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ON THE ERROR IN QR INTEGRATION∗
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Abstract. An important change of variables for a linear time varying system ẋ = A(t)x, t ≥ 0,
is that induced by the QR-factorization of the underlying fundamental matrix solution: X = QR,
with Q orthogonal and R upper triangular (with positive diagonal). To find this change of variable,
one needs to solve a nonlinear matrix differential equation for Q. Practically, this means finding
a numerical approximation to Q by using some appropriate discretization scheme, whereby one
attempts to control the local error during the integration. Our contribution in this work is to
obtain global error bounds for the numerically computed Q. These bounds depend on the local error
tolerance used to integrate for Q, and on structural properties of the problem itself, but not on the
length of the interval over which we integrate. This is particularly important, since—in principle—Q
may need to be found on the half-line t ≥ 0.
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Notation. An (n× n) real matrix X is indicated by X ∈ R
n×n. diag(X) is the

matrix comprising the diagonal part of X, the rest being all 0’s; upp(X) is the matrix
comprising the upper triangular part of X, the rest being all 0’s; and low(X) is the
matrix comprising the strictly lower triangular part of X, the rest being all 0’s. The
default norm we consider is the 2-norm of vectors and the induced norm for matrices.

1. Introduction. Consider the homogeneous nonautonomous linear differential
equation

(1.1) ẋ(t) = A(t)x(t), t ≥ 0,

where A is a bounded function taking values in R
n×n. Equation (1.1) appears per-

vasively in the study of dynamical systems. For example, it is the equation we end
up with when we study variation with respect to the initial conditions, or parame-
ters, of a nonlinear system. Therefore, it is the problem we have to face when we do
general stability analyses for trajectories of a dynamical system, e.g., for periodic or
for chaotic trajectories. Moreover, (1.1) is also the problem at hand during a Newton
process to solve general nonlinear differential systems, a process often advocated for
solving boundary value problems. Alas, in spite of its apparent simplicity, numerical
investigation of (1.1) is extremely hard, since the solution structure depends on the
fundamental matrix solution. Unquestionably, the problem is certainly conceptually
and computationally simpler if A happened to be triangular. For this reason, tech-
niques which find an orthogonal change of variable to triangular structure have been
studied by several researchers for a long time; e.g., see [6, 12, 18]. Our own interest
in these techniques originates with methods to approximate Lyapunov exponents of
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ON THE ERROR IN QR INTEGRATION 1167

dynamical systems, a feat which is greatly simplified when the system is brought in
upper triangular structure; e.g., see [13, 8, 9].

Of course, the factor Q which performs the change of variables has to be found
numerically, and this itself is not easy since Q satisfies a nonlinear matrix differential
equation. Thus, to find Q, one must approximate the solution of this nonlinear matrix
equation in some appropriate way. In practice, this means that we will control the
local errors while approximating Q, a fact which generally does not guarantee that
Q will be approximated accurately, i.e., that the global error in our approximation
will stay small. Our contribution in this work is to provide accurate bounds on the
global error when finding Q: Our bounds will depend on the local error tolerance and
on the coefficient function A, but not on the length of the interval over which we
approximate Q. Our result is somewhat atypical and is important. It is atypical
because, even though Q lies in a compact space, usually one does not obtain accurate
global error bounds (on arbitrarily long intervals) except for contractive problems, and
our problem is not contractive. It is important, because—used in conjunction with
standard techniques to approximate Lyapunov exponents—it can be used to obtain
global error bounds on the computed Lyapunov exponents of a linear time varying
system, as well as global errors on other spectral quantities.

The way we will obtain global error bounds for the computed Q is in itself inter-
esting and apparently new. Our main idea is to combine two types of error analyses:
A backward error analysis guaranteeing that the computed Q factor gives a transfor-
mation to nearly triangular form, and a forward error analysis guaranteeing that for
this nearly triangular problem there is a near-the-identity orthogonal transformation
reducing it further to a triangular structure. Combining these two ingredients, we
will obtain the sought result. Oversimplifying it, let us sketch the basic idea which
has guided us:

• We want to express X = QR, Q orthogonal, R upper triangular with positive
diagonal.

– If we had Q, then R would satisfy a triangular system Ṙ = B̃R.
– Suppose that instead of Q we compute (backward error result) an orthog-

onal Qc, which gives X = QcR̂, with
˙̂
R = (B + F )R̂, with B triangular

and F of small norm (F not triangular).

– Suppose also that we write R̂ = V U , with V orthogonal and U upper
triangular with positive diagonal. Then we have X = QcV U , and so, by
uniqueness, R = U and QcV = Q.

• If we now show that V ≈ I (forward error result), then we will infer that
Qc ≈ Q (global error result).

An outline of the paper is as follows. In the remainder of this introduction we
review the basic change of variables X = QR and the differential equations satisfied
by Q and R. In section 2 we recall the key backward error statement which we proved
in [10]. In section 3 we give in a concise way the global error statement result, and in
section 4 we give details of a systematic way to obtain sharp bounds on the quantities
appearing in the error bound. In section 5 we illustrate our results in an example.
Conclusions are in section 6, which include a remark on the modifications needed to
handle the case in which we only have a “reduced” QR-factorization, that is, when X
comprises only a subset of columns of the fundamental matrix solution.

We now consider the differential equations governing the evolution of the Q and
R factors in the QR-factorization of X. Presently, X is a fundamental matrix solutionD
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1168 LUCA DIECI AND ERIK S. VAN VLECK

for (1.1): Ẋ = A(t)X, X(0) = X0 invertible. Let X0 = Q0R0 be the unique QR-
factorization of X0 with the diagonal of R0 being positive.

Differentiating the relation X = QR one obtains Q̇R + QṘ = A(t)QR, and
multiplying by QT on the left we obtain the equation for R:

(1.2) Ṙ = B̃(t)R , R(0) = R0,

where we have set

(1.3) B̃(t) := QT (t)A(t)Q(t) −QT (t)Q̇(t).

Let us formally set S := QT Q̇. Since R has to be upper triangular, we must have
B̃ upper triangular, which leads to

(1.4) Q̇ = QS(Q,A(t)), t ≥ 0,

where

(1.5) S(Q(t), A(t))ij =

⎧⎪⎨⎪⎩
(QT (t)A(t)Q(t))ij , i > j,

0, i = j,

−(QT (t)A(t)Q(t))ji, i < j.

In particular, we notice that if Q is known, then R satisfies (1.2), and we also notice

that S is linear in A. Furthermore, in light of (1.5), for the entries of B̃ we have B̃ij =(
QTAQ

)
ij

+
(
QTAQ

)
ji

for i < j and B̃ii =
(
QTAQ

)
ii
, that is, B̃ = upp(QTAQ) +

(low(QTAQ))T .
The above derivation of the equations for the QR-factorization of X has been

obtained many times before, and specific attention has been paid in recent years to
techniques which maintain orthogonality while approximating the factor Q. A sample
of relevant references includes [2, 3, 14, 12, 7, 16]. We are not going to review these
works in detail, because the precise way in which the approximation for Q is obtained
is not relevant to our main scope here, which is to derive global error bounds for the
obtained approximations to Q. What is relevant is that the obtained approximations
be orthogonal at the grid-points found during numerical integration of (1.4), a fact
which the schemes proposed in the above cited works do achieve.

2. Background. Suppose we are seeking the factorization X(tk) = Q(tk)R(tk),
k = 0, 1, 2, . . . . In other words, we are looking for the change of variables, the factor
Q in the QR-factorization of X, at the grid-points 0 = t0 < t1 < · · · . Practically, the
grid-points {tk} may have been found during numerical integration of (1.4) by any
of the schemes in the previously cited works. Alternatively, we can always think of
indirectly having found approximations to Q by directly seeking the QR-factorization
of X(tk) as follows. Write

(2.1) X(tk) = Φ(tk, tk−1) . . .Φ(t2, t1)Φ(t1, 0)X0,

where

Φ̇(t, tj−1) = A(t)Φ(t, tj−1), Φ(tj−1, tj−1) = I, tj−1 ≤ t ≤ tj , j = 1, 2, . . . , k.

(2.2)

Then, for j = 1, 2, . . . , k, recursively consider (discrete QR technique)

(2.3)
Ψ̇(t, tj−1) = A(t)Ψ(t, tj−1), Ψ(tj−1, tj−1) = Q(tj−1),

and factor Ψ(tj , tj−1) = Q(tj)R(tj , tj−1),
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ON THE ERROR IN QR INTEGRATION 1169

where Q(tj) are orthogonal and R(tj , tj−1) are upper triangular with positive diagonal.
So, we have the QR-factorization of X(tk),

(2.4) X(tk) = Q(tk)R(tk, tk−1) . . . R(t2, t1)R(t1, t0)R(t0).

If we adopt this point of view, the error we commit in finding Q is inherited from the
error we do when approximating the transition matrices Φ(tj , tj−1), j = 1, 2, . . . , k.

Notice that taking this point of view, we have expressed R(tk) as the product of
local triangular transition matrices:

R(tk) = R(tk, tk−1) · · ·R(t2, t1)R(t1, t0),

where each of these triangular transition matrices is the same as the solution of

Ṙ(t, tj−1) = B̃(t)R(t, tj−1), R(tj−1, tj−1) = I, tj−1 ≤ t ≤ tj , j = 1, 2, . . . , k,

where B̃ is given in (1.3).
Now, we cannot hope to be able to obtain the exact factors Q(tk) (and R(tk)).

Still, let us assume that the obtained numerical approximations to the Q(tk)’s, call
them Qk’s, are orthogonal. The key fact, which we proved in [10], is the following:
“By using either direct integration of (1.4) or having indirectly approximated Q via
the discrete QR technique, with a numerical realization of the change of variables
X = QR, we are obtaining a numerical approximation to X(tk), call it Xk, and to
the triangular transition matrices R(tk, tk−1), call these Rk, so that we have

(2.5) Xk = QkRkRk−1 . . . R2R1R(t0) , k = 1, 2, . . . ,

and at the same time
(2.6)
Xk = Q(tk)[R(tk, tk−1) +Ek] . . . [R(t2, t1) +E2][R(t1, t0) +E1]R(t0) , k = 1, 2, . . . ,

where Q(tk) is the exact Q-factor at tk and the triangular transitions R(tj , tj−1) are
also the exact ones. Moreover, the factors Ej , j = 1, . . . , k, are bounded in norm by
the local error committed during integration of the relevant differential equations; see
Theorems 3.1 and 3.16.”

We will henceforth simply write

(2.7) ‖Ej‖ ≤ η, j = 1, 2, . . . ,

and stress that η is computable, in fact controllable, in terms of local error tolerances.
Furthermore, close inspection of the error terms Ej , j = 1, . . . , k, k = 1, 2, . . . ,

allowed us to obtain a backward error result, which we summarize below. For details,
we refer to the original work (see [10, Theorem 3.12]); here we are content with a
useful rephrasing of this result.

Summary 2.1. With a numerical realization of the QR change of variables, either
having directly integrated (1.4) or indirectly through the numerical realization of the
discrete QR technique, we do not obtain the exact transformation to the triangular
form (1.2)–(1.3), but rather find an orthogonal change of variable to the perturbed
triangular system

(2.8)
˙̂
R =

(
B(t) + F (t)

)
R̂, t ≥ 0,
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1170 LUCA DIECI AND ERIK S. VAN VLECK

where B is the piecewise constant (and triangular) function given by

(2.9) B(t) :=
1

tj+1 − tj
log
(
R(tj+1, tj)

)
, tj ≤ t < tj+1,

and F is bounded as

(2.10) sup
t≥0

‖F‖ ≤ cη + O(η2) =: δ.

For the sake of completeness, we remark that in (2.10) the bounds on the norm
of F are obtained locally, on each subinterval [tj−1, tj ], j = 1, 2, . . . , so that one really
has suptj−1≤t≤tj ‖F‖ ≤ cjη + O(η2), and the main contribution to the magnification
factor cj is given by the departure from normality of the exact triangular transition
factors R(tj , tj−1). Indeed, at first order in TOL, we have

(2.11) sup
tj−1≤t≤tj

‖F‖ ≈ TOL(1 + κj−1hj−1), hj−1 = tj − tj−1,

where TOL is the local error for the obtained approximation to the transition matrix,
and κj−1 is the departure from normality of R(tj , tj−1). In any case, we stress once
more that the bounds on the norm of F are computable.

Remark 2.1. In order to obtain (2.10), in [10], we needed to have a certain
condition satisfied; see [10, Assumption 3.5]. This amounted to the requirement that

TOL

[
min

(
1, min

1≤i≤n
exp

(∫ tj

tj−1

Bii(s)ds

))]−1

< 1.

In practice, this means that one may need to have the stepsizes hj := tj − tj−1,
j = 1, 2, . . . , sufficiently small.

3. Global error bounds for Q. Next, consider the unperturbed and perturbed
triangular systems

(3.1) Ṙ = B(t)R, R(0) = R0 and
˙̂
R = [B(t) + F (t)]R̂, R̂(0) = R0,

where we can assume that supt≥0 ‖F (t)‖ ≤ δ.
In [11], we proved (see Lemma 3.1 below) that there is an orthogonal change of

variables, close to the identity, taking the perturbed triangular system to triangular
form. The proof we gave used global (and fairly crude) norm estimates and proceeded
as follows.

First, write R = RD + RU , where RD = diag(R) and RU = upp(R), so that
R = (I +RUR

−1
D )RD =: ZRD. Accordingly, we have the unperturbed and perturbed

diagonal systems

(3.2) ṘD = D(t)RD,
˙̂

RD = [D(t) + E(t)]R̂D,

where D(t) = diag(B(t)), E = Z−1FZ, and R̂ = ZR̂D. Define

(3.3) cond(Z) = sup
t≥0

‖Z(t)‖ · ‖Z−1(t)‖,

and assume that cond(Z) is bounded. In other words, we are assuming that Z is
a Lyapunov transformation; e.g., this is certainly the case if the triangular system
Ṙ = BR is integrally separated. This last assertion follows from [8, Theorem 5.1].

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE ERROR IN QR INTEGRATION 1171

Recall that R is an integrally separated fundamental matrix solution if there exist
a > 0 and d ≥ 1 such that

(3.4)
||R(t)ei||
||R(s)ei||

· ||R(s)ei+1||
||R(t)ei+1||

≥ dea(t−s)

for all t, s, t ≥ s ≥ 0, and i = 1, 2, . . . , n− 1. We also recall that integral separation
is a generic property for linear systems (see [19]) and is a necessary and sufficient
condition for stability of the Lyapunov exponents when they are distinct [1].

Next, let ω := supt≥0 ‖E(t)‖, and observe that

(3.5) ω ≤ sup
t≥0

‖F‖ cond(Z) ≤ δ cond(Z).

We make note here that the integral separation constants used in Lemmas 3.1
and 4.1 below are the integral separation constants for the piecewise constant upper
triangular system that results from (2.4); see (2.9). That is, we write

R(tj+1, tj) = e(tj+1−tj)B(t) , tj ≤ t < tj+1,

where in fact

B(t) :=
1

tj+1 − tj
log
(
R(tj+1, tj)

)
, tj ≤ t < tj+1.

This piecewise constant triangular system produces the same upper triangular fun-
damental matrix solution as the exact upper triangular system when evaluated at
mesh-points. Therefore,

(3.6)

∫ tj+1

tj

Bii(τ)dτ =

∫ tj+1

tj

B̃ii(τ)dτ,

where B denotes the piecewise constant triangular coefficient matrix function and
B̃ the exact triangular coefficient matrix function of (1.3). Thus, if B̃ has integral

separation with constants ã > 0 and d̃ ≥ 0 so that for t ≥ s (take logarithms in (3.4))

(3.7)

∫ t

s

(
B̃ii(τ) − B̃i+1,i+1(τ)

)
dτ ≥ ã(t− s) − d̃

for i = 1, . . . , n− 1, then for tj−1 < s < tj and tk < t < tk+1,∫ t

s

(
Bii(τ) −Bi+1,i+1(τ)

)
dτ =

∫ t

s

(
B̃ii(τ) − B̃i+1,i+1(τ)

)
dτ

+

∫ tj

s

[
(Bii(τ) − B̃ii(τ)) − (Bi+1,i+1(τ) − B̃i+1,i+1(τ))

]
dτ

+

∫ t

tk

[
(Bii(τ) − B̃ii(τ)) − (Bi+1,i+1(τ) − B̃i+1,i+1(τ))

]
dτ ≥ a(t− s) − d,

(3.8)

where a = ã, d ≤ d̃+4Mi,i+1hmax, Mi,i+1 = supt≥0 |Bii(t)−Bi+1,i+1(t)|, and hmax =
supj(tj+1 − tj). In other words, the problem with B also has integral separation with
constants a > 0 and d ≥ 0.

Then the following result shows the existence of a near identity orthogonal change
of variables which brings the perturbed diagonal system to upper triangular, provided
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1172 LUCA DIECI AND ERIK S. VAN VLECK

that ω is small enough. We proved this result in [11] under the assumption of integral
separation of both unperturbed and perturbed triangular systems.

Lemma 3.1 (see [11]). Let supt≥0 ‖B(t)‖ = M , and let a and d be as defined in

(3.4). Let Q̂ be the orthogonal factor in the QR-factorization of R̂D.

If ω < ω+(α,K,M), then |Q̂ij(t)| ≤ ρ for i �= j and all t ≥ 0. Here, ρ = β · ω,
β = αK, α > 1, K = ed/a, and

(3.9) ω+(α,K,M) :=

(√
a2
1 + 4(α− 1)a2 − a1

)
/(2a2),

where a2 = n2β2[Mβ + 2] and a1 = nβ[2Mβ + 1].
As an immediate consequence we have the following.
Corollary 3.1. If ω < ω+(α,K,M) and (n− 1)ρ2 ≤ 1, then ‖Q̂(t) − I‖ ≤ ρ ≡

(n− 1)(ρ + ρ2) and ‖Q̂(t) − I‖F ≤ ρF ≡ ρ
√

2(n2 − n), where ‖ · ‖F is the Frobenius
norm.

Perhaps surprisingly, we already have all the ingredients to obtain global error
bounds on Qk −Q(tk).

First of all, let us look again at (2.6). In the notation of Corollary 3.1, if ω <
ω+(α,K,M), then (2.6) can be rewritten as

(3.10) Xk = Q(tk)Z(tk)Q̂(tk)U(tk),

where U(tk) is upper triangular with positive diagonal elements, and ‖Q̂(tk)−I‖ ≤ ρ.

Next, let Ẑ ≡ Z(tk) and Q̂ ≡ Q̂(tk). Then

(3.11) ẐQ̂ = Ẑ(I + ΔQ̂) = Ẑ + ẐΔQ̂ =: Ẑ + ΔẐ,

where ‖ΔẐ‖ ≤ ‖Ẑ‖ · ‖ΔQ̂‖ ≤ ‖Ẑ‖ρ.
Theorem 3.2. With the previous notation, assume that
1. ω < ω+(α,K,M),
2. cond(Z)ρ < 1/2, and

3. ‖Q̂(tk) − I‖ ≤ ρ.
Then we have

(3.12) ‖Qk −Q(tk)‖ ≤ ε :=
3cond(Z)ρ

1 − 2cond(Z)ρ
, k = 0, 1, 2 . . . .

Proof. By the perturbation theory for the QR-factorization (e.g., see [22, Theorem
3.1]),

(3.13) Ẑ + ΔẐ = (I + W )(Ẑ + G),

where I+W is orthogonal, Ẑ+G is upper triangular with positive diagonal elements,
and

(3.14) ‖W‖ ≤ 3‖Ẑ−1‖ · ‖ΔẐ‖
1 − 2‖Ẑ−1‖ · ‖ΔẐ‖

.

Thus, (3.10) may be written as

(3.15) Xk = Q(tk)(I + W )(Ẑ + G)U(tk),
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ON THE ERROR IN QR INTEGRATION 1173

and by the uniqueness of the QR-factorization, from (2.5), Qk = Q(tk)(I + W ) and
therefore

(3.16) ‖Qk −Q(tk)‖ = ‖QT (tk)Qk − I‖ = ‖W‖ ≤ ε.

It is possible to improve the perturbation bounds on the QR-factors of nearby
matrices; see, e.g., [5, 4] and the references therein. However, the real drawback of
the global error bound in (3.12) is actually due to the fact that we have used a global
transformation (via Z) to diagonal form and are thus penalized by cond(Z). The
optimal situation of course is if Z = I, which occurs for instance when the upper
triangular problem is in fact diagonal. In this case, we can take ω = δ in (3.5).

However, aside from this case of Z = I, it is probably best to avoid altogether the
diagonalizing transformation Z and tackle directly the perturbed triangular problem
in (3.1), thereby attempting to bring directly R̂ to triangular form via an orthogonal
near-the-identity transformation and obtain sharper estimates. This is what we do in
the next section.

4. Handling the triangular term directly. Let us consider the perturbed
triangular problem (3.1), rewritten here again as

(4.1)
˙̂
R = [B(t) + F (t)]R̂, t ≥ 0, R̂(0) = R0,

with supt≥0 ‖F (t)‖ ≤ ω. Recall that B has upper triangular structure, and ω is
small. We have ω = δ here (see (2.10)), but we chose to use ω to unify the notation to
Lemma 3.1.

Below, we show that there exists an orthogonal change of variables to the upper
triangular structure, that is, a change of variables R̂ = Q̂U with Q̂ orthogonal and U
upper triangular with positive diagonal, such that Q̂ remains, under reasonable condi-
tions, a small perturbation of the identity given the initial condition Q̂(0) = Q̂0 = I.
The proof of the lemma below uses a similar technique to that used to prove Lemma
3.1 (see [11]), but much more careful estimates are now employed. In the simplest
sense, Lemma 4.1 is a componentwise version of Lemma 3.1 but for a perturbed trian-
gular system as opposed to a perturbed diagonal system. In order to obtain bounds on
the entries of Q̂, we assume bounds on the entries of B and assume integral separation
constants for both consecutive and nonconsecutive diagonal diagonal elements of B.
Our bounds will be of the type |Q̂ij(t)| ≤ ρij , i �= j, with ρij = αijKijω; see below.
The key to obtaining this result is that the αij in this bound may be found recursively
starting from |i− j| = n− 1 down to |i− j| = 1 with, for instance, α1,n = αn,1 = 2.

Lemma 4.1. Consider the problem (4.1) and write B(t)+F (t) = D(t)+T (t)+F (t)
for all t, where D = diag(B) and T = upp(B). Also, let supt≥0 ‖F (t)‖ ≤ ω. Then

there exists an orthogonal change of variables Q̂, with Q̂(0) = I, which bring B + F

to upper triangular structure C := Q̂T [B + F ]Q̂− Q̂T ˙̂
Q.

Moreover, let |Dii(t)| ≤ κii for i = 1, . . . , n, let |Tij(t)| ≤ κij for i < j for all
t ≥ 0, and let Kij be such that for all t ≥ 0,

(4.2) Kij ≥
∫ t

0

e−
∫ t
τ
(Dii(r)−Djj(r))drdτ, i < j, and Kij = Kji, i > j.

For |i− j| = n− 1, |i− j| = n− 2, . . . , |i− j| = 1, choose αij such that

(4.3) αij > 1 +

n∑
k=j+1

κjkKikαik +

i−1∑
k=1

Kjkαjkκki for i < j,

and let αij = αji, i > j.
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Set

(4.4) ω
(ij)
+ :=

(√
(a

(ij)
1 )2 − 4a

(ij)
0 a

(ij)
2 − a

(ij)
1

)
/(2a

(ij)
2 ), ω+ := min

i,j
ω

(ij)
+ ,

where a
(ij)
0 , a

(ij)
1 , a

(ij)
2 are defined in (4.17).

If ω < ω+({αij}, {Kij}, {κij}), then |Q̂ij(t)| ≤ ρij for i �= j and all t ≥ 0, where
ρij = αijKij · ω.

Proof. Recall (see (1.4)) that Q̂ must satisfy
˙̂
Q = Q̂S(Q̂, B +F ). So, for i < j we

have

˙̂
Qij = −Q̂ij [Dii −Djj ] +

(
Q̂ij [Dii −Djj ] + eTi (Q̂[S(Q̂,D) + S(Q̂, T ) + S(Q̂, F )])ej

)
=: −Q̂ij [Dii −Djj ] + qij(t, Q̂, ω)

(4.5)

and a similar formula for i > j. We want to show that if the conditions of the theorem
are satisfied and Q̂(0) = I, then |Q̂ij(t)| ≤ ρij for all i �= j and t ≥ 0. The proof
involves applying [15, Theorem IV.2.1].

Using the nonlinear variation of constants formula, we have for Q̂(0) = I and
i < j

(4.6) Q̂ij(t) =

∫ t

0

e−
∫ t
τ
(Dii(r)−Djj(r))drqij(τ, Q̂(τ), ω)dτ.

Thus, supt |Q̂ij(t)| ≤ Kij supt |qij(t, Q̂(t), ω)|. We have

|qij(t, Q̂, ω)| ≤ |qij(t, Q̂, ω) − qij(t, I, ω)| + |qij(t, I, ω)|

≤ η({ρkl}, ω)ρij + N(ω),(4.7)

where since S(I,D) = S(I, T ) = 0 and S(I, F ) = FL − FT
L , where FL = low(F ),

N(ω) ≤ ω. To bound η({ρkl}, ω) write

qij(t, Q̂, ω) = qDij (t, Q̂, ω) + qTij(t, Q̂, ω) + qFij(t, Q̂, ω)

:=
(
Q̂ij [Dii −Djj ] + eTi Q̂S(Q̂,D)ej

)
+ eTi Q̂S(Q̂, T )ej + eTi Q̂S(Q̂, F )ej

(4.8)

and consider the case in which i < j (the case i > j is similar).

For qDij (t, Q̂, ω) we have, from (A.3) using the notation βij = αijKij ,

|qDij (t, Q̂, ω) − qDij (t, I, ω)|

≤ κii

[
ρij

(
ρ2
ij + 2

n∑
k=j+1

ρ2
ik

)]
+ κjj

[
ρij

n∑
k=1,k �=j

ρ2
jk + 2

n∑
k=j+1

ρikρjk

]

+
∑
l �=i,j

κll

[
ρlj

(
j−1∑
k=1

ρikρlk +

n∑
k=j+1

ρikρlk

)]
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≤ κii

[
ρij

(
ρ2
ij + 2

n∑
k=j+1

ρ2
ik

)]
+ κjj

[
ρij

n∑
k=1,k �=j

ρ2
jk + 2

n∑
k=j+1

ρikρjk

]

+
∑
l �=i,j

κll

[
ρlj

(
ρli + ρil +

n∑
k=1,k �=i,j,l

ρikρlk

)]

= ρij

{
ω2

[
κii

(
β2
ij + 2

n∑
k=j+1

β2
ik

)
+ κjj

n∑
k=1,k �=j

β2
jk +

∑
l �=i,j

κll
βlj

βij

n∑
k=1,k �=i,j,l

βikβlk

]

+ ω

[
2κjj

βij

n∑
k=j+1

βikβjk +
∑
l �=i,j

κll
βlj

βij
(βli + βil)

]}
=: ρijη

D
ij =: ρij

(
ω2ηD,2

ij + ωηD,1
ij

)
.

(4.9)

Next, we obtain, using (A.4) and again βij = αijKij ,

|qTij(t, Q̂, ω) − qTij(t, I, ω)| ≤
n∑

m=j+1

κjmρim +

i−1∑
l=1

ρjlκli +

n∑
l=1,l �=j

n∑
m=l+1,m �=i

ρjlκlmρim

+

j−1∑
k=1,k �=i

ρik

n∑
l=1

n∑
m=l+1

ρjlκlmρkm +

n∑
k=j+1

ρik

n∑
l=1

n∑
m=l+1

ρklκlmρjm

≤
n∑

m=j+1

κjmρim +

i−1∑
l=1

ρjlκli +

n∑
l=1,l �=j

n∑
m=l+1,m �=i

ρjlκlmρim

+

j−1∑
k=1,k �=i

ρik

[
n∑

m=j+1

κjmρkm +

k−1∑
l=1

ρjlκlk +

n∑
l=1,l �=j

n∑
m=l+1,m �=k

ρjlκlmρkm

]

+

n∑
k=j+1

ρik

[
n∑

m=k+1

κkmρjm +

j−1∑
l=1

ρklκlj +

n∑
l=1,l �=k

n∑
m=l+1,m �=j

ρklκlmρjm

]

= ρij

{
ω2

[
j−1∑

k=1,k �=i

βik

βij

n∑
l=1,l �=j

n∑
m=l+1,m �=k

βjlβkmκlm

+

n∑
k=j+1

βik

βij

n∑
l=1,l �=k

n∑
m=l+1,m �=j

βklβjmκlm

]

+ ω

[
n∑

l=1,l �=j

n∑
m=l+1,m �=i

βjlβimκlm

βij
+

j−1∑
k=1,k �=i

βik

βij

(
n∑

m=j+1

κjmβkm +

k−1∑
l=1

βjlκlk

)

+
n∑

k=j+1

βik

βij

(
n∑

m=k+1

κkmβjm +

j−1∑
l=1

βklκlj

)]
+ 1

[
n∑

m=j+1

κjm
βim

βij
+

i−1∑
l=1

κli
βjl

βij

]}

=: ρijη
T
ij =: ρijη

T,2
ij ω2 + ηT,1

ij ω + ηT,0
ij .

(4.10)

Then, using the fact that 0 < Q̂jj ≤ 1, and so 1− Q̂jj ≤ 1− Q̂2
jj =

∑n
k=1,k �=j Q̂

2
jk,
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we obtain from (A.5)

|qFij(t, Q̂, ω) − qFij(t, I, ω)|

≤ ω

⎡⎣ n∑
k �=j,k=1

ρ2
jk +

n∑
k �=i,k=1

ρ2
ik +

n∑
(l,m) �=(j,i),l,m=1

ρljρmi +

n∑
k=1,k �=i,j

ρik

⎤⎦
= ρij

⎧⎨⎩ω2

⎡⎣ n∑
k �=j,k=1

β2
jk

βij
+

n∑
k �=i,k=1

β2
ik

βij
+

n∑
(l,m) �=(j,i),l,m=1

βljβmi

βij

⎤⎦+ ω

n∑
k=1,k �=i,j

βik

βij

⎫⎬⎭
=: ρijη

F
ij =: ρij

(
ω2ηF,2

ij + ωηF,1
ij

)
,

(4.11)

where βij = αijKij .
So, we have, using (4.7), (4.8), (4.9), (4.10), and (4.11),

(4.12) ηij({ρkl}, ω) ≤ ηDij + ηTij + ηFij ,

and finally from (4.7) we obtain

sup
t

|Q̂ij(t)| ≤ Kij

(
N(ω) + ηij({ρkl}, ω)ρij

)
.

Since N(ω) ≤ ω, Theorem IV.2.1 of [15] may be applied if

(4.13) Kij [(η
D
ij + ηTij + ηFij)ρij + ω] < ρij ,

or

(4.14) 1 > Kij(η
D
ij + ηTij + ηFij) + 1/αij ,

or equivalently

(4.15) 0 > αijKij(η
D
ij + ηTij + ηFij) + (1 − αij).

Then we need to have

0 > αijKij(η
D,2
ij + ηT,2

ij + ηF,2
ij )ω2 + αijKij(η

D,1
ij + ηT,1

ij + ηF,1
ij )ω

+ [αijKijη
T,0
ij + 1 − αij ],(4.16)

which we rewrite as

(4.17) f(ω) := a
(ij)
2 ω2 + a

(ij)
1 ω + a

(ij)
0 < 0,

where in particular

(4.18) a
(ij)
0 = 1 − αij +

i−1∑
l=1

κliαjlKjl +

n∑
m=j+1

κjmαimKim.

We notice that a
(ij)
1 > 0, a

(ij)
2 > 0. Since f ′(ω) > 0 for ω > 0, we need to have

a
(ij)
0 < 0 in order to be sure that there are values of ω satisfying f(ω) < 0. This is

guaranteed by (4.3).

Thus, if ω < ω+ with ω+ given in (3.9), then |Q̂ij(t)| ≤ ρij ≡ αijKijω for i �= j
and t ≥ 0.
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What one expects from Lemma 4.1 are ρij ≡ αijKijω, where ρij are smaller for
|i− j| large than for |i− j| small, e.g., |i− j| = 1. This is due in part to the sharper
bounds obtained by employing Kji ≡ Kij = edij/aij for i < j, where for t ≥ s∫ t

s

(
Bii(τ) −Bjj(τ)

)
dτ ≥ aij(t− s) − dij ,

as opposed to∫ t

s

(
Bii(τ) −Bjj(τ)

)
dτ ≥

[
j−1∑
k=i

ak,k+1

]
(t− s) −

j−1∑
k=i

dk,k+1,

essentially avoiding the use of a triangular inequality. It is also, due to the form of the
recursion, possible to determine the αij in (4.3) in which we choose α1,n = αn,1 > 1,
then determine αij for |i − j| = n − 2, etc. There is the potential for the αij to
become large as |i − j| ↓ 1, depending on the size of the off-diagonal elements of
B characterized by κij and the strength of the integral separation between diagonal
elements as characterized by Kij .

The bound on the perturbation F that allows for application of Lemma 4.1 is

given in (4.4) using (4.17) with a
(ij)
0 given in (4.18). The coefficients a

(ij)
1 , a

(ij)
2 may

be obtained from (4.9), (4.10), and (4.11), which give for βij := αijKij

a
(ij)
1 := βij(η

D,1
ij + ηT,1

ij + ηF,1
ij )

=

[
2κjj

n∑
k=j+1

βikβjk +
∑
l �=i,j

κllβlj(βli + βil)

]

+

[
n∑

l=1,l �=j

n∑
m=l+1,m �=i

βjlβimκlm+

j−1∑
k=1,k �=i

βik

(
n∑

m=j+1

κjmβkm +

k−1∑
l=1

βjlκlk

)

+

n∑
k=j+1

βik

(
n∑

m=k+1

κkmβjm +

j−1∑
l=1

βklκlj

)]
+

n∑
k=1,k �=i,j

βik

(4.19)

and

a
(ij)
2 := βij(η

D,2
ij + ηT,2

ij + ηF,2
ij )

=

[
βij

{
κii

(
β2
ij + 2

n∑
k=j+1

β2
ik

)
+ κjj

n∑
k=1,k �=j

β2
jk

}
+
∑
l �=i,j

κllβlj

n∑
k=1,k �=i,j,l

βikβlk

]

+

[
j−1∑

k=1,k �=i

βik

n∑
l=1,l �=j

n∑
m=l+1,m �=k

βjlβkmκlm

+

n∑
k=j+1

βik

n∑
l=1,l �=k

n∑
m=l+1,m �=j

βklβjmκlm

]

+

[
n∑

k �=j,k=1

β2
jk +

n∑
k �=i,k=1

β2
ik +

n∑
(l,m) �=(j,i),l,m=1

βljβmi

]
.

(4.20)
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The following theorem shows that C obtained from Lemma 4.1 is a small pertur-
bation of the piecewise constant upper triangular B and that C may be interpreted as
upper triangularizing a perturbation of A in which the perturbation is not in general
small.

Theorem 4.2. Let B̃ be the upper triangular matrix function obtained for the
exact Q: B̃ = QTAQ−S(Q,A). If we write the piecewise constant upper triangular B

as B = B̃+F̃ , then the upper triangular C that results from having only approximated
Q satisfies for Q = QQ̂

C = Q
T
[A + G]Q− S(Q,A + G)

= B̃ + upp[Q
T
(A + G)Q−QTAQ] + (low[Q

T
(A + G)Q−QTAQ])T

= B + upp[−F̃ + Q
T
(A + G)Q−QTAQ] + (low[−F̃ + Q

T
(A + G)Q−QTAQ])T ,

(4.21)

where G = Q[F̃ + F − S(Q,A)]QT .
Moreover, if Lemma 4.1 holds, then C is an O(ρ̃) perturbation of B and C is an

O(ρ̃) + O(‖F̃‖) perturbation of B̃ for ρ̃ = maxi �=j ρij.
Proof. We have

C = Q̂T [B + F ]Q̂− S(Q̂, B + F ) = Q̂T [B̃ + F̃ + F ]Q̂− S(Q̂, B̃ + F̃ + F )

= Q
T
[A + G]Q− S(Q,A + G) = upp[Q

T
(A + G)Q] + (low[Q

T
(A + G)Q])T

= B̃ + upp[Q
T
(A + G)Q−QTAQ] + (low[Q

T
(A + G)Q−QTAQ])T

= B − F̃ + upp[Q
T
(A + G)Q−QTAQ] + (low[Q

T
(A + G)Q−QTAQ])T

= B + upp[−F̃ + Q
T
(A + G)Q−QTAQ] + (low[Q

T
(A + G)Q−QTAQ])T

= B + upp[−F̃ + Q
T
(A + G)Q−QTAQ] + (low[−F̃ + Q

T
(A + G)Q−QTAQ])T ,

(4.22)

where we have used that upp[F̃ ] = F̃ and low[F̃ ] = 0. We now show that C is a small
perturbation of B.

Since Q
T
GQ = Q̂T [F̃ + F ]Q̂− Q̂TS(Q,A)Q̂, we have

Q̂T F̃ Q̂ = F̃ + (Q̂T − I)F̃ + F̃ (Q̂− I) + (Q̂T − I)F̃ (Q̂− I)

and

Q̂TS(Q,A)Q̂ = S(Q,A)+(Q̂T −I)S(Q,A)+S(Q,A)(Q̂−I)+(Q̂T −I)S(Q,A)(Q̂−I).

Since upp[S(Q,A)] + (low[S(Q,A)])T = 0, we then obtain (i), and (ii) follows from
(4.22) and the definition of G.

Notice that although C results from having upper triangularized A+G, in general
G is not small. We conclude this section with a few important remarks.

Remarks 4.1.
(a) While Lemma 3.1 (see Lemma 3.1 of [11]) together with Theorem 3.2 of [11]

are in a sense analogous to a classical Bauer–Fike theorem by employing a
diagonalizing transformation, Lemma 4.1 together with (4.21) may obtain
sharper bounds by avoiding the use of a diagonalizing transformation.
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(b) We note here that if the original problem with coefficient matrix function

A is integrally separated, then (see, e.g., [1, 20, 21, 8, 9]) the B̃ problem is
integrally separated, and hence so is the B problem. Besides the bound on
F , δ, and the measure of integral separation, the Kij , the bounds obtained
depend on the κij = supt |Bij(t)| for i ≤ j.

(c) An important point to make here is that we can view the exact solution as a
perturbation of the computed solution as opposed to the computed solution
being a perturbation of the exact solution. The bound on the norm of the
perturbation, δ, is the same in either case, but by considering the exact
solution as a perturbation of the computed solution, the quantities employed
to bound the error, e.g., Kij and κij , may be obtained from the computed
solution.

4.1. Simplified bounds and approximations. Next, we derive somewhat
simplified bounds on ‖Q̂(t) − I‖ by first taking the largest of the ρij , then using
ρk = supk=|i−j| ρij and κ = supi,j κij = supi,j |Bij(t)|. In addition, we determine
an asymptotic approximation for ω+. Note that we have ρij = ρji for i �= j, so the

bounds we obtain on ‖Q̂(t) − I‖ are identical in the 1-, 2-, and ∞-norms.
Corollary 4.1. In the notation of Lemma 4.1, let δ ≡ ω < ω+({αij}, {Kij},

{κij}). Let ρ̃ = maxi �=j ρij, and assume that (n− 1)(ρ̃+ ρ̃2) ≤ 1. Then, ‖Q̂(t)− I‖ ≤
ρ ≡ (n − 1)(ρ̃ + ρ̃2) and ‖Q̂(t) − I‖F ≤ ρF ≡

√
2(n2 − n)ρ̃ for all t ≥ 0. Moreover,

for k = 0, 1, 2, . . . , ‖Qk −Q(tk)‖ ≤ ρ.
We next prove a corollary that gives a more computable bound on the error in

the approximate Q while taking into account the variation in ρij as a function of i
and j. Let ρk = supk=|i−j| ρij , Kk = supk=|i−j| Kij , and αk = supk=|i−j| αij , and
assume that κ = supi,j κij .

Corollary 4.2. If the assumptions of Lemma 4.1 are satisfied, Kn−1 ≤ Kn−2 ≤
· · · ≤ K1, and

∑n−1
k=1 ρk + ρ2

k ≤ 1, then ρj ≤ αjKjω, ‖Q̂(t) − I‖F ≤ (2
∑n−1

k=1(n −
k)ρ2

k +
∑n

i=1(
∑i−1

k=1 ρ
2
k +
∑n−i

i=1 ρ2
k)

2)1/2, and

(4.23) ‖Q̂(t) − I‖ ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

(n−1)/2∑
k=1

(ρk + ρ2
k), n odd ,

2

(n−2)/2∑
k=1

(ρk + ρ2
k) + (ρn/2 + ρ2

n/2), n even,

where αn−1 > 1 and

(4.24) αj > 1+(n−j−1)κKj+1

(
1+(n−j−2)κKj+2(1+· · · (1+κKn−1αn−1)) · · ·

)
for j = n− 2, . . . , 1.

Proof. The proof involves recursively applying the condition (4.3) for i < j and
k = |i− j| = n− 1, . . . , 1. This means we can choose αk so that

(4.25)
αn−1 > 1, αn−2 > 1 + κKn−1αn−1 > αn−1,

αn−3 > 1 + 2κKn−2αn−2 > αn−2, . . .

or in general

(4.26) αj−1 > 1 + (n− j)κKjαj > αj , j = n− 1, . . . , 1.
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1180 LUCA DIECI AND ERIK S. VAN VLECK

The result then follows by recalling that ρj ≤ αjKjω and obtaining the bounds on
the matrix norms in a straightforward fashion using

‖Q̂(t) − I‖ ≤
√
‖Q̂(t) − I‖1‖Q̂(t) − I‖∞.

In spite of their appearances, Corollaries 4.1 and 3.1 are very different, even if in
Corollary 3.1 we happen to have ω = δ (as when Z = I). Moreover, the factors ω+,
as well as ρ, are different in these two contexts; notice the use of ρ̄ in Corollary 3.1
versus the use of ρ̃ in Corollary 4.1.

To estimate ω+, we reason as follows. An asymptotic analysis of the terms in
(4.20), (4.19), and (4.18) that contribute to a2, a1, and a0 in (4.16) and (4.17) which
determine ω+ in (4.4) suggest that

(4.27) a2 ≈ (3κD + κ)α3
1K

3
1 , a1 ≈ (2κD + κ)α2

1K
2
1 , a0 ≈ 1 − α1 + 2κα2K2 < 0,

where κD = supi,t |Bii(t)|.
These coefficients were determined by first observing that the dominant term for

a2 ≡ βij(η
D,2
ij + ηT,2

ij + ηF,2
ij ) in (4.20), where βij = αijKij , is proportional to α3

1K
3
1 .

Then in (4.20) we obtain the term 3κD from κiiβ
3
ij +κjjβij(βj,j−1 +βj,j+1) when j =

i+1 and the term κ is obtained from βikβjlβkmκlm when k = i+1, l = j−1,m = i+2,

and j = i + 2. There are no terms in ηF,2
ij proportional to α3

1K
3
1 . To determine the

dominant terms in a1 observe that the term 2κD is obtained from κllβlj(βli + βil) in
(4.19) when l = j−1 = i+1 and the term κ is obtained from βjlβimκlm in (4.19) when

l = j − 1, m = i+ 1, and j = i+ 1. The dominant terms in ηF,1
ij are not proportional

to α2
1K

2
1 . The approximation of a0 is found by considering (4.18) when j = i + 1.

Using the form for ω+ in (4.4) and the approximation
√

1 + x ≈ 1 + x
2 , we have

ω+ ≈ −a0

a1
≈ C[(2κD + κ)α2

1K
2
1 ]−1, where C ≈ −a0.

Notice that the ρij we have when treating the triangular term directly appears
to decrease as |i − j| grows. There is an accumulation for |i − j| small, but it looks
friendlier than the accumulation to find cond(Z) when using the diagonalizing trans-
formation. Indeed, it is interesting to compare the bounds one obtains with the two
different approaches: (i) using the diagonalizing transformation Z, and (ii) working
directly with the triangular system. We do this below on a two-dimensional system.

4.2. Comparison for two-dimensional systems. Here we compare the two
global error bounds obtained by the two different approaches we examined: (i) using
the diagonalizing transformation Z (see section 3), and (ii) dealing directly with the
triangular coefficient matrix function (call this the triangular approach) for a two-
dimensional system. That is, we have B = (D11

0
T12

D22
).

Of course, a bound on the error in Q using the diagonalizing transformation
approach is given by (3.12), while with the triangular approach it is given in Corollary
4.1. The interesting thing is to see what bounds we need for ω in the two cases.

We assume |Dii(t)| ≤ M for i = 1, 2 and |T12(t)| ≤ κ12 for all t and use the bound
||Z(t)||F , ||Z−1(t)||F ≤

√
2 + κ2

12K
2, where K = ed/a (see Lemma 3.1).

Then we have a bound | sin(θ(t))| ≤ ρ := 2Kω, where (i) | sin(θ(t))| = |Q̂12(t)|
and ω = δcond(Z) with the diagonalizing transformation approach, and (ii) | sin(θ(t))|
= |Q̂12(t)| and ω = δ with the triangular approach, provided that in these two cases
we have

(4.28) (i) ω < ωD
+ :=

√
1 + 4MK − 1

2K(2MK + 1)
· 1

cond(Z)
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and

(4.29) (ii) ω < ωT
+ ≡

√
1 + 4M/(Kκ2

12) − 1

8MK/κ12
,

respectively.
Since for x > 0, 1 + x/2− x2/8 ≤

√
1 + x ≤ 1 + x/2, using cond(Z) ≤ 2 +K2κ2

12,
we have

(4.30)
M(1 −MK)

(2MK + 1)cond(Z)
< ωD

+ <
M

(2MK + 1)cond(Z)
<

1

2Kcond(Z)

and

1

4K2κ12

[
1 − M

Kκ2
12

]
=

1 −M/(Kκ2
12)

4K2κ12
< ωT

+ <
M/(Kκ2

12)

4MK/κ12

=
1

4K2κ12
≤ 1

4K
√

cond(Z) − 2
.(4.31)

Quite clearly, the triangular approach gives much improved bounds.

4.3. Bounding the Kij’s. In light of Remark 4.1(c), besides the size of the
perturbation of B, the quantities needed to apply Lemma 4.1, the κij ’s that measure
the nonnormality and the Kij ’s that measure the integral separation, can be obtained
from the computed solution. To this end we consider now how to obtain bounds for
the Kij ’s. We consider two approaches.

The first approach follows ideas developed in [8] using Steklov averages; see also
Adrianova [1, Lemma 5.4.1]. In particular, for i < j set

p(t) := Bii(t) −Bjj(t)

and for some H > 0 consider finding the quantities c(H) (positive) and M :

(4.32) c(H) = inf
t

1

H

∫ t+H

t

p(r)dr > 0, M = inf
t
p(t).

We have the following result.
Lemma 4.3. For a := c(H) > 0, and a positive integer N , let

d :=

{
N∑

k=1

(c(H) − c(H/2k)) · (H/2k)

}
+ (c(H) −M) · (H/2N ) ≥ 0.

Then, for t ≥ s, we have

(4.33)

∫ t

s

p(r)dr ≥ a(t− s) − d.

Proof. That d ≥ 0 follows from

c(H) ≥ c(H/2) ≥ c(H/4) ≥ · · · ≥ c(H/2N ) ≥ M.

If t− s = jH for some positive integer j, then∫ t

s

p(r)dr ≥ c(H) · (t− s) ≥ a(t− s) − d
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1182 LUCA DIECI AND ERIK S. VAN VLECK

since d ≥ 0. Otherwise, t − s = jH + (t − s − jH) with 0 < (t − s − jH) < H, and
for γk ∈ {0, 1} we can write

t− s− jH =

{
H

N∑
k=1

γk/2
k

}
+ x,

where 0 ≤ x < H/2N .∫ t

s

p(r)dr ≥ jH · c(H) +

{
H

N∑
k=1

γk2
k · c(H/2k)

}
+ x ·M

= c(H) · (t− s) + (jH − (t− s))c(H) +

{
H

N∑
k=1

γk/2
k · c(H/2k)

}
+ x ·M

≥ a(t− s) − d.

(4.34)
Recalling (4.2), based on the above lemma, we may use

Kij = ed/a.

Of course, the Kij ’s are still functions of H: Kij(H). The idea now is to use for Kij

the minimum value of Kij(H) subject to maintaining c(H) > 0.
We also develop an alternative approach that is a simplification of Lemmas 4.1

and 4.2 of [17]. This alternative approach may yield better bounds on the Kij ’s.
As before, for all t, let p(t) = Bii(t) − Bjj(t), i < j. Consider a discretization of

the interval [0, T ]:

0 = t0 < t1 < · · · < tN = T.

Lemma 4.4. Let ε > 0 be given. There exists ak > 0 and dk ≥ 0 such that for
tk ≤ s ≤ tk+1,

(4.35)

∫ tk+1

s

p(r)dr ≥ ak(tk+1 − s) − dk,

where for hk = tk+1 − tk and for

(4.36) Yk = min
tk≤s≤tk+1

1

tk+1 − s

∫ tk+1

s

p(r)dr,

(4.37) ak =

{
εh−1

k , hkYk < ε,

Yk, hkYk ≥ ε,
dk =

{
ε− hkYk, hkYk < ε,

0, hkYk ≥ ε,

and ∫ T

0

e−
∫ T
s

p(r)drds ≤
N−1∑

k=0,dk=0

e−[
∑N−1

l=k+1 Xl] (1 − e−Ykhk)

Yk
+

(eε − 1)

ε
(4.38)

×
N−1∑

k=0,ak=εh−1
k

e−[
∑N−1

l=k+1 Xl]hke
−hkYk =: K(T ),(4.39)

where

Xk =

∫ tk+1

tk

p(r)dr.
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Proof. If hkYk < ε, then for ak = ε/hk, dk = ε− hkYk ≥ 0, and s ∈ [tk, tk+1],∫ tk+1

s

p(r)dr ≥ (tk+1−s)Yk = (tk+1−s)

[
ε

hk
− (ε− hkYk)

hk

]
≥ ε

hk
(tk+1−s)−(ε−hkYk).

(4.40)

If hkYk ≥ ε, then for ak = Yk, dk = 0, and s ∈ [tk, tk+1],

(4.41)

∫ tk+1

s

p(r)dr ≥ (tk+1 − s)Yk = ak(tk+1 − s).

The proof of (4.38) is then a direct consequence of the estimate∫ T

0

e−
∫ T
s

p(r)drds =

N−1∑
k=0

∫ tk+1

tk

e−
∫ T
s

p(r)drds

=
N−1∑
k=0

∫ tk+1

tk

e
−
[∫ tk+1

s
p(r)dr+

∑N−1
l=k+1

∫ tl+1
tl

p(r)dr
]
ds

≤
N−1∑
k=0

e−[
∑N−1

l=k+1 Xl]
∫ tk+1

tk

e−ak(tk+1−s)+dkds

=
N−1∑
k=0

e−[
∑N−1

l=k+1 Xl] e
dk

ak
(1 − e−akhk).

Observe that the bounds (4.38) can be used to obtain bounds on the Kij ’s in
(4.2) by setting Kij = supk K(tk).

5. Example. Here we illustrate our results, in particular the effectiveness of the
bounds on the error in the orthogonal matrix function Q, in the following example, also
considered in [11]. We report only on the improved bounds obtained when handling
directly the triangular term.

Let B(t) = D(t) + U(t) be the upper triangular matrix function with

(5.1) D(t) = diag(D11(t), D22(t), D33(t), D44(t)),

where we take D11(t) = 10 + sin(t), D22(t) = ζ cos(t), D33(t) = λ− ζ cos(t), D44(t) =
−10 + sin(t), ζ > 0, and

(5.2) U(t) = κ

⎛⎜⎜⎝
0 cos(t) sin(t) cos(t)
0 0 cos(t) sin(t)
0 0 0 cos(t)
0 0 0 0

⎞⎟⎟⎠ .

The parameter κ changes the degree to which there is nonnormality in the upper
triangular part, and the parameters λ and ζ determine the degree of integral separa-
tion in the system. For simplicity, in our experiments below we fix λ = −5, and all
computations refer to this case.

Form the matrix function

A(t) = Q(t)B(t)QT (t) + Q̇(t)QT (t),
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Table 5.1

Error in the approximate Q varying the degree of nonnormality and integral separation, method,
and tolerance.

T = 104, λ = −5, TOL = 1.E-6.
κ ζ Method Error Method Error

0 1 Cont QR 6E-7 Disc QR 7E-8
0 2 Cont QR 6E-7 Disc QR 1E-7
0 4 Cont QR 3E-6 Disc QR 5E-7

1 1 Cont QR 6E-7 Disc QR 7E-8
1 2 Cont QR 6E-7 Disc QR 1E-7
1 4 Cont QR 2E-6 Disc QR 5E-7

10 1 Cont QR 6E-7 Disc QR 1E-7
10 2 Cont QR 6E-7 Disc QR 2E-7
10 4 Cont QR 9E-6 Disc QR 5E-7

100 1 Cont QR 5E-6 Disc QR 4E-7
100 2 Cont QR 7E-6 Disc QR 4E-7
100 4 Cont QR 1E-4 Disc QR 2E-6

where

Q(t) = diag(1, Qβ(t), 1) · diag(Qη(t), Qη(t))

and

Qγ(t) =

(
cos(γt) sin(γt)
− sin(γt) cos(γt)

)
, η = 1, β =

√
2.

Results for this problem were obtained using the code LESLIS, which we developed
(see www.math.gatech.edu/∼dieci and www.math.ku.edu/∼evanvleck).

In particular, we employ the continuous QR method (Cont QR in Table 5.1) using
the projected fifth order scheme (IPAR(8)=0 in LESLIS) with local error control on
the orthogonal factor Q (IPAR(10)=1 in LESLIS), and the discrete QR method (Disc
QR in Table 5.1) with a fifth order scheme (IPAR(8)=4 in LESLIS), with local error
control on the Lyapunov exponents (IPAR(10)=0 in LESLIS). TOL is the value of the
local error tolerance, and we used TOL = 1.E-6 throughout. Before reporting on the
results, we remark that (see (2.11)) we expect to have ω to be about the same as TOL.
In other words, the bound on the norm of the perturbation term F in Lemma 4.1 is
essentially TOL. In Table 5.1 we tabulate the actual error for different methods and
varying κ and ζ values. We report on the error in Q in the two norm (the largest
singular value of the error) at grid-points. Exponential notation is used throughout.

We further compare the actual error with the error bounds obtained in the previ-
ous sections. Although the quantities needed to determine the bounds, ρij = αijKijω,

on |Q̂ij(t)|, in particular the αij , are somewhat difficult to give in closed form, the
recursion (4.3) is straightforward to code. Likewise, the formula for ω+, given by
(4.4) with (4.18), (4.19), and (4.20), are functions of the Kij , the measure of integral
separation, and the κij , the measure of nonnormality. For this problem, we have
κ11 = κ44 = 11, κ22 = ζ, κ33 = |λ| + ζ, and κij = κ for i < j.

We have, for λ = −5 and ζ <
√

24, K12 = K24 = 1/(10 −
√

1 + ζ2), K13 =

1/(15 −
√

1 + ζ2), K34 = 1/(5 −
√

1 + ζ2), and K14 = 1/20. If ζ < 5/2, then
K23 = 1/(5 − 2ζ). We next focus on determining bounds on K23 using Lemmas 4.3
and 4.4 when ζ ≥ 5/2.
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Table 5.2

Bounds on K23 obtained using Lemmas 4.3 and 4.4.

K23 bounds for T = 104, λ = −5, and ζ = 4.

N K23 w/ Lemma 4.3 K23 w/ Lemma 4.4 (h = π/2N , ε = 10−8)

0 2.1E5 3.9E4
1 4.7E4 2.1E2
2 3.9E4 9.0E1
3 3.8E4 5.1E1
4 3.8E4 4.1E1
5 3.8E4 3.9E1
6 3.8E4 3.8E1

We have p(t) := D22(t) −D33(t) = 5 + 2ζ cos(t). To employ Lemma 4.3 we have

(5.3) K23(H) =
ed(H)

c(H)
, d(H) = 4ζ

{
H/2N+1 +

N∑
k=1

sin(H/2k+1) − sin(H/2)

}

for H sufficiently large so that c(H) ≡ 5 − 4ζ sin(H/2)/H > 0. For different values
of N we can determine, at least approximately, optimal values of H. When using
Lemma 4.4, and in the notation used there, we set h ≡ hk = π/2N for integer
N ≥ 0. When p(t) is decreasing, Yk = 5 + 2ζ cos(tk+1), and when p(t) is increasing,
Yk = 5 + 2ζ[sin(tk+1) − sin(tk)]/h.

In Table 5.2 we tabulate bounds on K23 found using Lemmas 4.3 and 4.4 for
different values of N . In the case of Lemma 4.3, N refers to discretization of the
Steklov window length as in (5.3), while in the case of Lemma 4.4, N refers to the
fineness of the discretization of [0, T ] (h = π/2N ). We will use the best of the bounds
found to determine bounds on the error in Q.

By Corollary 4.2 we have ‖Q(tk)−Qk‖ ≈ 2ρ1+ρ2, and we recall that ρi ≤ αiKiω,
i = 1, 2. For convenience, in Table 5.3 we report on the estimates for ρ1 and ρ2

obtained by using these bounds and those for αi,Ki, i = 1, 2, for different values of κ
and ζ.

At this point, we make an important observation: If we use ω = TOL in the
expressions obtained for ρ1 and ρ2 in Table 5.3, and use 2ρ1 + ρ2 as a measure of the
true global error, then we observe that the observed true global error is always below
the theoretical estimate. This is actually an important fact, since it is not easy to
know exactly the value of ω. At the same time, this is not entirely rigorous, since we
can use 2ρ1 + ρ2 as a measure of the global error only if ω < ω+. For this reason, we
also estimated ω+ using the approximations to a2, a1, a0 in (4.27).

For the example we are considering, κD := supi,t |Bii(t)| = 11. In the last column
of Table 5.3 we record this estimated value of [(2κD +κ)α2

1K
2
1 ]−1, which serves as the

estimate of ω+ (see the discussion after (4.27)).
Now, by comparison of the true errors obtained in Table 5.1, using the estimates

for ω+ from Table 5.3, and still adopting the rationale that ω = TOL, we see that the
results for κ = 0, κ = 1, or κ = 10 and ζ �= 4 in Table 5.3 validate that ω < ω+.
To further corroborate this fact, we notice that for these value of κ, the error bounds
obtained are in good agreement with the actual errors observed and recorded in Tables
5.1 and 5.3. For κ = 102 or κ = 10 and ζ = 4 the bounds obtained do not appear to
be sharp, in the sense that it becomes increasingly difficult to satisfy the hypothesis
ω < ω+ that is necessary to apply Lemma 4.1 and Corollary 4.2.
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Table 5.3

Bound on the error in Q is dominated by ρ1 = α1K1ω.

Bounds obtained for the example with λ = −5.

κ ζ ρ1/ω ρ2/ω (2ρ1 + ρ2)/ω ω+ ≈ [(2κD + κ)α2
1K

2
1 ]−1

0 1 6.6E-1 2.3E-1 1.6E0 8.5E-2

0 2 2.0E0 2.6E-1 4.3E0 2.6E-2

0 4 7.4E1 3.4E-1 1.5E2 2.7E-4

1 1 8.0E-1 2.4E-1 1.9E0 6.5E-2

1 2 2.4E0 2.7E-1 5.1E0 1.9E-2

1 4 9.4E1 3.6E-1 1.9E2 1.1E-4

10 1 2.6E0 3.5E-1 5.6E0 8.3E-3

10 2 8.2E0 3.9E-1 1.7E1 1.3E-3

10 4 3.6E2 5.1E-1 7.2E2 7.6E-7

102 1 7.7E1 1.4E0 1.6E2 1.6E-6

102 2 2.5E2 1.5E0 5.0E2 1.6E-7

102 4 1.2E4 2.0E0 2.4E4 7.4E-11

6. Conclusions and consequences. We have provided a global error analysis
for the factor Q in the change of variables X = QR of a fundamental matrix solution
for a nonautonomous linear system. Our basic technique consists of a combination
of backward and forward error analyses, and this is seemingly a new approach in the
context of numerical integration.

Several comments are in order.
(1) Among the noteworthy consequences of a global error analysis for Q, probably

the most important one is that it becomes simple to obtain global error state-
ments for all quantities which derive from the simplified triangular structure
of the linear system, e.g., error bounds on the Lyapunov exponents and/or
the Sacker–Sell spectrum.

(2) We have made our analysis for the entire fundamental matrix solution, al-
though at times one is interested in computing the QR-factorization of only
a few of the columns of the fundamental matrix solution: reduced QR-factori-
zation. However, dealing with this case is—in principle—simple, since as a
consequence of the combined backward and forward error analyses for all k
we have

Qk = Q(tk)Q̃(tk),

RkRk−1 . . . R2R1R(t0)

= Q̃T (tk)[R(tk, tk−1) + Ek] . . . [R(t2, t1) + E2][R(t1, t0) + E1]R(t0)

≡ R̃(tk, tk−1) . . . R̃(t2, t1)R̃(t1, t0)R(t0).(6.1)

Thus, multiplying by ( I0
0
0 ), one obtains backward error statements and subse-

quent forward error estimates for the case of the reduced QR-factorization, ob-
taining bounds which cannot be worse than the bounds obtained on the full Q.

(3) We remark that in this work we made use of the assumption of integral sepa-
ration for the linear system. This is reasonable, since this is the generic case.
However, it would be interesting to obtain direct bounds also removing this
assumption, in a similar way to [11, Theorem 4.3].
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(4) For the general case of integration of a matrix equation of the form

ẏ = f(t, y), y(t0) = y0 orthogonal

we note that in order for the solution to remain orthogonal yT ẏ must be skew-
symmetric; hence f(t, y) = y s(t, y), where s(t, y) is skew-symmetric. Ob-
taining a result similar in flavor to Lemma 4.1 would require determining a
splitting

ẏ = yL + y[s(t, y) − L], y(t0) = I,

where L is such that y[s(t, y) − L] remains small enough for y(t) ≈ I. In
the specific case considered here the splitting was motivated by integral sep-
aration, a natural property for linear nonautonomous differential equations
ẋ = A(t)x, and we took advantage of the fact that the skew-symmetric matrix
function S(Q,A) is linear in A.

Appendix. Here we derive some technical expressions that are useful in proving
Lemma 4.1. In particular, we derive expressions relative to qDij (t, Q̂, ω), qTij(t, Q̂, ω),
and qFij(t, Q̂, ω) in (4.8) that are useful in obtaining the bounds (4.9), (4.10), (4.11) in
the proof of Lemma 4.1.

First, consider qDij (t, Q̂, ω). We have, writing Q̂(t) = [Q̂1(t)| · · · |Q̂n(t)],

(A.1)

qDij (t, Q̂, ω) − qDij (t, I, ω)

= qDij (t, Q̂, ω) = Q̂ij [Dii −Djj ] +

[
−

j−1∑
k=1

Q̂ikQ̂
T
k +

n∑
k=j+1

Q̂ikQ̂
T
k

]
DQ̂j

= Q̂ij [Dii −Djj ] +

n∑
l=1

Dll

[
Q̂lj ·

{
−

j−1∑
k=1

Q̂ikQ̂lk +

n∑
k=j+1

Q̂ikQ̂lk

}]

= Dii

[
Q̂ij ·

{
1 −

j−1∑
k=1

Q̂2
ik +

n∑
k=j+1

Q̂2
ik

}]

+Djj

[
− Q̂ij + Q̂jj ·

{
−

j−1∑
k=1

Q̂ikQ̂jk +

n∑
k=j+1

Q̂ikQ̂jk

}]

+
∑
l �=i,j

Dll

[
Q̂lj ·

{
−

j−1∑
k=1

Q̂ikQ̂lk +

n∑
k=j+1

Q̂ikQ̂lk

}]
.

By orthogonality we have

(A.2) 1 =

n∑
k=1

Q̂2
ik and Q̂ijQ̂jj = −

∑
k �=j

Q̂ikQ̂jk,

so for i < j,

(A.3)

qDij (t, Q̂, ω) = Dii

[
Q̂ij

(
Q̂2

ij + 2

n∑
k=j+1

Q̂2
ik

)]

+Djj

[
− Q̂ij(1 − Q̂2

jj) + 2Q̂jj

n∑
k=j+1

Q̂ikQ̂jk

]

+
∑
l �=i,j

Dll

[
Q̂lj

(
−

j−1∑
k=1

Q̂ikQ̂lk +

n∑
k=j+1

Q̂ikQ̂lk

)]
.
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Next, consider the term qTij(t, Q̂, ω). We have for i < j (and similarly for i > j)

qTij(t, Q̂, ω) − qTij(t, I, ω)= qTij(t, Q̂, ω) =

n∑
k=1

Q̂ik(S(Q̂, T ))kj

= −
j−1∑
k=1

Q̂ik(Q̂
T
j TQ̂k) +

n∑
k=j+1

Q̂ik(Q̂
T
k TQ̂j)

= −
j−1∑
k=1

Q̂ik

n∑
l=1

n∑
m=l+1

Q̂jlTlmQ̂km +

n∑
k=j+1

Q̂ik

n∑
l=1

n∑
m=l+1

Q̂klTlmQ̂jm

= −Q̂ii

n∑
l=1

n∑
m=l+1

Q̂jlTlmQ̂im

−
j−1∑

k=1,k �=i

Q̂ik

n∑
l=1

n∑
m=l+1

Q̂jlTlmQ̂km +

n∑
k=j+1

Q̂ik

n∑
l=1

n∑
m=l+1

Q̂klTlmQ̂jm

= −Q̂ii

[
Q̂jj

n∑
m=j+1

TjmQ̂im + Q̂ii

i−1∑
l=1

Q̂jlTli +

n∑
l=1,l �=j

n∑
m=l+1,m �=i

Q̂jlTlmQ̂im

]

−
j−1∑

k=1,k �=i

Q̂ik

n∑
l=1

n∑
m=l+1

Q̂jlTlmQ̂km +

n∑
k=j+1

Q̂ik

n∑
l=1

n∑
m=l+1

Q̂klTlmQ̂jm.

(A.4)

Finally, consider the term qFij(t, Q̂, ω). Using (1.5), we have for i < j (and similarly
for i > j)

qFij(t, Q̂, ω) − qFij(t, I, ω) = [Q̂S(Q̂, F ) − S(I, F )]ij

= −
j−1∑
k=1

Q̂ikS(Q̂, F )jk +

n∑
k=j+1

Q̂ikS(Q̂, F )kj + Fji

= Fji

(
1 − Q̂jj +

n∑
k �=i,k=1

Q̂2
ikQ̂jj

)

− Q̂ii

n∑
(l,m) �=(j,i),l,m=1

Q̂ljFlmQ̂mi +

n∑
k=1,k �=i

Q̂ikS(Q̂, F )kj .

(A.5)
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