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Abstract. An important change of variables for a linear time varying system @ = A(¢)z, t > 0,
is that induced by the QR-factorization of the underlying fundamental matrix solution: X = QR,
with @ orthogonal and R upper triangular (with positive diagonal). To find this change of variable,
one needs to solve a nonlinear matrix differential equation for @. Practically, this means finding
a numerical approximation to @ by using some appropriate discretization scheme, whereby one
attempts to control the local error during the integration. Our contribution in this work is to
obtain global error bounds for the numerically computed Q. These bounds depend on the local error
tolerance used to integrate for @), and on structural properties of the problem itself, but not on the
length of the interval over which we integrate. This is particularly important, since—in principle—@Q
may need to be found on the half-line ¢ > 0.
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Notation. An (n x n) real matrix X is indicated by X € R"*". diag(X) is the
matrix comprising the diagonal part of X, the rest being all 0’s; upp(X) is the matrix
comprising the upper triangular part of X, the rest being all 0’s; and low(X) is the
matrix comprising the strictly lower triangular part of X, the rest being all 0’s. The
default norm we consider is the 2-norm of vectors and the induced norm for matrices.

1. Introduction. Consider the homogeneous nonautonomous linear differential
equation

(1.1) i(t) = A(t)z(t), t >0,

where A is a bounded function taking values in R"*". Equation (1.1) appears per-
vasively in the study of dynamical systems. For example, it is the equation we end
up with when we study variation with respect to the initial conditions, or parame-
ters, of a nonlinear system. Therefore, it is the problem we have to face when we do
general stability analyses for trajectories of a dynamical system, e.g., for periodic or
for chaotic trajectories. Moreover, (1.1) is also the problem at hand during a Newton
process to solve general nonlinear differential systems, a process often advocated for
solving boundary value problems. Alas, in spite of its apparent simplicity, numerical
investigation of (1.1) is extremely hard, since the solution structure depends on the
fundamental matrix solution. Unquestionably, the problem is certainly conceptually
and computationally simpler if A happened to be triangular. For this reason, tech-
niques which find an orthogonal change of variable to triangular structure have been
studied by several researchers for a long time; e.g., see [6, 12, 18]. Our own interest
in these techniques originates with methods to approximate Lyapunov exponents of
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dynamical systems, a feat which is greatly simplified when the system is brought in
upper triangular structure; e.g., see [13, 8, 9].

Of course, the factor (7 which performs the change of variables has to be found
numerically, and this itself is not easy since @) satisfies a nonlinear matrix differential
equation. Thus, to find @), one must approximate the solution of this nonlinear matrix
equation in some appropriate way. In practice, this means that we will control the
local errors while approximating @), a fact which generally does not guarantee that
Q@ will be approximated accurately, i.e., that the global error in our approximation
will stay small. Our contribution in this work is to provide accurate bounds on the
global error when finding @: Our bounds will depend on the local error tolerance and
on the coefficient function A, but not on the length of the interval over which we
approximate ). Our result is somewhat atypical and is important. It is atypical
because, even though @ lies in a compact space, usually one does not obtain accurate
global error bounds (on arbitrarily long intervals) except for contractive problems, and
our problem is not contractive. It is important, because—used in conjunction with
standard techniques to approximate Lyapunov exponents—it can be used to obtain
global error bounds on the computed Lyapunov exponents of a linear time varying
system, as well as global errors on other spectral quantities.

The way we will obtain global error bounds for the computed @ is in itself inter-
esting and apparently new. Our main idea is to combine two types of error analyses:
A backward error analysis guaranteeing that the computed @ factor gives a transfor-
mation to nearly triangular form, and a forward error analysis guaranteeing that for
this nearly triangular problem there is a near-the-identity orthogonal transformation
reducing it further to a triangular structure. Combining these two ingredients, we
will obtain the sought result. Oversimplifying it, let us sketch the basic idea which
has guided us:

e We want to express X = QR, @ orthogonal, R upper triangular with positive
diagonal. B
— If we had Q, then R would satisfy a triangular system R = BR.
— Suppose that instead of Q) we compute (backward error result) an orthog-

onal Q., which gives X = QC}A‘Z, with B = (B + F)E, with B triangular
and F of small norm (F not triangular).

— Suppose also that we write R=VU , with V' orthogonal and U upper
triangular with positive diagonal. Then we have X = Q.VU, and so, by
uniqueness, R =U and Q.V = Q.

o If we now show that V' ~ I (forward error result), then we will infer that
Q. =~ Q (global error result).

An outline of the paper is as follows. In the remainder of this introduction we
review the basic change of variables X = QR and the differential equations satisfied
by @ and R. In section 2 we recall the key backward error statement which we proved
in [10]. In section 3 we give in a concise way the global error statement result, and in
section 4 we give details of a systematic way to obtain sharp bounds on the quantities
appearing in the error bound. In section 5 we illustrate our results in an example.
Conclusions are in section 6, which include a remark on the modifications needed to
handle the case in which we only have a “reduced” QR-factorization, that is, when X
comprises only a subset of columns of the fundamental matrix solution.

We now consider the differential equations governing the evolution of the ¢ and
R factors in the QR-factorization of X. Presently, X is a fundamental matrix solution
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for (1.1): X = A(t)X, X(0) = X, invertible. Let Xy = QoRo be the unique QR-
factorization of X, with the diagonal of Ry being positive.

Differentiating the relation X = QR one obtains QR + QR = A(t)QR, and
multiplying by QT on the left we obtain the equation for R:

(1.2) R=B(t)R, R(0)=R,,
where we have set

(1.3) B(t) = Q"(HA®)Q() - Q" (NQ().

_ Let us formally set S := QT Q. Since R has to be upper triangular, we must have
B upper triangular, which leads to

(L4) Q= QS(Q. A1), t >0,

where

(QTMAMQ®)iy, 1>,
(1'5> S(Q(t)vA<t))ij =40, =7,
—(QT(MAMB)Q))ji, <.

In particular, we notice that if @ is known, then R satisfies (1.2), and we also notice
that S is linear in A. Furthermore, in light of (1.5), for the entries of B we have Eij =
(QTAQ)M + (QTAQ)jZ. for i < j and By = (QTAQ)”,7 that is, B = upp(QTAQ) +
(low(QT AQ))7

The above derivation of the equations for the QR-factorization of X has been
obtained many times before, and specific attention has been paid in recent years to
techniques which maintain orthogonality while approximating the factor Q). A sample
of relevant references includes [2, 3, 14, 12, 7, 16]. We are not going to review these
works in detail, because the precise way in which the approximation for @ is obtained
is not relevant to our main scope here, which is to derive global error bounds for the
obtained approximations to (). What is relevant is that the obtained approximations
be orthogonal at the grid-points found during numerical integration of (1.4), a fact
which the schemes proposed in the above cited works do achieve.

2. Background. Suppose we are seeking the factorization X (t) = Q(tx)R(tx),
k=0,1,2,.... In other words, we are looking for the change of variables, the factor
Q@ in the QR-factorization of X, at the grid-points 0 =ty < t; < --- . Practically, the
grid-points {t;} may have been found during numerical integration of (1.4) by any
of the schemes in the previously cited works. Alternatively, we can always think of
indirectly having found approximations to @ by directly seeking the QR-factorization
of X (tx) as follows. Write

(2.1) X (ty) = Bty tr1) ... B(ta, t1)D(t1, 0) Xo,

where

St t; 1) = ADD(t,tj 1), D(t;_1,t; 1) =1, t; 1 <t<t;, j=12,... .k
(2.2)

Then, for j = 1,2,...,k, recursively consider (discrete QR technique)

(L, tj-1) = A@Q)W(t, t-1), V(tj-1,tj-1) = Q(tj-1),

2.3
(2:3) and factor W(t;,t;_1) = Q(t;)R(tj,t;-1),
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where Q(¢;) are orthogonal and R(¢;,;_1) are upper triangular with positive diagonal.
So, we have the QR-factorization of X (¢x),

(2.4) X(t) = Q(t)R(tis ti_1) . .. R(ta, t1)R(t1, to) R(to).

If we adopt this point of view, the error we commit in finding @ is inherited from the
error we do when approximating the transition matrices ®(¢;,t;-1), j =1,2,..., k.

Notice that taking this point of view, we have expressed R(tx) as the product of
local triangular transition matrices:

R(tx) = R(tk, tk—1) - - - R(ta, t1)R(t1, o),

where each of these triangular transition matrices is the same as the solution of

R(t,t;1) = BOR(t, t;1), R(tj1,t; 1) =1, t; 1 <t<tj, j=1,2,...k

where B is given in (1.3).

Now, we cannot hope to be able to obtain the exact factors Q(tx) (and R(tg)).
Still, let us assume that the obtained numerical approximations to the Q(t)’s, call
them Qy’s, are orthogonal. The key fact, which we proved in [10], is the following:
“By using either direct integration of (1.4) or having indirectly approximated @ via
the discrete QR technique, with a numerical realization of the change of variables
X = @R, we are obtaining a numerical approximation to X (¢x), call it X}, and to
the triangular transition matrices R(tg,tx—1), call these Ry, so that we have

(2.5) X, = QuReRi_1... RoRiR(to), k=1,2,...,

and at the same time
(2.6)
X, = Q(tk)[R(tk,tk_l) + Ek] . [R(tg, tl) —I-EQ][R(tl,to) + El]R(tO) , k=1,2,...,

where Q(t1) is the exact Q-factor at ¢ and the triangular transitions R(t;,t;_1) are
also the exact ones. Moreover, the factors £, j = 1,...,k, are bounded in norm by
the local error committed during integration of the relevant differential equations; see
Theorems 3.1 and 3.16.”

We will henceforth simply write

(2.7) 1Bl < m g=12,...,

and stress that n is computable, in fact controllable, in terms of local error tolerances.

Furthermore, close inspection of the error terms F;, j = 1,...,k, k =1,2,...,
allowed us to obtain a backward error result, which we summarize below. For details,
we refer to the original work (see [10, Theorem 3.12]); here we are content with a
useful rephrasing of this result.

SUMMARY 2.1. With a numerical realization of the QR change of variables, either
having directly integrated (1.4) or indirectly through the numerical realization of the
discrete QR technique, we do mnot obtain the exact transformation to the triangular
form (1.2)—(1.3), but rather find an orthogonal change of variable to the perturbed
triangular system

(2.8) R=(B(t)+F®)R, t>0,
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where B is the piecewise constant (and triangular) function given by

1
(2.9) B(t) == PRp— log(R(tj41,t5)), t; <t <tj,
j j

and F' is bounded as

(2.10) sup ||F|| < en+ O(n?) =: 6.
>0

For the sake of completeness, we remark that in (2.10) the bounds on the norm
of F' are obtained locally, on each subinterval [¢t;_1,%¢;], 7 = 1,2,..., so that one really
has sup,, | <o<¢, [|F'[| < ¢jn+ O(n?), and the main contribution to the magnification
factor c; is given by the departure from normality of the exact triangular transition
factors R(t;,t;—1). Indeed, at first order in TOL, we have

(2.11) sup ||F|| ~ TDL(l + Kj—lhj—l)a hj_l =t; —t;_1,
t5_1<t<t;
where TOL is the local error for the obtained approximation to the transition matrix,
and k;_1 is the departure from normality of R(¢;,¢;_1). In any case, we stress once
more that the bounds on the norm of F' are computable.
Remark 2.1. In order to obtain (2.10), in [10], we needed to have a certain
condition satisfied; see [10, Assumption 3.5]. This amounted to the requirement that

~1
tj
TOL [mln (1, nin exp (/tjl B”(s)d5>>] < 1.

In practice, this means that one may need to have the stepsizes h; := t; — t;_1,
j=1,2,..., sufficiently small.

3. Global error bounds for Q. Next, consider the unperturbed and perturbed
triangular systems

31)  R=B@®R R0)=R, and R=[B(t)+F(®R, R0) = R,

where we can assume that sup,~ || F(t)]] < 6.

In [11], we proved (see Lemma 3.1 below) that there is an orthogonal change of
variables, close to the identity, taking the perturbed triangular system to triangular
form. The proof we gave used global (and fairly crude) norm estimates and proceeded
as follows.

First, write R = Rp + Ry, where Rp = diag(R) and Ry = upp(R), so that
R=(I1+ RURgl)RD =: ZRp. Accordingly, we have the unperturbed and perturbed
diagonal systems

(3.2) Rp = D(t)Rp, Rp = [D(t)+ E(t)]Rp,

where D(t) = diag(B(t)), E = Z~'FZ, and R = ZRp. Define

(3:3) cond(Z) = sup 1zl 11z~ @l

and assume that cond(Z) is bounded. In other words, we are assuming that Z is

a Lyapunov transformation; e.g., this is certainly the case if the triangular system
R = BR is integrally separated. This last assertion follows from [8, Theorem 5.1].
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Recall that R is an integrally separated fundamental matrix solution if there exist
a > 0 and d > 1 such that

IR@ed| IRGeisll < aes

(3.4) IR(s)eill  [[R(B)eirall =

forall t,s, t >s>0,and i =1,2,...,n— 1. We also recall that integral separation
is a generic property for linear systems (see [19]) and is a necessary and sufficient
condition for stability of the Lyapunov exponents when they are distinct [1].
Next, let w := sup,>q | E(t)||, and observe that
(3.5) w < sup||F|| cond(Z) < ¢ cond(Z).
>0
We make note here that the integral separation constants used in Lemmas 3.1

and 4.1 below are the integral separation constants for the piecewise constant upper
triangular system that results from (2.4); see (2.9). That is, we write

R(tj+1>tj) = e(tj+1_tj)B(t) ) tj <t< tj+17
where in fact
1
B(t) == ————log(R(tj41,t;)) , tj <t <tji1.
ti+1 — 1

This piecewise constant triangular system produces the same upper triangular fun-
damental matrix solution as the exact upper triangular system when evaluated at
mesh-points. Therefore,

tj+1 ti+1 _
(36) / Bii (T)dT = / Bii (T)dT,
t t

j j
where B denotes the piecewise constant triangular coefficient matrix function and
B the exact triangular coefficient matrix function of (1.3). Thus, if B has integral
separation with constants @ > 0 and d > 0 so that for ¢ > s (take logarithms in (3.4))

(37) / (EM(T> - §¢+1’i+1(7'))d’7' 2 Zi(t - S) - J

fori=1,...,n—1, then for t; 1 < s <t; and t} <t <{tpi1,

t

(Bii(T) = Big1,i41(7))dr = / (Eii(T) — Biy1,i+1(7))dr

[(Bii(7) — Bii(7)) — (Bix1,i41(7) — Big1,41(7))]dr

ﬁu\

-

+/ [(Bii(7) = Bii(7)) = (Bis1,i+1(7) = Big1,i41(7))] dr > a(t — ) — d,
ti
where a = a, d < J+4Mi)i+1hm,w, Miﬂ'—i—l = SUup;>g |Bii(t) —Bi+1)i+1(t)|, and hoar =
sup;(tj+1 —t;). In other words, the problem with B also has integral separation with
constants a > 0 and d > 0.

Then the following result shows the existence of a near identity orthogonal change
of variables which brings the perturbed diagonal system to upper triangular, provided
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that w is small enough. We proved this result in [11] under the assumption of integral
separation of both unperturbed and perturbed triangular systems.

LEMMA 3.1 (see [11]). Let sup,~ |B(¢)|| = M, and let a and d be as defined in
(3.4). Let @ be the orthogonal factor in the QR-factorization of Rp.

If w < wy(o, K, M), then \Q\”(t)| <pfori#jandallt>0. Here, p =0 w,
B=aK,a>1, K=ce¢/a, and

(3.9) wy(a, K, M) := ( a? 4+ 4(a —1)ag — a1> /(2a2),

where ay = n?B*[M B+ 2] and a; = nB[2M 3 + 1].

As an immediate consequence we have the following. R

COROLLARY 3.1. Ifw < wy(a, K, M) and (n—1)p? < 1, then |Q(t) — I|| < p =
(n—1)p+72) and |Q(t) — I||r < pp = p/2(n2 — n), where || - || is the Frobenius
norm.

Perhaps surprisingly, we already have all the ingredients to obtain global error
bounds on Qf — Q(tx)-

First of all, let us look again at (2.6). In the notation of Corollary 3.1, if w <
wy (e, K, M), then (2.6) can be rewritten as

~

(3.10) Xi = Q(tx) Z(tr)Q(tr)U (),

where U (t;,) is upper triangular with positive diagonal elements, and ||Q(t) —I|| < p.
Next, let Z = Z(t) and Q = Q(t). Then

(3.11) ZQ=2I+AQ)=Z+ZAQ =7+ AZ,

where [AZ] < | 2]+ A0 < | Z1lp.
THEOREM 3.2. With the previous notation, assume that
1. w<wi(a,K,M),
2. cond(Z)p < 1/2, and
3. 1Q(t) — 1] < p-
Then we have

3cond(Z)p

Proof. By the perturbation theory for the QR-factorization (e.g., see [22, Theorem
3.1]),

(3.13) Z+AZ=T+W)Z+G),

where I + W is orthogonal, Z+G is upper triangular with positive diagonal elements,
and

S 1=20Z7) - AZ)

Thus, (3.10) may be written as

(3.15) X = Q)T +W)(Z + G)U(ty),
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and by the uniqueness of the QR-factorization, from (2.5), Qr = Q(tx)(I + W) and
therefore

(3.16) 1Qr — Qtr)|| = Q" (tx)Qr — I|| = |[W||<e. O

It is possible to improve the perturbation bounds on the QR-factors of nearby
matrices; see, e.g., [5, 4] and the references therein. However, the real drawback of
the global error bound in (3.12) is actually due to the fact that we have used a global
transformation (via Z) to diagonal form and are thus penalized by cond(Z). The
optimal situation of course is if Z = I, which occurs for instance when the upper
triangular problem is in fact diagonal. In this case, we can take w = § in (3.5).

However, aside from this case of Z = I, it is probably best to avoid altogether the
diagonalizing transformation Z and tackle directly the perturbed triangular problem
in (3.1), thereby attempting to bring directly R to triangular form via an orthogonal
near-the-identity transformation and obtain sharper estimates. This is what we do in
the next section.

4. Handling the triangular term directly. Let us consider the perturbed
triangular problem (3.1), rewritten here again as

(4.1) R=[B(t) + F®IR, ¢ >0, R(0)= R,

with sup,~¢ ||F(t)]| < w. Recall that B has upper triangular structure, and w is
small. We have w = 6 here (see (2.10)), but we chose to use w to unify the notation to
Lemma 3.1.

Below, we show that there exists an orthogonal change of variables to the upper
triangular structure, that is, a change of variables R = QU with @ orthogonal and U
upper triangular with positive diagonal, such that @ remains, under reasonable condi-
tions, a small perturbation of the identity given the initial condition Q(0) = Q¢ = I.
The proof of the lemma below uses a similar technique to that used to prove Lemma
3.1 (see [11]), but much more careful estimates are now employed. In the simplest
sense, Lemma 4.1 is a componentwise version of Lemma 3.1 but for a perturbed trian-
gular system as opposed to a perturbed diagonal system. In order to obtain bounds on
the entries of ), we assume bounds on the entries of B and assume integral separation
constants for both consecutive and nonconsecutive diagonal diagonal elements of B.
Our bounds will be of the type |Qs;(t)] < pij, @ # j, with p;; = o K;jw; see below.
The key to obtaining this result is that the a;; in this bound may be found recursively
starting from |i — j| =n — 1 down to |i — j| = 1 with, for instance, a1 , = an,1 = 2.

LEMMA 4.1. Consider the problem (4.1) and write B(t)+F(t) = D(t)+T(t)+F(t)
for all t, where D = diag(B) and T = upp(B). Also, let sup;~¢ [|F(t)|| <w. Then
there exists an orthogonal change of variables @, with.@(O) = 1, which bring B+ F
to upper triangular structure C' := @T [B + F]@ — @T@

Moreover, let |D;i(t)| < ki fori=1,...,n, let |T;;(t)] < kij fori < j for all
t >0, and let K;; be such that for allt > 0,

t
(42) Kij > / e th(Dii(r)iDjj(r))drdT, 1< j, and Kij = Kji7 7> j
0

Forli—jl=n—1,li—jl=n—-2,...,|i—j| =1, choose a;; such that
n i—1
(43) Q5 > 14+ Z ’iijikaik + ZKjkajknki for i < j,
k=j+1 k=1

and let a;; = oy, 1> 7.
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Set

9

a0 ol i (Va7 P o) f), il

where agij),a(lij), agij) are defined in (4.17).

Ifw <wi({ai;}, {Kij}, {ki;}), then @”(t)\ < pij fori# j and all t > 0, where
pij = i Kij - w. .

Proof. Recall (see (1.4)) that @ must satisfy @ = @S(@, B+ F). So, fori < j we
have

éij = —Qij[Dii — Dy + (@zj [Dii — Dy;] + eI (Q[S(Q, D) + S(Q,T) + S(Q, F)])ej)

=: —Qi,j [Dii — Dj;] + i (t, @»W)
(4.5)

and a similar formula for i > j. We want to show that if the conditions of the theorem
are satisfied and Q(0) = I, then |Q;;(t)| < pi; for all ¢ # j and ¢t > 0. The proof
involves applying [15, Theorem IV.2.1].

Using the nonlinear variation of constants formula, we have for Q(0) = I and
1<)

t
(46) Qij (t) = / e fé(Dii(T)—Djj('f'))drqij (T, Q(T),w)dT.

0
Thus, sup, @ij(tﬂ < K;; sup, |gi; (¢, Q(t),w)|. We have

(4.7) <n{prr},w)pij + N(w),

where since S(I,D) = S(I,T) = 0 and S(I,F) = F, — FF'| where F;, = low(F),
N(w) < w. To bound n({px: },w) write
qij(tu Q>w) = q'g(t7 Qaw) + qz:,;(t7 Q7w) + QZ(ta Q>w)

O (QulDis = D)+ T QS(@Q. D)e; ) + eI QS@Q. The; + eI QS(Q. F)e
4.8

and consider the case in which ¢ < j (the case i > j is similar).
For qi[;(t, Q,w) we have, from (A.3) using the notation §;; = a;; K;j,
|q£(t7 Qa CU) - Q£(t7 I,W)|

n n
Pij Z P?k+2 Z PikPjk

n
< Kii |f%‘j (P?j +2 Z P?k) + Kjj
k=j+1 k=1,k#j k=j+1
j—1 n
+ Z K [plj (Zpikplk + Z Pikﬂlkﬂ
1#£i,j k=1 k=j+1
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n n n
< Kig lpzj (P?j-i-? Z Pfk> Pij Z P+ 2 Z Pikpjk]

k=j+1 k=1,k#j k=j+1

n
+ Z Kl [Plj (Pzi +pit Z Pikplk>‘|

14,5 k=1,k#i,5,1

= Pij{ [fm( i +2 Z ﬂm) + Kjj Z B+ > ku ﬂlj > ﬂikﬁlk]
W g

k=j+1 k=1,k#j 1#14,j 1,k#1,5,1

}

Next, we obtain, using (A.4) and again 3;; = a;; K,

|qg(t,Q7 ) q7] t Iw ‘ < Z H]mpszFZle’flv + Z Z PjilRimPim

+ Kjj

Z BikBik + Y Ku (B + Bi)
ﬂz] k=i +1 oy ﬁzg

D,2 D1
=: pigni) =t pij (Wi, " +wni; ).

(4.9)

m=j+1 1=1,l#7 m=l4+1,m%#i
j—1 n n n n
+ pikz Z PitlimPkm + Z pikz Z PkiRimPjm
k=1,k#i 1= lm l+1 k—_]-l-l =1 m=Il+1
S Z ijpzm""zp]l’ilz'i_ Z Z pjlﬁlmpim
m=j+1 I1=1,l#7 m=l4+1,m#i
j—1
+ Z pikl Z Hgmpkm-i-Zpgmzk-i- Z Z szfilmpkm]
k=1,k#1 =j+1 1=1,l#j m=l+1,m#k
n
+ Z Pik[ Z Nkmpym+2pklﬁzg+ Z Z pklﬁlmp_jm]
k=j+1 m=k+1 I=1,l#k m=l4+1,m#j
J—1 ﬂ n n
ik
. pij{uﬂ[ S S Y m
k=1,k%i % 1=1,1#] m=l+1,m+#k
n /6 n n
ik
PR S S dus]
k=j+1 7" 1=1,1#£k m=1+1,m+#j
n n ﬁ ﬁ K j—1 6 n k—1
l 1 k
o 3y ety 5 (5 s S )
1=1,1#j m=I+1,m#i k=1,k#i "9 \m=j+1 =1
n ﬂ n 7j—1 n ﬂ ﬂ
ik i l
oy (x ﬁzﬁ) > s S|
k=j+1 " \'m=k+1 =1 m=j+1 K Y
T2 T,1 T,0
(4.10)

Then, using the fact that 0 < @jj <1,andso 1l —@jj <1 —@?j = 22:1,1@# @?k,
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we obtain from (A.5)

‘qil;(tvévw) - q'g(ta Iu w)‘

n n n n
<w Z P+ Z Py, + Z Pl Pmi + Z Pik
k#j,k=1 k#ik=1 (1,m)#(j,1),l,m=1 k=1,k+#i,j
n 2 n 2 n ) ) n )
ot | 30 Sy GEe 3 Sl 3 3
kg k=1 " ki k=17 (m)#£(ji) lm=1 " k=1,k#i,j "%
F2 F1
= pijniI; = pij(“’Qm‘j + wny; ),

(4.11)

where ﬂij = Oéinij.
So, we have, using (4.7), (4.8), (4.9), (4.10), and (4.11),

(4.12) ni; ({pw},w) < nd) + 0l +nf,

and finally from (4.7) we obtain
sup 1Qis (B)] < Kij (N(w) + 13 ({pra}, w)pis)-

Since N(w) < w, Theorem IV.2.1 of [15] may be applied if

(4.13) Kij[(n] + 055 +n5)pi; + @] < pi,
or
(4.14) 1> Kij(n] +nl +nf) + 1/aij,

or equivalently
Then we need to have
D2 | T2 F2 D,1 T,1 F,1
0> ai; Kij(m;;" 4 mij ™ + m; Jw? + i Kij(my;™ +mi " 4y )w
(4.16) + [ainijmj;’o +1 = ayl,
which we rewrite as
(4.17) flw):= agj)w2 + agij)w + aéij) <0,

where in particular

i—1 n
(4.18) aé”) =1—-oy + Z Ko K+ Z K jm Oim Kim .
=1 m=j+1

We notice that agij) > 0, aéij) > 0. Since f/(w) > 0 for w > 0, we need to have
aéij) < 0 in order to be sure that there are values of w satisfying f(w) < 0. This is
guaranteed by (4.3).

Thus, if w < wy with w, given in (3.9), then |C§2J(t)| < pij = oy Kjw for i # j
and t > 0. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/29/14 to 129.237.46.100. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ON THE ERROR IN QR INTEGRATION 1177

What one expects from Lemma 4.1 are p;; = «;;K;jw, where p;; are smaller for
|i — 7| large than for |i — j| small, e.g., |¢ — j| = 1. This is due in part to the sharper
bounds obtained by employing K;; = K;; = edis /a;j for i < j, where for t > s

/ (Bis(r) — Bjs(r))dr > ag;(t — 5) — diy,

as opposed to

\/t(BM(T) ( ) dT > lZak k+1] f*S de k41,

k=1

essentially avoiding the use of a triangular inequality. It is also, due to the form of the
recursion, possible to determine the a;; in (4.3) in which we choose a5, = a1 > 1,
then determine «; for |i — j| = n — 2, etc. There is the potential for the «a;; to
become large as |i — j| | 1, depending on the size of the off-diagonal elements of
B characterized by k;; and the strength of the integral separation between diagonal
elements as characterized by K;

The bound on the perturbation F' that allows for application of Lemma 4.1 is
given in (4.4) using (4.17) with a(()ij) given in (4.18). The coefficients a(”), gij) may
be obtained from (4.9), (4.10), and (4.11), which give for 3;; := a;; K;

a7 = Byt bt 0l

n

2k Z BikBjk + Z ku i (B + Bu)

k=j+1 1#£4,j
n n j—1 n k—1
> S BiuBimbimt Y ﬁik( > Hjmﬁkm-l-Zﬁjmlk)
1=1,1£j m=l+1,m#i k=1 ki m=j+1 =1
n n j—1 n
.S @( 3 Hmﬁjm+zﬁmj> Y
k=j+1 m=k+1 =1 k=1,k#i,j
(4.19)
and
(Z]) 61] (TI'L] + nzj + 771] )
n n
ﬁij{&i(ﬂ?j'i‘? Z ﬁ?k>+f€jj Z ﬁ?k}"‘zﬁllﬁu Z Bir Bk
k=j+1 k=1,k#j I#1,5 k=1,k#1,5,l
J—1 n n
Z ﬂik Z Z ﬁjlﬂkm’ilm
k=1k#i  l=1,l#j m=l+1,m#k
n n n
+ Z ﬁik Z Z ﬁklﬁjmﬁl’m]
k=j+1 I=1,l#k m=l+1,m#j
n n n
S S TS mjﬂm].
ktj,k=1 ki, k=1 (1,m)#(j,1),1,m=1
(4.20)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/29/14 to 129.237.46.100. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1178 LUCA DIECI AND ERIK S. VAN VLECK

The following theorem shows that C' obtained from Lemma 4.1 is a small pertur-
bation of the piecewise constant upper triangular B and that C' may be interpreted as
upper triangularizing a perturbation of A in which the perturbation is not in general
small. N

THEOREM 4.2. Let B be the upper triangular matriz function obtained for the
ezact Q: B = QTAQ—S(Q, A). If we write the piecewise constant upper triangular B

as B=B+F , then the upper triangular C' that results from having only approzimated
Q satisfies for Q = QQ
C=Q'[A+GQ - S@.A+G)

= B+upp[Q' (A+G)Q - QTAQ] + (Iow[Q (A + G)Q — QT AQ))"

= B+upp[-F + Q' (A+G)Q — QTAQ] + (low[-F + Q" (4+ G)Q - Q" AQ))",
(4.21)

where G = Q[F + F — S(Q, A)]QT.

Moreover, if Lemma 4.1 holds, then C is an O(p) perturbation of B and C' is an
O(p) + O(||F||) perturbation of B for p = max;-; pi;.

Proof. We have

C=Q"[B+F|Q-S(Q,B+F)=Q"[B+F+F|Q—SQ,B+F+F)
=Q [A+CIQ - S@,A+G) =uppQ (A+G)Q + (low[Q (A+G)Q)"
— B+uwpp[Q' (A+G)Q - QTAQ] + (low[Q (A+G)Q — QTAQ))"
= B—F+upp[Q (A+G)Q - QTAQ] + (1ow[Q (A+ G)Q — QT AQ))"
= B+upp[-F+Q (A+@)Q - Q"AQ] + (low[Q' (A+@)Q — Q" AQ))"
=B+upp[-F +Q (A+G)Q ~ QTAQ] + (low[-F + Q" (A+G)Q — Q" AQ))",
(4.22)

where we have used that upp[F] = F and low[F] = 0. We now show that C is a small
perturbation of B.

Since Q' GQ = QT[F + F|Q — QTS(Q, A)Q, we have
QUFQ=F+(@Q"-DF+FQ-1)+ Q" - DF(@Q-1)
and
QTS(Q,4)Q = S(Q, A)+(Q"-DS(@Q, A)+S5(Q, A)( Q-1 +(Q"~1)S(Q, A)Q—1).

Since upp[S(Q, A)] + (low[S(Q, A)])T = 0, we then obtain (i), and (ii) follows from
(4.22) and the definition of G. d
Notice that although C' results from having upper triangularized A+ G, in general
G is not small. We conclude this section with a few important remarks.
Remarks 4.1.
(a) While Lemma 3.1 (see Lemma 3.1 of [11]) together with Theorem 3.2 of [11]
are in a sense analogous to a classical Bauer—Fike theorem by employing a
diagonalizing transformation, Lemma 4.1 together with (4.21) may obtain
sharper bounds by avoiding the use of a diagonalizing transformation.
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(b) We note here that if the original problem with coefficient matrix function
A is integrally separated, then (see, e.g., [1, 20, 21, 8, 9]) the B problem is
integrally separated, and hence so is the B problem. Besides the bound on
F, 6, and the measure of integral separation, the Kj;, the bounds obtained
depend on the k;; = sup, | B;;(t)| for i < j.

(¢) An important point to make here is that we can view the exact solution as a
perturbation of the computed solution as opposed to the computed solution
being a perturbation of the exact solution. The bound on the norm of the
perturbation, &, is the same in either case, but by considering the exact
solution as a perturbation of the computed solution, the quantities employed
to bound the error, e.g., K;; and k;;, may be obtained from the computed
solution.

4.1. Simplified bounds and approximations. Next, we derive somewhat
simplified bounds on ||Q(t) — I|| by first taking the largest of the p;;, then using
Pk = SUPg_j;_j pij and K = sup; ; Kij = sup; ; |Bi;(t)]. In addition, we determine
an asymptotic approximation for wy. Note that we have p;; = pj; for ¢ # j, so the
bounds we obtain on ||Q(t) — I|| are identical in the 1-, 2-, and co-norms.

COROLLARY 4.1. In the notation of Lemma 4.1, let 6 = w < wy({au;}, {Kij},
{ki;j}). Let p = max;j pij, and assume that (n—1)(p+ p?) < 1. Then, Q) —1|| <
p=(n—1)(F+p) and |Q(t) — I|r < pr = /2(n? —n)p for all t > 0. Moreover,
fOT k=0,1,2,..., HQk - Q(tk)” <p.

We next prove a corollary that gives a more computable bound on the error in
the approximate ) while taking into account the variation in p;; as a function of %
and j. Let pp = SUDg—|i—j| Pij> K, = SUPg—|i—j| K;j, and ap = SUPj—|i—j| i and
assume that x = sup; ; ij.

COROLLARY 4.2. If the assumptions of Lemma 4.1 are satisfied, Kp—1 < K,,—o <
o < Ky, and Y020 e+ 0} < 1, then py < o Kw, [|Q() = ITlr < (23521 (n —
k)P + S0y (s P+ i) P2, and

(n—1)/2
2 Z (pk+pi)7 n 0dd’
(4.23) 100 11 <4 rsye =
2 D (pk+pR) + (Puja+phys), n even,
k=1

where a,—1 > 1 and
(424) a; > 1—|—(n—j—1)/{KJ—+1 (1+(’I’L—]—2)FLKJ+2(1+ N (1+/$Kn,1an,1)) i )
forj=n—2 ... 1.

Proof. The proof involves recursively applying the condition (4.3) for i < j and

k=|i—jl=n-—1,...,1. This means we can choose «j so that

(425) Qp—1 > 13 Op—2 > 1+ HKn—lan—l > Qp—1,
Qp_3 > 1+ 2’{Kn72an72 > Qp—2,...

or in general

(4.26) aj_1>14+(n—j)kKjo; > a4, j=n—1,...,1
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The result then follows by recalling that p; < a;K;w and obtaining the bounds on
the matrix norms in a straightforward fashion using

16(t) — 1 < I0® — 11110 — I D

In spite of their appearances, Corollaries 4.1 and 3.1 are very different, even if in
Corollary 3.1 we happen to have w = § (as when Z = I). Moreover, the factors w,
as well as p, are different in these two contexts; notice the use of p in Corollary 3.1
versus the use of p in Corollary 4.1.

To estimate w,, we reason as follows. An asymptotic analysis of the terms in
(4.20), (4.19), and (4.18) that contribute to ag, a1, and ag in (4.16) and (4.17) which
determine w, in (4.4) suggest that

(4.27)  az ~ (3kp + K)ASK}, a1 =~ (2kp + K)aFK?, ag =1 — a; + 2ka K, <0,

where kp = sup, ; | By;(t)|.

These coeflicients were determined by first observing that the dominant term for
as = fij (775’2 + 77;‘;’2 + 77572) in (4.20), where 3;; = a;;K;;, is proportional to afK3.
Then in (4.20) we obtain the term 3xp from ﬁ”ﬂf’] + k58585, j—1+ Bjj+1) when j =
i41 and the term « is obtained from B 31 Bkm~im When k = i+1,1 = j—1,m =i+2,
and j = ¢+ 2. There are no terms in 775-’2 proportional to a3 K3. To determine the
dominant terms in a; observe that the term 2k p is obtained from x5 (8; + Bir) in
(4.19) when ! = j—1 = ¢+1 and the term & is obtained from §;;8;m Kim in (4.19) when
l=j—1, m=1i+1,and j =i+ 1. The dominant terms in 7)5’1 are not proportional
to a? K?. The approximation of ag is found by considering (4.18) when j =i + 1.

Using the form for wy in (4.4) and the approximation /1 +x ~ 1+ Z, we have
wi ~ =g~ C[(26p + k)3 K371, where C ~ —ay.

Notice that the p;; we have when treating the triangular term directly appears
to decrease as |i — j| grows. There is an accumulation for |¢i — j| small, but it looks
friendlier than the accumulation to find cond(Z) when using the diagonalizing trans-
formation. Indeed, it is interesting to compare the bounds one obtains with the two
different approaches: (i) using the diagonalizing transformation Z, and (ii) working
directly with the triangular system. We do this below on a two-dimensional system.

4.2. Comparison for two-dimensional systems. Here we compare the two
global error bounds obtained by the two different approaches we examined: (i) using
the diagonalizing transformation Z (see section 3), and (ii) dealing directly with the
triangular coefficient matrix function (call this the triangular approach) for a two-
dimensional system. That is, we have B = (DO“ gl;; ).

Of course, a bound on the error in () using the diagonalizing transformation
approach is given by (3.12), while with the triangular approach it is given in Corollary
4.1. The interesting thing is to see what bounds we need for w in the two cases.

We assume |D;;(t)| < M for i = 1,2 and |T12(t)| < k12 for all ¢ and use the bound
1ZO)||r 1272 @)l F < /2 + K2, K2, where K = e?/a (see Lemma 3.1).

Then we have a bound |sin(6(t))| < p = 2Kw, where (i) |sin(6(t))| = |Q12(t)]
and w = écond(Z) with the diagonalizing transformation approach, and (ii) | sin(6(¢))|
= @12 (t)] and w = § with the triangular approach, provided that in these two cases
we have

VIFIME -1 1
4.2 i D= .
(4.28) () w<wr = SrGME 1) cond(2)
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and

. V1+4M/(Kk2,) — 1
4.29 = 12
(4.20) (i) w<w? Ty
respectively.

Since for £ > 0, 1+ 2/2 —2?/8 < /1 +z < 1+ /2, using cond(Z) < 2+ K?k3,,
we have

(4.30) MA=-ME) ___ b M < !
' 2MEK + Dcond(2Z) ~“* = 2MK + Decond(Z) ~ 2Kcond(Z)
and
1 o M _ 1—M/(K’€%2) T M/(K’Q?Q)
4K2I{12 K/i%Q o 4K2l€12 + 4MK//€12
1 1
(4.31) = <

4K2K12 ~ 4K \/cond(Z) — 2
Quite clearly, the triangular approach gives much improved bounds.

4.3. Bounding the K;;’s. In light of Remark 4.1(c), besides the size of the
perturbation of B, the quantities needed to apply Lemma 4.1, the x;;’s that measure
the nonnormality and the Kj;;’s that measure the integral separation, can be obtained
from the computed solution. To this end we consider now how to obtain bounds for
the K;;’s. We consider two approaches.

The first approach follows ideas developed in [8] using Steklov averages; see also
Adrianova [1, Lemma 5.4.1]. In particular, for ¢ < j set

p(t) := Bii(t) — Bjj;(t)
and for some H > 0 consider finding the quantities ¢(H) (positive) and M:

1 t+H
(4.32) ¢(H) = inf —/ p(r)dr >0, M =infp(t).
t H J, t

We have the following result.
LEMMA 4.3. For a:=c¢(H) >0, and a positive integer N, let

N
d:= {Z(C(H) — c(H/2")) - (H/Qk)} +(c(H) = M) - (H/2V) > 0.

k=1

Then, fort > s, we have

¢
(4.33) / p(r)dr > a(t —s) — d.
Proof. That d > 0 follows from
c(H) > c(H/2) > c(H/4) > - > c(H/2V) > M.

If t — s = jH for some positive integer j, then

/ p(r)dr > c(H) - (t—s) >a(t—s)—d
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since d > 0. Otherwise, t —s = jH + (t —s— jH) with0 < (t —s —jH) < H, and
for v, € {0,1} we can write

N
t—s—jH = {HZ’Yk/Qk}er,

k=1

where 0 < 2 < H/2N.
t N

/ p(r)dr > jH - ¢(H) Jr{HZ'yk?k . c(H/Qk)} +z-M
s k=1

N
=c(H) - (t—s)+ (JH — (t — s))c(H) +{H2’yk/2k . c(H/2k)}+x -M
k=1
>a(t—s)—d. g
(4.34)
Recalling (4.2), based on the above lemma, we may use
Kij = ed/a.

Of course, the K;;’s are still functions of H: K;;(H). The idea now is to use for K;;
the minimum value of K;;(H) subject to maintaining ¢(H) > 0.

We also develop an alternative approach that is a simplification of Lemmas 4.1
and 4.2 of [17]. This alternative approach may yield better bounds on the Kj;;’s.

As before, for all ¢, let p(t) = By;(t) — Bj;(t), i < j. Consider a discretization of
the interval [0, T):

O=tog<ti<---<ty=T.

LEMMA 4.4. Let € > 0 be given. There exists a, > 0 and d > 0 such that for
lp <5 <tgt1,

tht1
(4.35) / p(r)dr > ag(tp+1 — s) — di,
where for hy, = tg41 — tr and for
) 1 tht1
(4-36) Y, = tkgr?gl%”l m /S p(T)dﬂ
(4.37) o ehy ', hpYi <e, g ] e Y i <e
. g Y, hYr >, g 0, hipYi >e,
and
T N-1 —Yih €
(4.38) / R G R P it i ) Gl
0 k=0,dp=0 Vi €
N-1
(4.39) xS e X et = (T,
k:O,ak:ehgl
where
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Proof. Tf hYy < €, then for ap = €/hy, dy = € — Yy > 0, and s € [tg, tir1],

trt — hY;
[ p0r > =) = eas) | 1= = D > (e hani
s k k k

(4.40)
If hiYy > €, then for ap, = Yy, di, = 0, and s € [tg, tgt1],

tht1
(4.41) / p(r)dr > (tgy1 — 5)Yi = ar(tg+1 — ).
The proof of (4.38) is then a direct consequence of the estimate

r o o, NZl et T
/ e TP = $ / o= I7 p(r)dr g
0 k=0 7tk

N—-1

tht1 _ t
— §: / e {{:le p(r)ererV:k}H . “z+1 p(’r‘)dT] ds
k=0 Y1k
N-—1 thi1
< e*[sz\;lﬂxl}/ e~k (thr1—8)+dy Jo
k=0 bk
N-—1 d
N-1 ek
= e (2 Xi] — (1 — emarhr), d
af
k=0

Observe that the bounds (4.38) can be used to obtain bounds on the Kj;;’s in
(4.2) by setting K;; = sup, K (t).

5. Example. Here we illustrate our results, in particular the effectiveness of the
bounds on the error in the orthogonal matrix function @, in the following example, also
considered in [11]. We report only on the improved bounds obtained when handling
directly the triangular term.

Let B(t) = D(t) + U(t) be the upper triangular matrix function with

(5.1) D(t) = diag(D11(t), D22(t), D3s(t), Daa(t)),

where we take D1 (t) = 10+ sin(t), Das(t) = ( cos(t), D33(t) = A — (cos(t), Daa(t) =
—10 + sin(t), ¢ > 0, and

0 cos(t) sin(t) C?S(t)
= R O
0 0 0 0

The parameter x changes the degree to which there is nonnormality in the upper
triangular part, and the parameters A and ¢ determine the degree of integral separa-
tion in the system. For simplicity, in our experiments below we fix A = —5, and all
computations refer to this case.

Form the matrix function

At) = Q)B(H)QT (1) + Q(HQT (1),
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TABLE 5.1
Error in the approrimate QQ varying the degree of nonnormality and integral separation, method,

and tolerance.

T =10% XA = —5, TOL = 1.E-6.

[ K [ ¢ H Method [ Error “ Method [ Error ]
0 1 Cont QR 6E-7 Disc QR 7TE-8
0 2 Cont QR 6E-7 Disc QR 1E-7
0 4 Cont QR 3E-6 Disc QR 5E-7
1 1 Cont QR 6E-7 Disc QR 7TE-8
1 2 Cont QR 6E-7 Disc QR 1E-7
1 4 Cont QR 2E-6 Disc QR 5E-7
10 1 Cont QR 6E-7 Disc QR 1E-7
10 2 Cont QR 6E-7 Disc QR 2E-7
10 4 Cont QR 9E-6 Disc QR 5E-7
100 | 1 Cont QR | 5E-6 Disc QR | 4E-7
100 2 Cont QR TE-6 Disc QR 4E-7
100 | 4 Cont QR 1E-4 Disc QR 2E-6

where

Q(t) = diag(1, Qp(t), 1) - diag(Qy(t), @y (1))

and

Q4 (1) = ( o) Sm(yt)) cn=1, B=V2.

—sin(yt) cos(vyt)

Results for this problem were obtained using the code LESLIS, which we developed
(see www.math.gatech.edu/~dieci and www.math.ku.edu/~evanvleck).

In particular, we employ the continuous QR method (Cont QR in Table 5.1) using
the projected fifth order scheme (IPAR(8)=0 in LESLIS) with local error control on
the orthogonal factor @@ (IPAR(10)=1 in LESLIS), and the discrete QR method (Disc
QR in Table 5.1) with a fifth order scheme (IPAR(8)=4 in LESLIS), with local error
control on the Lyapunov exponents (IPAR(10)=0 in LESLIS). TOL is the value of the
local error tolerance, and we used TOL = 1.E-6 throughout. Before reporting on the
results, we remark that (see (2.11)) we expect to have w to be about the same as TOL.
In other words, the bound on the norm of the perturbation term F' in Lemma 4.1 is
essentially TOL. In Table 5.1 we tabulate the actual error for different methods and
varying  and ¢ values. We report on the error in @ in the two norm (the largest
singular value of the error) at grid-points. Exponential notation is used throughout.

We further compare the actual error with the error bounds obtained in the previ-
ous sections. Although the quantities needed to determine the bounds, p;; = a;; Kjjw,
on |@” (t)], in particular the a;;, are somewhat difficult to give in closed form, the
recursion (4.3) is straightforward to code. Likewise, the formula for wy, given by
(4.4) with (4.18), (4.19), and (4.20), are functions of the K;;, the measure of integral
separation, and the k;;, the measure of nonnormality. For this problem, we have
K11 = Kaa = 11, Koo = (, k33 = ||+ (, and k;; = & for ¢ < j.

We have, for A = —5 and ¢ < V24, K15 = Koy = 1/(10 — /14 (?), K13 =
1/(15 — \/1+<2), K34 = 1/(5 — \/1+<2), and K4 = 1/20 If C < 5/27 then
Ko3 = 1/(5—2¢). We next focus on determining bounds on Ks3 using Lemmas 4.3
and 4.4 when ¢ > 5/2.
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TABLE 5.2
Bounds on Ka3 obtained using Lemmas 4.3 and 4.4.

K>3 bounds for T = 10%, A = —5, and ( = 4.

[ N [[ K23 w/ Lemma 4.3 [ Koz w/ Lemma 4.4 (h = /2, e =1078) |
0 2.1E5 3.0E4
1 1764 2.1E2
2 3.9E4 9.0E1
3 33E4 51EL
1 38E4 1161
5 3.8E4 3.9E1
6 3.8E4 38E1

We have p(t) := Daa(t) — D33(t) = 5+ 2¢ cos(t). To employ Lemma 4.3 we have

ed(H) N
Gk d(H) = 4¢ {H/2N+1 + ) sin(H/2M) — sin(H/2)}

k=1

(5.3)  Kas(H) =

c

for H sufficiently large so that ¢(H) = 5 — 4¢sin(H/2)/H > 0. For different values
of N we can determine, at least approximately, optimal values of H. When using
Lemma 4.4, and in the notation used there, we set h = h;, = /2" for integer
N > 0. When p(t) is decreasing, Y = 5 + 2¢ cos(tr+1), and when p(t) is increasing,
Y = 5+ 2([sin(tg+1) — sin(ty)]/h.

In Table 5.2 we tabulate bounds on Ks3 found using Lemmas 4.3 and 4.4 for
different values of N. In the case of Lemma 4.3, N refers to discretization of the
Steklov window length as in (5.3), while in the case of Lemma 4.4, N refers to the
fineness of the discretization of [0, 7] (h = 7/2"). We will use the best of the bounds
found to determine bounds on the error in Q.

By Corollary 4.2 we have ||Q(tr) — Qk|| & 2p1+ p2, and we recall that p; < a; K;w,
i = 1,2. For convenience, in Table 5.3 we report on the estimates for p; and po
obtained by using these bounds and those for «;, K;, ¢ = 1,2, for different values of
and (.

At this point, we make an important observation: If we use w = TOL in the
expressions obtained for p1 and ps in Table 5.3, and use 2p1 + p2 as a measure of the
true global error, then we observe that the observed true global error is always below
the theoretical estimate. This is actually an important fact, since it is not easy to
know exactly the value of w. At the same time, this is not entirely rigorous, since we
can use 2p; + p2 as a measure of the global error only if w < wy. For this reason, we
also estimated w4 using the approximations to as, a1, ap in (4.27).

For the example we are considering, kp := sup, , | B;;(t)| = 11. In the last column
of Table 5.3 we record this estimated value of [(2kp + k)a? KZ] 71, which serves as the
estimate of wy (see the discussion after (4.27)).

Now, by comparison of the true errors obtained in Table 5.1, using the estimates
for wy from Table 5.3, and still adopting the rationale that w = TOL, we see that the
results for Kk = 0, Kk = 1, or kK = 10 and { # 4 in Table 5.3 validate that w < wy.
To further corroborate this fact, we notice that for these value of k, the error bounds
obtained are in good agreement with the actual errors observed and recorded in Tables
5.1 and 5.3. For x = 10% or x = 10 and ¢ = 4 the bounds obtained do not appear to
be sharp, in the sense that it becomes increasingly difficult to satisfy the hypothesis
w < wT that is necessary to apply Lemma 4.1 and Corollary 4.2.
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TABLE 5.3
Bound on the error in Q is dominated by p1 = a1 Kjw.

Bounds obtained for the example with A = —5.

’ K ‘ ¢ H p1/w ‘ p2/w ‘ (201 + p2)/w ‘ wi = [(26p + K)FKF] ! ‘
0 1 6.6E-1 | 2.3E-1 1.6E0 8.5E-2
0 2 2.0E0 2.6E-1 4.3E0 2.6E-2
0 4 7.4E1 3.4E-1 1.5E2 2.7TE-4
1 1 8.0E-1 | 2.4E-1 1.9E0 6.5E-2
1 2 2.4E0 2.7E-1 5.1E0 1.9E-2
1 4 9.4E1 3.6E-1 1.9E2 1.1E-4
10 1 2.6E0 3.5E-1 5.6E0 8.3E-3
10 2 8.2E0 3.9E-1 1.7E1 1.3E-3
10 4 3.6E2 5.1E-1 7.2E2 7.6E-7
102 1 7.7TE1 1.4E0 1.6E2 1.6E-6
102 2 2.5E2 1.5E0 5.0E2 1.6E-7
102 4 1.2E4 2.0E0 2.4E4 7.4E-11

6. Conclusions and consequences. We have provided a global error analysis
for the factor @ in the change of variables X = QR of a fundamental matrix solution
for a nonautonomous linear system. Our basic technique consists of a combination
of backward and forward error analyses, and this is seemingly a new approach in the
context of numerical integration.

Several comments are in order.

(1)

Among the noteworthy consequences of a global error analysis for @), probably
the most important one is that it becomes simple to obtain global error state-
ments for all quantities which derive from the simplified triangular structure
of the linear system, e.g., error bounds on the Lyapunov exponents and/or
the Sacker—Sell spectrum.

We have made our analysis for the entire fundamental matrix solution, al-
though at times one is interested in computing the QR-factorization of only
a few of the columns of the fundamental matrix solution: reduced QR-factori-
zation. However, dealing with this case is—in principle—simple, since as a
consequence of the combined backward and forward error analyses for all k
we have

Qr = Q(tr)Q(tr),

RipRi_1...RaR 1 R(to)
= QT (t1)[R(tr, ti—1) + Ei] ... [R(ta, t1) + E3)[R(t1,t0) + E1]R(to)
(6.1) = R(tg,tu—1) ... R(ta, t1)R(t1,t0)R(to).

Thus, multiplying by ((IJ 8), one obtains backward error statements and subse-
quent forward error estimates for the case of the reduced QR-factorization, ob-
taining bounds which cannot be worse than the bounds obtained on the full Q.
We remark that in this work we made use of the assumption of integral sepa-
ration for the linear system. This is reasonable, since this is the generic case.
However, it would be interesting to obtain direct bounds also removing this
assumption, in a similar way to [11, Theorem 4.3].
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(4) For the general case of integration of a matrix equation of the form

¥ = f(t,y), y(to) = yo orthogonal

we note that in order for the solution to remain orthogonal y”'¢ must be skew-
symmetric; hence f(t,y) = y s(t,y), where s(t,y) is skew-symmetric. Ob-
taining a result similar in flavor to Lemma 4.1 would require determining a
splitting

y=yL+yls(t,y) — L], y(to) =1,

where L is such that y[s(t,y) — L] remains small enough for y(¢t) ~ I. In
the specific case considered here the splitting was motivated by integral sep-
aration, a natural property for linear nonautonomous differential equations
= A(t)z, and we took advantage of the fact that the skew-symmetric matrix
function S(Q, A) is linear in A.

Appendix. Here we derive some technical expressions that are useful in proving
Lemma 4.1. In particular, we derive expressions relative to g;; D, Q, )s Qi L(t, Q, w),
and ¢/ (t, Q,w ) in (4.8) that are useful in obtaining the bounds (4 9), (4.10), (4.11) in
the proof of Lemma 4.1. R R R

First, consider q{?(t, Q,w). We have, writing Q(t) = [Q1(t)|- - - |Qn ()],

ZszQk + Z szQk]DQJ

k= ]+1

@lj'{ ZQmQuﬁ- Z QlekH

k=j+1

= Qij[Dii — Dj;] + ZDll

=1

i1 n
AN, l@ij . {1—2@?;# 3 @?k}
k=1

k=j+1
Jj—1 n
—Qij +Qjj { = QuQir+ > QiijkH
k=1 k=j+1
+> Dy |‘@lj : { ZszQlk + Z szQlkH
1#i,5 k=j+1
By orthogonality we have
(A2) 1= Q7 and Qi;Q;;=—Y QuQjr
k=1 ey
so for i < j,

k=j+1

(A.3) — Qi1 - A?]’) +2Qj; Z @ik@jk]
k=j+1
j—1 n
+ Z Dy [@lj ( - Z Qi Qui + Z @ik@lk)] :
I#i,j k=1 k=j+1
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Next, consider the term qiTj(t, @, w). We have for i < j (and similarly for ¢ > j)

g (t,Q,w) — ¢} (t, I, w)= ¢ (t,Q,w) Z )k
j—1 R R N n _A N N
== Qu(Q]TQx) + > Qu(QLTQ;)
k=1 = 1
J—1

= - @1 Z Z leTlkam+ Z szz Z leTlmQJm

=Il+1 k=j+1 =1 m=I+1

= _QuZ Z jlﬂlem

j—1 n n n n n
- Qik Z Z Q_’jlﬂnLka + Z Qik Z Z leﬂm@j?n
k=1,k#i I=1 m=1+1 k=j+1 1=1 m=I+1
n 1—1 n n
==Qii|Qj; > TimQim+Qu > QuTii+ Y > QuTimQim
m=j+1 =1 1=1,1#] m=I-+1,m=#i
7—1
Z zk: Z Z le,I‘lka:m + Z sz Z Z leanjm
k=1,k#1i =1 m=Il+1 k=j+1 =1 m=Il+1

(A4)

. .Finz.m)lly, consider the term qf; (t, @, w). Using (1.5), we have for i < j (and similarly
orv >

j—1

_ZszSQF3k+ Z szSQF)kj+Fj7

= k=j+1

Fji( it Z Q: Q;;)

k#i,k=1

Qi Y. QuFmQumit+ Y. QuS(@Q.F)y
(I,m)#(4,i),1,m=1 k=1,k#i
(A.5)
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