ∈ S, H : S×X → S is an adaptation
function, and (ηn)n≥1 is a decreasing sequence of adaptation step sizes ηn ∈ (0, 1).
The functions σn : S × S → S are defined as

σn(s, s′) :=

{
s+ s′, if s + s′ ∈ Kn

s, otherwise.

Thus, σn ensures that Sn lies in Kn for each n ≥ 0. The recursion (2) can also
be considered as constrained Robbins-Monro stochastic approximation; see [1, 4]
and references therein.

Let V : X → [1,∞) be a function. We define a V -norm of a function f as

‖f‖V := sup
x∈X

|f(x)|
V (x)

.

As usual, we denote the integration of a function f with respect to a (signed)
measure µ as µ(f) :=

∫
f(x)µ(dx), and define Pf(x) :=

∫
f(y)P (x, dy) for a
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transition probability P . The V -norm of a signed measure is defined as

‖µ‖V := sup
|f |≤V

|µ(f)|.

The indicator function of a set A is denoted as 1A(x) and equals one if x ∈ A
and zero otherwise. In addition, we use the notations a ∨ b := max{a, b} and
a ∧ b := min{a, b}.

3. Ergodicity of Sequentially Constrained Adaptive MCMC

This section contains general ergodicity results for a sequentially constrained
process defined in Section 2. These results can be seen auxiliary to our results on
Adaptive Metropolis in Section 5, but may be applied to other adaptive MCMC
methods as well.

Suppose that the adaptation algorithm has the form given in (1) and (2), and
the following assumptions are satisfied for some c ≥ 1 and ǫ ≥ 0.

(A1) For each s ∈ S, the transition probability Ps has π as the unique invariant
distribution.

(A2) For each n ≥ 1, the following uniform drift and minorisation condition holds
for all s ∈ Kn

PsV (x) ≤ λnV (x) + bn1Cn
(x), ∀x ∈ X(3)

Ps(x,A) ≥ δnνs(A), ∀x ∈ Cn, ∀A ⊂ X(4)

where Cn ⊂ X is a subset (a minorisation set), V : X → [1,∞) is a drift
function such that supx∈Cn

V (x) ≤ bn, and νs is a probability measure on X,
concentrated on Cn. Furthermore, the constants λn ∈ (0, 1) and bn ∈ (0,∞)
are increasing, and δn ∈ (0, 1] is decreasing with respect to n, and they are
polynomially bounded so that

(1 − λn)−1 ∨ δ−1
n ∨ bn ≤ cnǫ.

(A3) For all n ≥ 1 and any r ∈ (0, 1], there is c′ = c′(r) ≥ 1 such that for all
s, s′ ∈ Kn,

‖Psf − Ps′f‖V r ≤ c′nǫ ‖f‖V r |s− s′|.
(A4) There is a β ∈ [0, 1/2] such that for all n ≥ 1, s ∈ Kn and x ∈ X

|H(s, x)| ≤ cnǫV β(x).

Theorem 1. Assume (A1)–(A4) hold and let f be a function with ‖f‖V α < ∞
for some α ∈ (0, 1 − β). Assume ǫ < κ−1

∗ [(1/2) ∧ (1 − α− β)], where κ∗ ≥ 1 is
an independent constant, and that

∑∞
k=1 k

κ∗ǫ−1ηk <∞. Then,

(5)
1

n

n∑

k=1

f(Xk)
n→∞−−−→ π(f) almost surely.

The proof of Theorem 1 is postponed to the end of this section. We start by the
following lemma, whose proof is given in Appendix A. It shows that if we have
polynomially worse bounds for drift and minorisation constants, then the speed
of geometric convergence can get only polynomially worse.
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Lemma 2. Suppose (A2) holds. Then, one has for r ∈ (0, 1] that for all s ∈ Kn

and k ≥ 1,

‖P k
s (x, · ) − π( · )‖V r ≤ V r(x)Lnρ

k
n

with bound

Ln ∨ (1 − ρn)−1 ≤ c2n
κ2ǫ

where κ2 > 0 is an independent constant, and c2 = c2(c, r) ≥ 1.

Observe that the statement in Lemma 2 entails that any function ‖f‖V <∞ is
integrable with respect to the measures π and P k

s (x, · ), for all x ∈ X, k ≥ 1, and
s ∈ ∪n≥0Kn. The next three results are modified from Proposition 3, Lemma 5,
and Proposition 6 of [1], respectively. The first one bounds the regularity of the

solutions f̂s of the Poisson equation

(6) f̂s − Psf̂s = fs − π(fs)

for a polynomially Lipschitz family of functions.

Definition 3. Suppose V : X → [1,∞). Given an increasing sequence of subsets
Kn ⊂ S, n ≥ 1, we say that a family of functions {fs}s∈S, with fs : X → R, is
(Kn, V )-polynomially Lipschitz with constants c ≥ 1, ǫ ≥ 0, if for all s, s′ ∈ Kn,
we have

‖fs‖V ≤ cnǫ and ‖fs − fs′‖V ≤ cnǫ|s− s′|.

Proposition 4. Suppose that (A1)–(A3) hold, and the family of functions {fs}s∈S

is (Kn, V
r)-polynomially Lipschitz with constants (c, ǫ), for some r ∈ (0, 1]. There

is an independent constant κ3 > 0 and a constant c3 = c3(c, c
′, r) ≥ 1, such that

(i) The family {Psfs}s∈S is (Kn, V
r)-polynomially Lipschitz with constants (c3, κ3ǫ).

(ii) Define, for any s ∈ S, the function

(7) f̂s :=

∞∑

k=0

[
P k

s fs − π(fs)
]
.

Then, f̂s solves the Poisson equation (6), and the families {f̂s}s∈S and {Psf̂s}s∈S

are (Kn, V
r)-polynomially Lipschitz with constants (c3, κ3ǫ). In other words,

‖f̂s‖V r + ‖Psf̂s‖V r ≤ c3n
κ3ǫ(8)

‖f̂s − f̂s′‖V r + ‖Psf̂s − Ps′ f̂s′‖V r ≤ c3n
κ3ǫ|s− s′|.(9)

for all s, s′ ∈ Kn.

Proof. Throughout the proof, suppose s, s′ ∈ Kn.
The part (i) follows easily from Lemma 2, since

‖Psfs‖V r ≤ ‖Psfs − π(fs)‖V r + |π(fs)| ≤ [c2n
κ2ǫ + π(V r)]‖fs‖V r

‖Psfs − Ps′fs′‖V r ≤ ‖(Ps − Ps′)fs‖V r + ‖Ps′(fs − fs′)‖V r

≤ c′nǫ‖fs‖V r |s− s′| + c̃nκ2ǫ‖fs − fs′‖V r ≤ c̃n(κ2+1)ǫ|s− s′|.
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Consider then (ii). The estimate (8) follows by the definition of f̂s and Lemma
2,

‖f̂s‖V r ≤
∞∑

k=0

‖P k
s fs − π(fs)‖V r ≤ Ln ‖fs‖V r

∞∑

k=0

ρk
n

=
Ln

1 − ρn
‖fs‖V r ≤ (c2n

κ2ǫ)2cnǫ = c22cn
(2κ2+1)ǫ.

The above bound clearly applies also to ‖Psf̂s‖V r , and the convergence implies

that f̂s solves (6).
For (9), define an auxiliary transition probability by setting Π(x,A) := π(A)

and write

P k
s f − P k

s′f =
k−1∑

j=0

(P j
s − Π)(Ps − Ps′)[P

k−j−1
s′ f − π(f)]

since πPs = π for all s. By Lemma 2 and Assumption (A3), we have for all
s, s′ ∈ Kn and j ≥ 0

‖(P j
s − Π)(Ps − Ps′)[P

k−j−1
s′ f − π(f)]‖V r

≤ Lnρ
j
n‖(Ps − Ps′)[P

k−j−1
s′ f − π(f)]‖V r

≤ Lnρ
j
nc

′nǫ|s− s′|‖P k−j−1
s′ f − π(f)‖V r

≤ L2
nρ

k−1
n c′nǫ|s− s′| ‖f‖V r

which gives that

(10) ‖P k
s f − P k

s′f‖V r ≤ kL2
nρ

k−1
n c′nǫ|s− s′| ‖f‖V r .

Write then

f̂s − f̂s′ =
∞∑

k=0

[
P k

s fs − P k
s′fs

]
−

∞∑

k=0

[
P k

s′(fs′ − fs) − π(fs′ − fs)
]
.

By Lemma 2 and estimate (10) we have

‖f̂s − f̂s′‖V r ≤ L2
nc

′nǫ|s− s′|
( ∞∑

k=0

kρk−1
n

)
‖fs‖V r + Ln

( ∞∑

k=0

ρk
n

)
‖fs′ − fs‖V r

≤
[
L2

nc
′nǫ(1 − ρn)−2cnǫ + Ln(1 − ρn)−1cnǫ

]
|s− s′|

≤
[
(c2n

κ2ǫ)2c′nǫ(c2n
κ2ǫ)2cnǫ + (c2n

κ2ǫ)(c2n
κ2ǫ)cnǫ

]
|s− s′|

≤ 2c42c
′cn(4κ2+2)ǫ|s− s′|.

The same bound applies, with a similar argument, to Psf̂s − Ps′ f̂s′. �

Lemma 5. Assume that (A2) holds. Then, for all r ∈ [0, 1], any sequence (an)n≥1

of positive numbers, and (x0, s0) ∈ X ×K0, we have that

E [V r(Xk)] ≤ cr4k
2rǫV r(x0)(11)

E

[
max

m≤j≤k
(ajV (Xj))

r

]
≤ cr4

(
k∑

j=m

ajj
2ǫ

)r

V r(x0)(12)
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where the constant c4 depends only on c.

Proof. For (x0, s0) ∈ X×K0 and k ≥ 1, we can apply the drift inequality (3) and
the monotonicity of λk and bk to obtain

E [V (Xk)] = E [E [V (Xk) | Fk−1]] = E
[
PSk−1

V (Xk−1)
]

≤ λkE [V (Xk−1)] + bk ≤ · · · ≤ λk
kV (x0) + bk

k−1∑

j=0

λj
k

≤ (1 + bk

∞∑

j=0

λj
k)V (x0) ≤ (1 + c2k2ǫ)V (x0) ≤ c4k

2ǫV (x0).

(13)

This estimate with Jensen’s inequality yield for r ∈ [0, 1] that

E [V r(Xk)] ≤ (E [V (Xk)])
r ≤ cr4k

2rǫV r(x0).

Similarly, we have

E

[
max

m≤j≤k
(ajV (Xj))

r

]
≤
(

E

[
max

m≤j≤k
ajV (Xj)

])r

≤
(

k∑

j=m

ajE [V (Xj)]

)r

≤ cr4

(
k∑

j=m

ajj
2ǫ

)r

V r(x0)

by Jensen’s inequality and the estimate (13). �

Assume that {fs}s∈S is a regular enough family of functions. Consider the
following decomposition, which is one of the key observations in [1],

(14)

k∑

j=1

[
fSj

(Xj) − π(fSj
)
]

= Mk +R
(1)
k +R

(2)
k

where (Mk)k≥1 is a martingale with respect to F , and (R
(1)
k )k≥1 and (R

(2)
k )k≥1 are

“residual” sequences, given by

Mk :=
k∑

j=1

[
f̂Sj−1

(Xj) − PSj−1
f̂Sj−1

(Xj−1)
]

R
(1)
k :=

k∑

j=1

[
f̂Sj

(Xj) − f̂Sj−1
(Xj)

]

R
(2)
k := PS0 f̂S0(X0) − PSk

f̂Sk
(Xk).

Recall that f̂s solves the Poisson equation (6). The following proposition controls
the fluctuations of these terms individually.

Proposition 6. Assume (A1)–(A4) hold, (x0, s0) ∈ X × K0, and let {fs}s∈S be
(Kn, V

α)-polynomially Lipschitz with constants (c, ǫ) for some α ∈ (0, 1 − β).
Then, for any p ∈ (1, (α + β)−1], for all δ > 0 and ξ > α, there is a c∗ =
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c∗(c, p, α, β, ξ) ≥ 1, such that for all n ≥ 1,

P

[
sup
k≥n

|Mk|
k

≥ δ

]
≤ c∗δ

−pnpǫ∗−(p/2)∧(p−1)V αp(x0)(15)

P

[
sup
k≥n

|R(1)
k |
kξ

≥ δ

]
≤ c∗δ

−p

( ∞∑

j=1

(j ∨ n)ǫ∗−ξηj

)p

V (α+β)p(x0)(16)

P

[
sup
k≥n

|R(2)
k |
kξ

≥ δ

]
≤ c∗δ

−pnpǫ∗−(ξ−α)pV αp(x0)(17)

whenever ǫ > 0 is small enough to ensure that ǫ∗ := κ∗ǫ <
[

1
2
∧
(
1− 1

p

)
∧ (ξ−α)

]
,

where κ∗ ≥ 1 is an independent constant.

Proof. In this proof, c̃ is a constant that can take different values at each appear-
ance. By Proposition 4, we have that ‖f̂s‖V α + ‖Psf̂s‖V α ≤ c3ℓ

κ3ǫ for all s ∈ Kℓ.
Since αp ∈ [0, 1], we can bound the martingale differences dMℓ := Mℓ −Mℓ−1 for
ℓ ≥ 1 as follows,

E|dMℓ|p = E

∣∣∣f̂Sℓ−1
(Xℓ) − PSℓ−1

f̂Sℓ−1
(Xℓ−1)

∣∣∣
p

≤ E

∣∣∣‖f̂Sℓ−1
‖V αV α(Xℓ) + ‖PSℓ−1

f̂Sℓ−1
‖V αV α(Xℓ−1)

∣∣∣
p

≤ 2p(c3ℓ
κ3ǫ)p (E [V αp(Xℓ)] + E [V αp(Xℓ−1)])

≤ 2p+1cp3c
αp
4 ℓ

pκ3ǫℓ2αpǫV αp(x0) ≤ c̃ℓ(κ3+2α)pǫV αp(x0)

(18)

by (11) of Lemma 5. For p ≥ 2, we have by Burkholder’s and Minkowski inequal-
ities

E|Mk|p ≤ cpE

[
k∑

ℓ=1

|dMℓ|2
]p/2

≤ cp

[
k∑

ℓ=1

(E|dMℓ|p)2/p

]p/2

≤ c̃k(κ3+2α)pǫ+p/2V αp(x0)

where the constant cp depends only on p. For 1 < p ≤ 2, the estimate (18) yields
by Burkholder’s inequality

E|Mk|p ≤ cpE

[
k∑

ℓ=1

(|dMℓ|p)2/p

]p/2

≤ cp

k∑

ℓ=1

E|dMℓ|p ≤ c̃k(κ3+2α)pǫ+1V αp(x0).

The two cases combined give that

(19) E|Mk|p ≤ c̃k(κ3+2α)pǫ+(p/2)∨1V αp(x0).

Now, by Corollary 23 of Birnbaum and Marshall’s inequality in Appendix B,

P

[
max

n≤k≤m

|Mk|
k

≥ δ

]
≤ δ−p

[
m−p

E|Mm|p +

m−1∑

k=n

(
k−p − (k + 1)−p

)
E|Mk|p

]

≤ δ−p

[
m−p

E|Mm|p + p

m−1∑

k=n

k−p−1
E|Mk|p

]
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for all m ≥ n. By letting κ∗ := κ3 + 3, we have from (19)

m−p
E|Mm|p ≤ c̃mp(κ∗ǫ+(1/2)∨(1/p)−1) m→∞−−−→ 0,

since κ∗ǫ+ (1/2) ∨ (1/p) < 1. Now, (15) follows by

P

[
sup
k≥n

|Mk|
k

≥ δ

]
≤ c̃δ−p

[ ∞∑

k=n

k(κ3+2α)pǫ+(p/2)∨1−p−1

]
V αp(x0)

≤ c̃δ−pnpκ∗ǫ−(p/2)∧(p−1)V αp(x0)

since we have that pκ∗ǫ− (p/2) ∧ (p− 1) < 0.

By Proposition 4, ‖f̂s − f̂s′‖V α ≤ c3ℓ
κ3ǫ|s− s′| for s, s′ ∈ Kℓ. By construction,

|Sℓ − Sℓ−1| ≤ ηℓ|H(Sℓ−1, Xℓ)|, and Assumption (A4) ensures that |H(Sℓ−1, Xℓ)| ≤
cℓǫV β(Xℓ), so

|f̂Sℓ
(Xℓ) − f̂Sℓ−1

(Xℓ)| ≤ c3ℓ
κ3ǫ|Sℓ − Sℓ−1|V α(Xℓ) ≤ c3ℓ

κ3ǫηℓcℓ
ǫV α+β(Xℓ).

Let k ≥ n. Since ℓ(κ3+1)ǫk−ξ ≤ (ℓ ∨ n)(κ3+1)ǫ−ξ for ℓ ≤ k, we obtain

k−ξ|R(1)
k | ≤ k−ξ

k∑

ℓ=1

|f̂Sℓ
(Xℓ) − f̂Sℓ−1

(Xℓ)| ≤ c̃

k∑

ℓ=1

(ℓ ∨ n)(κ3+1)ǫ−ξηℓV
α+β(Xℓ)

and then by Minkowski inequality and (11) of Lemma 5,

E

[
max

n≤k≤m
k−ξp|R(1)

k |p
]
≤ E

[
m∑

ℓ=1

c̃(ℓ ∨ n)(κ3+1)ǫ−ξηℓV
(α+β)p(Xℓ)

]p

≤ c̃

[
m∑

ℓ=1

(
E
[
(ℓ ∨ n)(κ3+1)ǫ−ξηℓV

α+β(Xℓ)
]p)1/p

]p

≤ c̃

[ ∞∑

ℓ=1

(ℓ ∨ n)(κ3+1+2α+2β)ǫ−ξηℓ

]p

V (α+β)p(x0).

(20)

Finally, consider R
(2)
k . From Proposition 4, we have that ‖PSk

f̂Sk
(Xk)‖V α ≤

c3k
κ3ǫ, and by (12) of Lemma 5,

E

[
max

n≤k≤m
k−ξp|PSk

f̂Sk
(Xk)|p

]
≤ cp3E

[
max

n≤k≤m

(
k(κ3ǫ−ξ)/αV (Xk)

)αp
]

≤ cp3c
αp
4

(
m∑

k=n

k(κ3ǫ−ξ)/α+2ǫ

)αp

V αp(x0)

≤ c̃n(κ3+2α)pǫ+(α−ξ)pV αp(x0)

since (κ3 + 2α)ǫ− (ξ − α) < 0. So, we have that

E

[
sup
k≥n

k−ξp|R(2)
k |p

]
≤ 2p

E

[
sup
k≥n

k−ξp
(
|PS0 f̂S0(X0)|p + |PSk

f̂Sk
(Xk)|p

)]

≤ 2p
E

[
|PS0 f̂S0(X0)|p + sup

k≥n
k−ξp|PSk

f̂Sk
(Xk)|p

]

≤ c̃n(κ3+2α)pǫ+(α−ξ)pV αp(x0).

(21)

The estimates (16) and (17) follow by Markov inequality from (20) and (21). �
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The proof of Theorem 1 follows as a straightforward application of Proposition
6.

Proof of Theorem 1. Let δ > 0, and denote

B(δ)
n :=

{
ω ∈ Ω : sup

k≥n

1

k

∣∣∣∣∣

k∑

j=1

[f(Xj) − π(f)]

∣∣∣∣∣ ≥ δ

}
.

Since ‖f‖V α <∞ by assumption, we may consider the family {fs}s∈S with fs ≡ f
for all s ∈ S. Then, we have by decomposition (14) that

(22) P(B(δ)
n ) ≤ P

[
sup
k≥n

|Mk|
k

≥ δ

3

]
+ P

[
sup
k≥n

|R(1)
k |
k

≥ δ

3

]
+ P

[
sup
k≥n

|R(2)
k |
k

≥ δ

3

]
.

We select p ∈ (1, (α + β)−1) so that κ∗ǫ < (1 − 1/p), and let ξ = 1. Then,
Proposition 6 readily implies that the first and the third term in (22) converge to
zero as n→ ∞. For the second term, consider

∞∑

j=1

(j ∨ n)κ∗ǫ−1ηj = nκ∗ǫ−1
n∑

j=1

ηj +
∞∑

j=n+1

jκ∗ǫ−1ηj

where the second term converges to zero by assumption, and the first term by

Kronecker’s lemma. There is an increasing sequence (nk)k≥1 such that P(B
(1/k)
nk ) ≤

k−2. Denoting B := ∩∞
m=1 ∪∞

k=m B
(1/k)
nk , the Borel-Cantelli lemma implies that

P (B∁) = 1, and for all ω ∈ B∁, (5) holds. �

Finally, we prove a central limit theorem in the lines of [1, Theorem 9], assuming
one more condition holds, with the same constants c ≥ 1 and ǫ ≥ 0 as (A1)–(A4).

(A5) There is a β ∈ [0, 1/2] such that (A4) holds, and for all n ≥ 1, x ∈ X and
s, s′ ∈ Kn,

|H(s, x) −H(s′, x)| ≤ cnǫ|s− s′|V β(x).

Theorem 7. Assume (A1)–(A5) hold. Let f be a function with ‖f‖V α < ∞ for
some α ∈ (0, (1−β)/2). Assume ǫ < κ−1

∗∗ [1/2 ∧ (1 − 2α− β)] and
∑∞

k=1 k
κ∗∗ǫ−1/2ηk <

∞, where κ∗∗ ≥ 1 is an independent constant. Furthermore, assume that Sk con-
verges a.s. to some random variable S∞, such that S∞ belongs to the interior of
KN for some N = N(ω) <∞. Then,

(23)
1√
n

n∑

k=1

[f(Xk) − π(f)]
n→∞−−−→ Z

in distribution, where Z is a random variable with characteristic function φZ(t) =

Ee−
1
2
σ2t2 with σ2 := π

(
f̂ 2

S∞
− (PS∞ f̂S∞)2

)
<∞.

Proof. Let κ∗∗ := 3κ2
∗, where κ∗ is the independent constant of Theorem 1. Con-

sider again the martingale decomposition (14). As in the proof of Theorem 1, we
can choose p ∈ (1, (α+β)−1) so that κ∗ǫ < (1−1/p), and let ξ = 1/2. Proposition

6 then implies that n−1/2(R
(1)
n + R

(2)
n ) → 0 almost surely. So it suffices to show
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that n−1/2Mn → Z in distribution. By the central limit theorem for martingales
[11, Corollary 3.1], it is sufficient to show that for all ε > 0,

1

n

n∑

k=1

E
[
dM2

k

∣∣ Fk−1

]
→ σ2 and(24)

1

n

n∑

k=1

E
[
dM2

k1{|dMk|≥ε
√

n}
∣∣ Fk−1

]
→ 0(25)

in probability, where dMk := Mk −Mk−1. Denote gs(x) := Psf̂
2
s (x)− (Psf̂s)

2, and
notice that

E
[
dM2

k

∣∣ Fk−1

]
= gSk−1

(Xk−1).

In the present setting, Proposition 4 yields that the families {f̂s}s∈S and {Psf̂s}s∈S

are (Kn, V
α)-polynomially Lipschitz with constants (c3, κ3ǫ), implying that {f̂ 2

s }s∈S

and {(Psf̂s)
2}s∈S are (Kn, V

2α)-polynomially Lipschitz with constants (2c23, 2κ3ǫ).
Since κ∗ > κ3 ∨ κ2, we obtain that {gs}s∈S is (Kn, V

2α)-polynomially Lipschitz
with constants (c̃, 3κ∗ǫ) for some c̃ ≥ 1. We can choose again p ∈ (1, (2α + β)−1)
such that 3κ2

∗ǫ < (1 − 1/p), and apply Proposition 6 to obtain

1

n

n∑

k=1

(
E
[
dM2

k

∣∣ Fk−1

]
− π(gSk−1

)
)
→ 0

almost surely. Since Sk → S∞ almost surely, and S∞ is in the interior of KN ,
there is an a.s. finite N ′ such that Sk ∈ KN ′ for all k ≥ 1, and

|π(gSk
) − π(gS∞)| ≤ ‖gSk

− gS∞‖V απ(V α) ≤ c̃|Sk − S∞| → 0.

That is, π(gSk
) → π(gS∞), and hence

1

n

n−1∑

k=0

π(gSk
) → π(gS∞) = σ2 <∞

almost surely. This yields (24).
Consider then (25). Applying Lemma 24 in Appendix B, we obtain that

E
[
dM2

k1{|dMk|≥ε
√

n}
∣∣ Fk−1

]
≤ 4E

[
f̂ 2

Sk−1
(Xk)1{|f̂Sk−1

(Xk)|≥ε
√

n/2}
∣∣ Fk−1

]
.

It follows for all ε, L > 0 and for sufficiently large n ≥ 1 that

(26)
1

n

n∑

k=1

E
[
dM2

k1{|dMk |≥ε
√

n}
∣∣ Fk−1

]
≤ 4

n

n∑

k=1

h
(L)
Sk−1

(Xk−1)

where

h(L)
s (x) :=

∫
Ps(x, dy)f̂

2
s (y) sup

s′∈KN′

1{|f̂s′ (y)|>L}.

and where the supremum can be taken with respect to a countable dense subset of
KN ′ to ensure measurability. As before, one checks that for all L > 0 the family

{h(L)
s }s∈S is (Kn, V

2α)-polynomially Lipschitz with constants (c̃, 3κ∗ǫ), and hence
the right hand side of (26) converges almost surely to

4π
(
h

(L,m)
S∞

)
= 4

∫
f̂ 2

S∞
(x) sup

s∈KN′

1{|f̂s(x)|>L}π(x)dx
L→∞−−−→ 0
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by monotone convergence. �

Remark 8. Theorem 7 assumes that the adaptation parameter Sn converges to
some finite limit S∞. The convergence of Sn in our sequentially constrained adap-
tive MCMC, in general, is out of the scope of this paper, and might require ad-
ditional conditions on the adaptation mechanism. However, in Section 5, we see
that in the case of Adaptive Metropolis this can be verified fairly easily.

Remark 9. The constraint functions σn of our framework can be defined more
generally by allowing σn to have additional dependence on ω in a Fn−1-measurable
(predictable) manner. The proofs above do not need to be modified to cover this
generalisation. Indeed, we employ a different definition for σn in the proof of the
central limit theorem for the adaptive Metropolis process in Section 5.

4. Bound for the Growth Rate

In this section, we assume that X is a normed space, and establish a bound
for the growth rate of the chain (‖Xn‖)n≥1, based on a general drift condition.
The bound assumes little structure; one must have a drift function V that grows
rapidly enough, and that the expected growth of V (Xn) is moderate.

Proposition 10. Suppose that there is V : X → [1,∞) such that the bound

(27) PsV (x) ≤ V (x) + b

holds for all (x, s) ∈ X× S, where b <∞ is a constant independent of s. Suppose
also that V grows rapidly enough so that

(28) ‖x‖ ≥ u =⇒ V (x) ≥ r(u)

for all u ≥ 0, where r : [0,∞) → [0,∞) is a function growing faster than any
polynomial, i.e. for any p > 0 there is a c = c(p) <∞ such that

(29) sup
u≥1

up

r(u)
≤ c.

Then, for any ǫ > 0, there is an a.s. finite A = A(ω, ǫ) such that

‖Xn‖ ≤ Anǫ.

Proof. To start with, (27) implies for n ≥ 1

E [V (Xn)] = E [E [V (Xn) | Fn−1]] = E
[
PSn−1V (Xn−1)

]
≤ E [V (Xn−1)] + b

≤ · · · ≤ V (x0) + bn ≤ b̃V (x0)n

where b̃ := b + 1. Now, with fixed a ≥ 1, we can bound the probability of ‖Xn‖
ever exceeding anǫ as follows

P

(
max

1≤n≤m

‖Xn‖
nǫ

≥ a

)
≤

m∑

n=1

P (‖Xn‖ ≥ anǫ) ≤
∞∑

n=1

P (V (Xn) ≥ r(anǫ))

≤
∞∑

n=1

E [V (Xn)]

r(anǫ)
≤ b̃V (x0)

∞∑

n=1

n

r(anǫ)

≤ b̃V (x0)c

a3/ǫ

∞∑

n=1

n−2 a→∞−−−→ 0
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where we use Markov’s inequality, and c = c(3/ǫ) <∞ is from the application of
(29). �

We record the following easy lemma, dealing with a particular choice of V (x),
for later use in Section 5.

Lemma 11. Assume that the target density π is differentiable, bounded, bounded
away from zero on compact sets, and satisfies the following radial decay condition

lim
r→∞

sup
‖x‖≥r

x

‖x‖ · ∇ log π(x) < 0.

Then, for V (x) = cV π
−1/2(x), the bound (28) applies with a function r(u) := ceγu

for some γ, c > 0, satisfying (29).

Proof. Let R ≥ 1 be such that sup‖x‖≥R
x

‖x‖ · ∇ log π(x) ≤ −γ for some γ > 0.

Assume y ∈ R
d and ‖y‖ ≥ 2R, and write y = (1 + a)x, where ‖x‖ = R and

a = ‖y‖
R

− 1 ≥ 1. Denote h(x) := log π(x), and write

log
π(y)

π(x)
=

∫ 1+a

1

x · ∇h(tx)dt ≤ −γa.

We have that

V (y) = cV π(x)−1/2

(
π(y)

π(x)

)−1/2

≥ cV e
γa
2 inf

‖x‖=R
π(x)−1/2 ≥ ce

γ
4R

‖y‖

and, since π is bounded away from zero on {x : ‖x‖ < 2R}, we can select c > 0
such that the bound applies to all y ∈ R

d. �

5. Ergodicity Result for Adaptive Metropolis

We start this section by outlining the original Adaptive Metropolis (AM) al-
gorithm [9]. The AM chain starts from a point X0 ≡ x0 ∈ R

d, and we have an
initial covariance Σ0 ∈ Cd where Cd ⊂ R

d×d stands for the symmetric and positive
definite matrices. We generate, recursively, for n ≥ 0,

Xn+1 ∼ PθΣn
(Xn, · )(30)

Σn+1 =

{
v0, 0 ≤ n ≤ Nb − 1

Cov(X0, . . . , Xn) + κI, n ≥ Nb

(31)

where θ > 0 is a parameter, Nb ≥ 2 is the length of the burn-in, κ > 0 is a
small constant, I is an identity matrix, and Pv(x, · ) is a Metropolis transition
probability defined as

(32) Pv(x,A) := 1A(x)

[
1 −

∫ (
1 ∧ π(y)

π(x)

)
qv(y − x)dy

]

+

∫

A

(
1 ∧ π(y)

π(x)

)
qv(y − x)dy

where the proposal density qv is the Gaussian density with zero mean and covari-
ance v ∈ Cd.

In this paper, just for notational simplicity (see Remark 12), we consider a
slight modification of the AM chain. Firstly, we do not consider a burn-in period,
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i.e. let Nb = 0, and let Σ0 ≥ κI. Instead of (31), we construct Σn recursively for
n ≥ 1 as

(33) Σn =
n

n+ 1
Σn−1 +

1

n+ 1

[
(Xn −Xn−1)(Xn −Xn−1)

T + κI
]

where Xn denotes the average of X0, . . . , Xn.

Remark 12. The original AM process uses the unbiased estimate of the covari-
ance matrix. In this case, the recursion formula for Σn, when n ≥ Nb +2, has the
form

(34) Σn =
n− 1

n
Σn−1 +

1

n+ 1

[
(Xn −Xn−1)(Xn −Xn−1)

T + κI
]

This recursion can also be formulated in our framework described in Section 2 by
simply introducing a sequence of adaptation functions Hn(s, x). Our proof applies
with obvious changes. However, in the present paper, we prefer (33) for simpler
notations. Also, from a practical point of view, observe that (33) differs from (34)
by a factor smaller than n−2Σn−1 whence it is mostly a matter of taste whether to
use (33) or (34).

In the notation of the general adaptive MCMC framework in Section 2, we have

the state space X := R
d. The adaptation parameter Sn = (S

(m)
n , S

(v)
n ) consists of

the mean S
(m)
n and the covariance S

(v)
n , having values in (S

(m)
n , S

(v)
n ) ∈ S := R

d×Cd.
The space S := R

d × R
d×d ⊃ S is equipped with the norm |s| := ‖s(m)‖ ∨ ‖s(v)‖

where we use the Euclidean norm, and the matrix norm ‖A‖2 := trace(ATA),
respectively. The Metropolis kernel Ps is defined as in (32), with the definition
qs := qs(v) for s ∈ S. The adaptation function H is defined for s = (s(m), s(v)) as

H(s, x) :=

[
x− s(m)

(x− s(m))(x− s(m))T − s(v) + κI

]

and the adaptation weights are ηn := (n+ 1)−1.
We now formulate our ergodicity result for the AM chain.

Theorem 13. Assume π is positive, bounded, bounded from below on compact
sets, differentiable, and

(35) lim
r→∞

sup
‖x‖≥r

x

‖x‖ρ · ∇ log π(x) = −∞

for some ρ > 1. Moreover, assume that π has regular contours,

(36) lim
r→∞

sup
‖x‖≥r

x

‖x‖ · ∇π(x)

‖∇π(x)‖ < 0.

Define V (x) := cV π
−1/2(x) with cV = (supx π(x))1/2. Then, for any f with

‖f‖V α <∞ where 0 ≤ α < 1,

(37)
1

n

n∑

k=1

f(Xk)
n→∞−−−→ π(f)
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almost surely. If, in addition, α < 1/2,

(38)
1√
n

n∑

k=1

[f(Xk) − π(f)]
n→∞−−−→ N(0, σ2)

in distribution, where σ2 ∈ [0,∞) is a constant.

Remark 14. If the conditions of Theorem 13 are satisfied, the function V (x)
grows faster than an exponential, and hence (37) and (38) hold for exponential
moments. In particular, they hold for power moments, i.e. for f(x) = ‖x‖p for
any p ≥ 0, and therefore also Sn → (mπ, vπ + κI) where mπ and vπ are the mean
and covariance of π.

The proof of Theorem 13 is postponed to the end of this section. We start by
a simple lemma bounding the growth rate of the AM chain.

Lemma 15. If the conditions of Proposition 10 are satisfied for an AM chain,
then for any ǫ > 0, there is an a.s. finite A = A(ω, ǫ) such that

‖S(m)
n ‖ ≤ Anǫ, ‖S(v)

n ‖ ≤ Anǫ

Proof. Since the AM recursion is a convex combination, this is a straightforward
corollary of Proposition 10. �

Next, we show that each of the Metropolis kernels used by the AM algorithm
satisfy a geometric drift condition, and bound the constants of geometric drift.
The result in Proposition 18 is similar to the results obtained in [12, 17], with the
exception that we have a common minorisation set C for all proposal scalings.
We start by two lemmas. We define B(x, r) := {y ∈ R

d : ‖x− y‖ ≤ r}.
Lemma 16. Assume E ⊂ R

d is measurable and A ⊂ R
d compact, given as

A := {ru : u ∈ Sd, 0 ≤ r ≤ g(u)}
where Sd := {u ∈ R

d : ‖u‖ = 1} is the unit sphere, and g : Sd → [b,∞) is a
measurable function parameterising the boundary ∂A, with some b > 0.

For any ǫ > 0, define Bǫ := {ru : u ∈ Sd, g(u) < r ≤ g(u) + ǫ}. Then, for all

ǫ̃ > 0, there is a b̃ = b̃(ǫ̃) ∈ (0,∞) such that for all 0 < ǫ < ǫ̃ and for all λ ≥ 3ǫ,
it holds that

|E ∩Bǫ| ≤
∣∣(E ⊕ B(0, λ)

)
∩ A

∣∣

whenever b ≥ b̃. Above, A⊕B := {x+y : x ∈ A, y ∈ B} stands for the Minkowski
sum.

Proof. See Figure 1 for an illustration of the situation. Denote by S∗ := {u ∈ Sd :
∃r > 0, ur ∈ E ∩ Bǫ} the projection of the set E ∩ Bǫ onto Sd. Then we have
E∩Bǫ ⊂ {ru : u ∈ S∗, g(u) < r ≤ g(u)+ǫ} and A ⊃ {ru : u ∈ S∗, 0 ≤ r ≤ g(u)}.
Now, for ǫ ≤ λ ≤ g(u), we have

(
(E ∩Bǫ) ⊕ B(0, λ)

)
∩ A ⊃ {ru : u ∈ S∗, g(u) − λ+ ǫ ≤ r ≤ g(u)} =: G,

for let ru ∈ G, then there is g(u) < r̃ ≤ g(u) + ǫ such that r̃u ∈ E ∩ Bǫ, and we
can write ru = r̃u + (r − r̃)u, where (r − r̃)u ∈ B(0, λ). Clearly, E ⊕ B(0, λ) ⊃
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E E ⊕ B(0, λ)

0

Figure 1. Illustration of the boundary estimate. The set A is in
light grey, and the set Bǫ in dark grey.

(E ∩Bǫ) ⊕ B(0, λ), and we can estimate
∣∣(E ⊕B(0, λ)

)
∩ A

∣∣− |E ∩ Bǫ|

≥
∫

S∗

∫ g(u)

g(u)−2ǫ

rd−1dr −
∫ g(u)+ǫ

g(u)

rd−1drHd−1(du)

=
1

d

∫

S∗

2(g(u))d − (g(u) − 2ǫ)d − (g(u) + ǫ)dHd−1(du)

where Hd−1 stands for the d − 1 dimensional Hausdorff measure. This integral
is non-negative for all 0 ≤ ǫ ≤ cdb, for some constant cd depending only on the
dimension d, namely let h(ǫ) := (y − 2ǫ)d + (y + ǫ)d. The mean value theorem
implies that for some 0 ≤ ǫ′ ≤ ǫ, one has

h(0) − h(ǫ) = ǫd(y − 2ǫ′)d−1

[
2 −

(
y + ǫ′

y − 2ǫ′

)d−1
]
≥ 0

whenever ǫ ≤ cdy. �

Lemma 17. Let f(x) := xe−
x2

2 . For any 0 < ǫ < 1/8, the following estimates
hold

2f(x+ ǫ) − f(x) ≥ x

8
, for all 0 < x ≤ 1

2
, and

∫ ∞

0

(
[2f(x+ ǫ) − f(x)] ∧ 0

)
dx ≥ −e−cǫ−2

for some constant c > 0.

Proof. We can write

2f(x+ ǫ) − f(x) = e−
x2

2

[
2(x+ ǫ)e−xǫ− ǫ2

2 − x
]

which is positive whenever e−xǫ− ǫ2

2 ≥ 2/3, holding at least for all 0 ≤ x ≤ x∗, with

x∗ =
log(3/2)

ǫ
− ǫ

2
≥ 1

4ǫ
.
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Now, x∗ ≥ 1/2 and we can estimate

2f(x+ ǫ) − f(x) ≥ 1

4
xe−

x2

2 ≥ x

8

for all 0 < x ≤ 1/2. Also,
∫ ∞

0

(
[2f(x+ ǫ) − f(x)] ∧ 0

)
dx ≥ −

∫ ∞

x∗

xe−
x2

2 dx = −e−cǫ−2

with c = 1/32. �

Proposition 18. Assume that π satisfies the conditions in Theorem 13 and κ > 0.
Then, there exists a compact set C ⊂ R

d, a probability measure ν on C, and a
constant b ∈ [0,∞) such that for the Metropolis transition probability Pv in (32)
and for all v ∈ Cd with all eigenvalues greater than κ > 0, it holds that

PvV (x) ≤ λvV (x) + b1C(x), ∀x ∈ X(39)

Pv(x,B) ≥ δvν(B) ∀x ∈ C, ∀B ⊂ X(40)

where V (x) := cV π
−1/2(x) ≥ 1 with cV := (supx π(x))1/2 and the constants λv, δv ∈

(0, 1) satisfy the bound

(1 − λv)
−1 ∨ δ−1

v ≤ c det(v)1/2

for some constant c ≥ 1.

Proof. Define the sets Ax := {y : π(y) ≥ π(x)} and its complement Rx := {y :
π(y) < π(x)}, which are the regions of almost sure acceptance and possible re-
jection at x, respectively. Let R > 1 be sufficiently large to ensure that for all
‖x‖ ≥ R, it holds that

sup
‖x‖≥R

x

‖x‖ · ∇π(x)

‖∇π(x)‖ < −γ and sup
‖x‖≥R

x

‖x‖ · ∇ log π(x) < −‖x‖ρ−1

for some γ > 0. Suppose that the dimension d ≥ 2. Lemma 25 in Appendix C
implies that for R sufficiently large, we have B(0,M−1 ‖x‖) ⊂ Ax ⊂ B(0,M ‖x‖)
for all ‖x‖ ≥ R with some constant M ≥ 1. Moreover, we can parameterise
Ax = {ru : u ∈ Sd, 0 ≤ r ≤ g(u)} where Sd := {u ∈ R

d : ‖u‖ = 1} is the unit
sphere, and g : Sd → [M−1 ‖x‖ ,M ‖x‖].

Consider (39). We may compute

τv := 1 − PvV (x)

V (x)
=

∫

Ax

(
1 −

√
π(x)

π(y)

)
qv(y − x)dy

−
∫

Rx

√
π(y)

π(x)

(
1 −

√
π(y)

π(x)

)
qv(y − x)dy.

(41)

In what follows, unless explicitly stated, we assume ‖x‖ ≥ M(R + 1). Denote
ǫx := ‖x‖−α < 1, where α = (ρ − 1)/2 > 0. Define Ãx := {ru : u ∈ Sd, 0 ≤ r ≤
g(u)− ǫx} ⊂ Ax and R̃x := {ru : u ∈ Sd, r ≥ g(u) + ǫx} ⊂ Rx. From (41), we can
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estimate

τv ≥
∫ [(

1 −
√
π(x)

π(y)

)1Ãx
(y) − 1

4
1Rx\R̃x

(y)

]
qv(y − x)dy

− sup
z∈Rd

qv(z − x)

∫

R̃x

√
π(y)

π(x)
dy.

(42)

We estimate the two terms in the right hand side separately, starting from the
first.

Let h(x) := log π(x). Suppose z ∈ Ãx, and write z = (1 − a/‖y‖)y for some
y ∈ ∂Ax and ǫx ≤ a ≤ ‖y‖. Assume for a moment ‖z‖ ≥ R. Then, h is decreasing
on the line segment from z to y, and we can estimate

π(x)

π(z)
=
π(y)

π(z)
= eh(y)−h(z) = e

R ‖y‖
‖y‖−a

y
‖y‖

·∇h(t y
‖y‖

)dt ≤ e
R ‖y‖
‖y‖−ǫx

y
‖y‖

·∇h(t y
‖y‖

)dt

≤ e−ǫx(‖y‖−ǫx)ρ−1 ≤ e−ǫx‖x‖ρ−1/(2M)ρ−1

= e−‖x‖α/(2M)ρ−1

Hence, in this case, π(x)/π(z) ≤ 1/4 assuming ‖x‖ ≥ R2 for sufficiently large
R2 ≥ R. If ‖z‖ < R, then there is z′ such that ‖z′‖ = R and the estimate above
holds for z′. Consequently,

(43)
π(x)

π(z)
=
π(y)

π(z′)

π(z′)

π(z)
≤ e−‖x‖α/(2M)ρ−1 sup‖w‖≤R π(w)

inf‖w‖≤R π(w)
≤ 1

4

whenever ‖x‖ ≥ R2 by increasing R2 if needed. In conclusion, we have shown

that for ‖x‖ ≥ R2, it holds that (1 −
√
π(x)/π(y)) ≥ 1/2 for all y ∈ Ãx.

By Fubini’s theorem, we can write for positive f that
∫
f(z + x)qv(z)dx =

cd√
det(v)

∫ 1

0

∫

{e−
1
2 zT v−1z≥t}

f(z + x)dzdt

=
cd√

det(v)

∫ ∞

0

∫

Eu

f(y)dyue−
u2

2 du

where cd = (2π)−d/2 and Eu := {z + x : zT v−1z ≤ u2}. Consequently, for
‖x‖ ≥ R2, we can estimate the first term of (42) from below by

∫ ∞

0

(
|Eu ∩ Ãx|

2
− |Eu ∩ (Rx \ R̃x)|

4

)
ue−

u2

2 du

≥ 1

4

∫ ∞

0

2|Eu+a ∩ Ãx|(u+ a)e−
(u+a)2

2 − |Eu ∩ (Rx \ R̃x)|ue−
u2

2 du

≥ 1

4

∫ ∞

0

2
∣∣(Eu ⊕B(0, κ1/2a)

)
∩ Ãx

∣∣(u+ a)e−
(u+a)2

2 − |Eu ∩ Bǫ|ue−
u2

2 du

for any a ≥ 0, since simple computation shows that Eu ⊕ B(0, κ1/2a) = {x + y :
x ∈ Eu, y ∈ B(0, κ1/2a)} ⊂ Eu+a, and as we may write Ãx = {ru : u ∈ Sd, 0 ≤
r ≤ g̃(u)} where g̃(u) = g(u)− ǫx, we obtain that Rx \ R̃x ⊂ {ru : u ∈ Sd, g̃(u) ≤
r ≤ g̃(u) + 2ǫx} =: Bǫ. We set a = 6κ−1/2ǫx and apply Lemma 16 with the choice
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ǫ = 2ǫx and λ = 6ǫx,
∫ ∞

0

(
|Eu ∩ Ãx|

2
− |Eu ∩ (Rx \ R̃x)|

4

)
ue−

u2

2 du

≥ 1

4

∫ ∞

0

∣∣∣
[
Eu ⊕ B(0, 6ǫx)

]
∩ Ãx

∣∣∣
[
2(u+ a)e−

(u+a)2

2 − ue−
u2

2

]
du

≥ 1

4

∫ 1/2

1/4

|Eu ∩ Ãx|
u

8
du− |Ãx|e−c1ǫ−2

x

≥ c2|E1/4 ∩ Ãx| −Md‖x‖de−c1‖x‖α

by Lemma 17, for sufficiently large ‖x‖, and since Eu are increasing with re-
spect to u. We have that E1/4 ⊃ B(x, κ1/2/4). If ‖x‖ → ∞, then ǫx → 0

and also |B(x, κ1/2/4) ∩ Ãx| − |B(x, κ1/2/4) ∩ Ax| → 0. Moreover, it holds that
|B(x, κ1/2/4) ∩ Ax| ≥ c3 > 0 (see the proof of Theorem 4.3 in [12]). So, for large

enough ‖x‖, there is a c4 > 0 so that |E1/4 ∩ Ãx| ≥ c4. To sum up, by choos-
ing R3 to be sufficiently large, we obtain that the first part of (42) is at least
c5(det(v))−1/2 for all ‖x‖ ≥ R3, with a c5 > 0.

Next, we turn to the second term of (42). We obtain by polar integration that

∫

R̃x

√
π(y)

π(x)
dy =

∫

Sd

∫ ∞

g(u)+ǫx

rd−1e
1
2
h(ru)− 1

2
h(g(u)u)drHd−1(du)

≤ c′d sup
M−1‖x‖≤w≤M‖x‖

∫ ∞

w+ǫx

rd−1e−
1
2

R r
w

tρ−1dtdr

where Hd−1 is the d − 1 dimensional Hausdorff measure, and c′d = Hd−1(Sd).

Denote T (w, r) := rd−1e−
1
4

R r
w

tρ−1dt and let us estimate the latter integral from
above by

∫ ∞

w+ǫx

e−
1
4

R r

w
tρ−1dtdr sup

r≥w+ǫx

T (w, r) ≤
∫ ∞

w

e−
wρ−1

4
(r−w)dr sup

r≥w+ǫx

T (w, r)

≤ 4Mρ−1 ‖x‖1−ρ sup
r≥w+ǫx

T (w, r).

for any w ≥ M−1 ‖x‖. Suppose first w + ǫx ≤ r ≤ 2w, then

T (w, r) ≤ (2w)d−1e−
1
4
ǫxwρ−1 ≤ (2M)d−1 ‖x‖d−1 e−

1
4
M1−ρ‖x‖α ≤ c6

for any M−1 ‖x‖ ≤ w ≤M ‖x‖. For any r > 2w and w ≥ 1, we have

T (w, r) ≤ rd−1e−
1
4

r
2
wρ−1 ≤ rd−1e−

r
8 ≤ c7.

Put together, letting R4 ≥ R3 to be sufficiently large, we obtain that τv ≥
c8(det(v))−1/2 with c8 = c5/2 for all ‖x‖ ≥ R4.

To sum up, by setting C = B(0, R4), we get that for all v ∈ Cd with eigenvalues
bounded from below by κ, the estimate PvV (x) ≤ λvV (x) holds for x /∈ C with
λv := 1 − c8 det(v)−1/2 satisfying (1 − λv)

−1 ≤ c−1
8 det(v)1/2. For x ∈ C, we have

by (41) that PvV (x) ≤ 2V (x) ≤ 2 supz∈C V (z) ≤ b < ∞, so (39) holds. In the
one-dimensional case, the above estimates can be applied separately for the tails
of the distribution.
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Finally, set ν(B) := |C|−1|B ∩C|, and consider the minorisation condition (40)
for x ∈ C,

Pv(x,B) ≥
∫

B∩C

(
1 ∧ π(y)

π(x)

)
qv(y − x)dy

≥ cd√
det(v)

∫

B∩C

(
1 ∧ π(y)

π(x)

)
inf

x,y∈C
e−

1
2
(x−y)v−1(x−y)dy

≥ cd√
det(v)

e−
1

2κ′ diam(C)2 infz∈C π(z)

supz π(z)

∫

B∩C

dy.

So (40) holds with δv := c9 det(v)−1/2 for some c9 > 0. Finally, the claim holds
with c := c−1

8 ∨ c−1
9 . �

Finally, we are ready to prove the strong law of large numbers for the AM
process.

Proof of Theorem 13. We start by verifying the strong law of large numbers (37).

Fix t ≥ 1 and consider first the constrained process (X
(t)
n , S

(t)
n )n≥0 which is defined

as the AM chain, but with the constraint sets K
(t)
n defined as K

(t)
n := {s ∈ S :

|s| ≤ tnǫ′}, with ǫ′ = ǫ/(2d), and ǫ ∈ (0, κ−1
∗ [(1/2) ∧ (1 − α)]), where κ∗ is the

independent constant of Theorem 1.
We check that the assumptions (A1)–(A4) are satisfied by the constrained pro-

cess (X
(t)
n , S

(t)
n )n≥0 for all t ≥ 1. The condition (A1) is satisfied by construction of

the Metropolis kernels Ps. Since det(v) ≤ ‖v‖d, Proposition 18 ensures that there
is a compact C ⊂ R

d such that (A2) holds. For (A3), we refer to [1, Lemma 13]
stating that ‖Psf − Ps′f‖V r ≤ 2dκ−1 ‖f‖V r |s(v) − s′(v)| for all s(v), s′(v) ∈ Cd with
eigenvalues bounded from below by κ.

Finally, we check that (A4) holds for any β ∈ (0, 1/2]. Similarly as in [4], we
have that

sup
s∈K

(t)
n

‖H(s, x)‖V β = sup
s∈K

(t)
n

sup
x∈Rd

|H(s, x)|
V β(x)

≤ ‖κI‖ + sup
x∈Rd

sup
s∈K

(t)
n

‖x‖ + ‖s(m)‖ + ‖s(v)‖ + ‖(x− s(m))(x− s(m))T‖
V β(x)

≤
√
dκ+ sup

x∈Rd

‖x‖ + ‖x‖2 + t2n2ǫ′ + 2tnǫ′ + 2‖x‖tnǫ′

V β(x)

≤
√
dκ+ 7t2n2ǫ′ sup

x∈Rd

‖x‖2 ∨ 1

V β(x)
≤ c̃nǫ

for any β ∈ (0, 1/2] by Lemma 11, where c̃ = c̃(t, β). So, assumption (A4) holds for
any β ∈ (0, 1−α). In particular, we can select β so that ǫ < κ−1

∗ [(1/2)∧(1−α−β)].
Clearly,

∑
k k

κ∗ǫ−1ηk <
∑

k k
κ∗ǫ−2 < ∞, so all the conditions of Theorem 1 are

satisfied, implying that the strong law of large numbers holds for the constrained

process (X
(t)
n , S

(t)
n ) for all t ≥ 1.

Define B(t) := {∀n ≥ 0 : Sn ∈ K
(t)
n }. We can construct the constrained

processes so that they coincide with the original process in B(t). That is, for

ω ∈ B(t) we have (Xn(ω), Sn(ω)) = (X
(t)
n (ω), S

(t)
n (ω)) for all n ≥ 0. Lemma 15
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ensures that we have P(∀n ≥ 0 : Sn ∈ K
(t)
n ) ≥ g(t) where g(t) → 1 as t→ ∞. As

in the proof of Theorem 1, we can use the Borel-Cantelli lemma to deduce that
(37) holds almost surely.

We finally verify the central limit theorem (38). Define mπ :=
∫
xπ(x)dx and

ṽπ :=
∫
xxTπ(x)dx −mπm

T
π + κI as the mean and (modified) covariance of the

distribution π, which are finite, as observed in Remark 14. In addition, as noted in
Remark 12, Sn → sπ := (mπ, ṽπ) almost surely by (37). Therefore, if one denotes
At := {supn≥0 |Sn| ≤ t}, then P(At) → 1 as t→ ∞.

Fix t > |sπ| ∨ |s0|. Define the sets K̃
(t)
n := K̃(t) := K

(t)
1 for all n ≥ 0 and let

σ̃(t)
n (s, s′) :=

{
s+ s′, if Sk−1 + ηkH(Sk−1, Xk) ∈ int K̃(t) for all 1 ≤ k ≤ n

s, otherwise

where int K̃(t) stands for the interior of K̃(t). Define the constrained process

(X̃
(t)
n , S̃

(t)
n )n≥0 following the framework of Section 2 with constraint functions σ̃

(t)
n .

Here one observes that our constraints σ̃
(t)
n correspond to stopping the adaptation

at the time of possible first exit from the interior of K̃(t), whence Remark 9
applies in the present situation. With this definition, the assumptions (A1)–(A4)
are satisfied with some c̃ = c̃(t) ≥ 1 and ǫ = 0, and similarly as above, we obtain

for s, s′ ∈ K
(t)
n

|H(s, x) −H(s′, x)|
≤ ‖s(m) − s′(m)‖ + ‖s(v) − s′(v)‖

+ ‖(x− s(m))(x− s(m))T − (x− s′(m))(x− s′(m))T‖
≤
[
1 + 2 ‖x‖ + 2(‖s(m)‖ ∨ ‖s′(m)‖)

]
‖s(m) − s′(m)‖ + ‖s(v) − s′(v)‖

≤ c̃t(1 ∨ ‖x‖)|s− s′|
and then that

‖H(s, x) −H(s′, x)‖V β ≤ c̃t|s− s′| sup
x∈Rd

1 ∨ ‖x‖
V β(x)

≤ c̃t|s− s′|

for s, s′ ∈ K
(t)
n establishing (A5) for any β > 0.

The process (X̃
(t)
n , S̃

(t)
n )n≥0 coincides with the AM chain (Xn, Sn)n≥0 in At, in

which the adaptation parameters S̃
(t)
n converge almost surely to sπ ∈ int K̃(t).

In the complement of At, the parameters Sn converge almost surely to some
S∞ ∈ int K̃(t). We can apply Theorem 7 to deduce that

Ỹ (t)
n :=

1√
n

n∑

k=1

[
f(X̃

(t)
k ) − π(f)

]
n→∞−−−→ Z̃(t)

in distribution, where Z̃(t) is a random variable with the characteristic function
φZ̃(t)(u) = Ee−

1
2
σ̃2

t u2
, where σ̃2

t is finite almost surely, and equals to σ2 in At. Let

Z ∼ N(0, σ2), i.e. φZ(u) = e−
1
2
σ2u2

. For fixed u ∈ R, we have

|φZ(u) − φZ̃(t)(u)| ≤ φZ(u)

∫ ∣∣∣1 − e
1
2
(σ2−σ̃2

t )u2
∣∣∣ dP

≤ φZ(u)[1 − P(At)]
[
1 ∨ (e

σ2

2 − 1)
]
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so the characteristic functions φZ̃(t) converge pointwise to φZ , and hence Z̃(t) t→∞−−−→
Z in distribution.

Let ϕ : R → R be bounded and continuous, and denote the probability measures
induced by random variables as µX(A) := P(X ∈ A). We can choose a non-
decreasing sequence (tn)n≥1 of positive numbers such that tn → ∞ and

|µ
Ỹ

(tn)
n

(ϕ) − µZ(tn)(ϕ)| n→∞−−−→ 0.

Since Ỹ
(tn)
n is equal to Yn := n−1/2

∑n
k=1[f(Xk) − π(f)] in Atn , we have that

|µYn
(ϕ) − µ

Ỹ
(tn)
n

(ϕ)| ≤ [1 − P(Atn)] sup
x∈R

|ϕ(x)| n→∞−−−→ 0.

We conclude that |µYn
(ϕ) − µZ(ϕ)| → 0 as n→ ∞, and (38) holds. �

Remark 19. Since ǫ > 0 can be selected arbitrarily small in the proof of Theorem
13, it is only required for (37) to hold that the adaptation weights ηn ∈ (0, 1) are
decreasing and that

∑
k k

ǫ̃−1ηk < ∞ holds for some ǫ̃ > 0. In particular, one can
choose ηn := (n+ 1)−γ for any γ > 0.

Remark 20. The condition (35) implies the super-exponential decay of the tails
of π

(44) lim
r→∞

sup
‖x‖≥r

x

‖x‖ · ∇ log π(x) = −∞.

This condition, with the contour regularity condition (36), are common conditions
to ensure geometric ergodicity of a random-walk Metropolis algorithm, and many
standard distributions fulfil them [12]. The decay condition (35) is only slightly
more stringent than (44).
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Appendix A. Proof of Lemma 2

We provide a restatement of a part of a theorem by Meyn and Tweedie [14]
before proving Lemma 2. For a more recent work on quantitative convergence
bounds, we refer to [6].

Theorem 21. Suppose that the following drift and minorisation conditions hold

PV (x) ≤ λV (x) + b1C(x), ∀x ∈ X

P (x,A) ≥ δν(A), ∀x ∈ C, ∀A ⊂ X

for constants λ < 1, b <∞, and δ > 0, a set C ⊂ X, and a probability measure ν
on C. Moreover, suppose that supx∈C V (x) ≤ b. Then, for all k ≥ 1

‖P k
s (x, · ) − π( · )‖V ≤ V (x)(1 + γ)

ρ

ρ− ϑ
ρk

for any ρ > ϑ = 1 − M̃−1, for

M̃ =
1

(1 − λ̌)2

[
1 − λ̌+ b̌+ b̌2 + ζ̄

(
b̌(1 − λ̌)b̌2

)]

defined in terms of

γ = δ−2 [4b+ 2δλb]

λ̌ = (λ+ γ)/(1 + γ) < 1

b̌ = b+ γ <∞
and the bound

ζ̄ ≤ 4 − δ2

δ5

(
b

1 − λ

)2

.
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Proof. [14, Theorem 2.3]. �

Proof of Lemma 2. Observe that PsV (x) = E [V (Xn+1) | Xn = x, Sn = s], and
therefore by Jensen’s inequality, (A2) implies for x /∈ Cn that

PsV
r(x) ≤ (PsV (x))r ≤ λr

nV
r(x).

We can bound λ̃n := λr
n ≤ (1 − c−1n−ǫ)r ≤ 1 − rc−1n−ǫ implying

(1 − λ̃n)−1 ≤ r−1cnǫ

whenever r ∈ (0, 1]. Similarly, for x ∈ Cn, one has PsV
r(x) ≤ (supz∈Cn

V (z) +

bn)r ≤ (2bn)r, so by letting b̃n := (2bn)r, we obtain the drift inequality

PsV
r(x) ≤ λ̃nV

r(x) + b̃n1Cn
(x)

and we can bound b̃n ≤ (2cnǫ)r. We have the bound (1 − λ̃n)
−1 ∨ b̃n ≤ c̃nǫ with

some c̃ = c̃(c, r) ≥ 1.
Now, we can apply Theorem 21, where we can estimate the constants

γn = δ−2
n

[
4b̃n + 2δnλ̃nb̃n

]
≤ (cnǫ)26(c̃nǫ) = a1n

3ǫ

b̌n = b̃n + γn ≤ (c̃+ a1)n
3ǫ ≤ a2n

3ǫ

and consequently

1 − λ̌n =
1 − λ̃n

1 + γn

≥ c̃−1n−ǫ

1 + a1n3ǫ
≥ c̃−1

1 + a1

n−4ǫ = a−1
3 n−4ǫ.

Moreover,

ζ̄n ≤ 4 − δ2
n

δ5
n

(
b̃n

1 − λ̃n

)2

≤ 4(cnǫ)5(c̃nǫ)2(c̃nǫ)2 = a4n
9ǫ

and then

M̃n =
1

(1 − λ̌)2

[
1 − λ̌n + b̌n + b̌2n + ζ̄n(b̌n(1 − λ̌n) + b̌2n)

]

≤(a3n
4ǫ)2

[
1 + b̌n + b̌2n + ζ̄n(b̌n + b̌2n)

]

≤(a3n
4ǫ)2(5ζ̄nb̌

2
n) ≤ 5a2

3n
8ǫa4n

9ǫa2
2n

6ǫ = a5n
23ǫ

since we can assume that b̌n, ζ̄n ≥ 1. Now,

1 − ϑn = M̃−1
n ≥ a−1

5 n−23ǫ

and we can choose ρn ∈ (ϑn, 1) by letting ρn := 1+ϑn

2
. We have

ρn − ϑn = 1 − ρn =
1

2
(1 − ϑn) ≥ 1

2
c−1
9 n−23ǫ = (a6n

23ǫ)−1.

Finally, from Theorem 21, one obtains the bound

‖P k
s (x, · ) − π( · )‖V r ≤ V r(x)Lnρ

k
n

where

(1 − ρn)−1 ≤ a6n
23ǫ

Ln = (1 + γn)
ρn

ρn − ϑn

≤ (1 + a1n
3ǫ)(a6n

23ǫ) ≤ a7n
26ǫ
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with a7 = (1 + a1)a6. This concludes the proof with κ2 = 26 and c2 = a7. �

Appendix B. Some General Inequalities

Theorem 22 (Birnbaum and Marshall). Let (Xk)
n
k=1 be random variables, such

that
E [|Xk| | Fk−1] ≥ ψk|Xk−1|,

where Fk := σ(X1, . . . , Xk), and ψk ≥ 0. Let ak > 0, and define

bk := max
{
ak, ak+1ψk+1, . . . , an

∏n
j=k+1 ψj

}

for 1 ≤ k ≤ n, and bn+1 := 0. If p ≥ 1 is such that E|Xk|p <∞ for all 1 ≤ k ≤ n,
then

P

(
max
1≤k≤n

ak|Xk| ≥ 1

)
≤

n∑

k=1

(bpk − ψp
k+1b

p
k+1)E|Xk|p.

Proof. [7, Theorem 2.1]. �

Corollary 23. Let (Mk)
n
k=1 be a martingale with respect to (Fk)

n
k=1. Let (ak)

n
k=1

be a strictly positive non-increasing sequence. If p ≥ 1 is such that E|Mk|p < ∞
for all 1 ≤ k ≤ n, then for 1 ≤ m ≤ n,

P

(
max

m≤k≤n
ak|Mk| ≥ 1

)
≤ ap

nE|Mn|p +

n−1∑

k=m

(ap
k − ap

k+1)E|Mk|p.

Proof. By Jensen’s inequality,

E [|Mk| | Fk−1] ≥ |E [Mk | Fk−1]| = |Mk−1|.
Define ψk := 1 for 1 ≤ k ≤ n, and ãk := am for 1 ≤ k ≤ m and ãk := ak for
m < k ≤ n. The result follows from Theorem 22. �

The following lemma is a conditional version of [8, Lemma 3.3], and was stated
also in [1, Lemma 10].

Lemma 24 (Dvoretzky). Let X be a square integrable random variable and G a
σ-algebra on a probability space. Then, for every ε > 0,

E
[
(X − E [X | G])21{|X−E[X | G]|≥2ε}

∣∣ G
]
≤ 4E

[
X21{|X|≥ε}

∣∣ G
]
.

Proof. Notice that 1{|X−E[X | G]|≥2ε} ≤ 1{|E[X | G]|≥ε} + 1{|X|≥ε,|E[X | G]|<ε}. We can
estimate

E
[
(X − E [X | G])21{|E[X | G]|≥ε}

∣∣ G
]

= E
[
(X2 − E [X | G]2)1{|E[X | G]|≥ε}

∣∣ G
]

≤ E
[
(X2 − ε2) ∨ 0

∣∣ G
]

= E
[
(X2 − ε2)1{|X|≥ε}

∣∣ G
]
.

(45)

Similarly, we obtain

E
[
(X − E [X | G])21{|X|≥ε,|E[X | G]|<ε}

∣∣ G
]

≤ E
[
(X2 + 2ε|X|+ ε2)1{|X|≥ε,|E[X | G]|<ε}

∣∣ G
]

≤ E
[
(3X2 + ε2)1{|X|≥ε}

∣∣ G
]
.

(46)

Summing (45) and (46) concludes the proof. �
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Appendix C. Contour Surface Containment

Lemma 25. Suppose A ⊂ R
d is a smooth surface parameterised by the unit

sphere Sd, that is, A = {ug(u) : u ∈ Sd} with a continuously differentiable
radial function g : Sd → (0,∞). Assume also that outer-pointing normal n of A
satisfies n(x) · x/‖x‖ ≥ β for all x ∈ A with some constant β > 0. There is a
constant M < ∞ depending only on β such that for any x, y ∈ A, it holds that
M−1 ≤ ‖x‖/‖y‖ ≤M .

Proof. Consider first the two-dimensional case. Let x and y be two distinct
points in A. We employ polar coordinates, thus let u(θ)r(θ) ∈ A with u(θ) :=
[cos(θ), sin(θ)]T and r(θ) := g(u(θ)) so that u(θ1)r(θ1) = x and u(θ2)r(θ2) = y
with θ1, θ2 ∈ [0, 2π).

Let α(θ) stand for the (smaller) angle between u(θ) and the normal of the
curve A, that is, the curve parametrized by θ → u(θ)r(θ). Our assumption says
that |α(t)| ≤ α0 := arccos(β) < π/2 for all θ ∈ [0, 2π]. On the other hand, an
elementary computation shows that

tan
(
α(θ)

)
=
r′(θ)

r(θ)

and hence we have | d
dθ

log r(θ))| = |r′(θ)/r(θ)| ≤ tanα0 uniformly. We may
estimate | log ‖x‖ − log ‖y‖| ≤ 2π tan(α0) yielding the claim with M = e2π tan α0 .

For d ≥ 3, take the plane T containing the origin and the points x and y. This
reduces the situation to two dimensions, since A ∩ T inherits the given normal
condition of the surface and the radius vector. �
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