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Abstract

Most of the existing literature on panel data cointegration assumes cross-
sectional independence, an assumption that is difficult to satisfy. This paper
studies panel cointegration under cross-sectional dependence, which is character-
ized by a factor structure. We derive the limiting distribution of a fully modified
estimator for the panel cointegrating coefficients. We also propose a continuous-
updated fully modified (CUP-FM) estimator. Monte Carlo results show that the
CUP-FM estimator has better small sample properties than the two-step FM
(25-FM) and OLS estimators.



1 Introduction

A convenient but difficult to justify assumption in panel cointegration analysis is cross-
sectional independence. Left untreated, cross-sectional dependence causes bias and incon-
sistency estimation, as argued by Andrews (2003). In this paper, we use a factor structure
to characterize cross-sectional dependence. Factors models are especially suited for this
purpose. One major source of cross-section correlation in macroeconomic data is common
shocks, e.g., oil price shocks and international financial crises. Common shocks drive the
underlying comovement of economic variables. Factor models provide an effective way to
extract the comovement and have been used in various studies.! Cross-sectional correlation
exists even in micro level data because of herd behavior (fashions, fads, and imitation cas-
cades) either at firm level or household level. The general state of an economy (recessions
or booms) also affects household decision making. Factor models accommodate individual’s
different responses to common shocks through heterogeneous factor loadings.

Panel data models with correlated cross-sectional units are important due to increasing
availability of large panel data sets and increasing interconnectedness of the economies.
Despite the immense interest in testing for panel unit roots and cointegration,? not much
attention has been paid to the issues of cross-sectional dependence. Studies using factor
models for nonstationary data include Bai and Ng (2004), Bai (2004), Phillips and Sul (2003),
and Moon and Perron (2004). Chang (2002) proposed to use a nonlinear IV estimation to
construct a new panel unit root test. Hall et al (1999) considered a problem of determining
the number of common trends. Baltagi et al. (2004) derived several Lagrange Multiplier tests
for the panel data regression model with spatial error correlation. Robertson and Symons
(2000), Coakley et al. (2002) and Pesaran (2004) proposed to use common factors to capture
the cross-sectional dependence in stationary panel models. All these studies focus on either
stationary data or panel unit root studies rather than panel cointegration.

This paper makes three contributions. First, it adds to the literature by suggesting a
factor model for panel cointegrations. Second, it proposes a continuous-updated fully modi-

fied (CUP-FM) estimator. Third, it provides a comparison for the finite sample properties

'For example, Stock and Watson (2002), Gregory and Head (1999), Forni and Reichlin (1998) and Forni

et al. (2000) to name a few.
Zsee Baltagi and Kao (2000) for a recent survey



of the OLS, two-step fully modified (25-FM), CUP-FM estimators.

The rest of the paper is organized as follows. Section 2 introduces the model. Section
3 presents assumptions. Sections 4 and 5 develop the asymptotic theory for the OLS and
fully modified (FM) estimators. Section 6 discusses a feasible FM estimator and suggests
a CUP-FM estimator. Section 7 makes some remarks on hypothesis testing. Section 8
presents Monte Carlo results to illustrate the finite sample properties of the OLS and FM
estimators. Section 9 summarizes the findings. The appendix contains the proofs of Lemmas
and Theorems.

The following notations are used in the paper. We write the integral fol W(s)ds as
[ W when there is no ambiguity over limits. We define ©2'/2 to be any matrix such that
Q= (Y2 (91/2), . We use || A|| to denote {tr (A'A) }1/2, |A| to denote the determinant of
A, = to denote weak convergence, — to denote convergence in probability, [z] to denote
the largest integer < z, 1(0) and I(1) to signify a time-series that is integrated of order zero
and one, respectively, and BM (€2) to denote Brownian motion with the covariance matrix

Q. We let M < oo be a generic positive number, not depending on 7" or n.

2 The Model

Consider the following fixed effect panel regression:
Yie = Q@ + ﬁxit + €it, 1= 17"'7”7 t= 17"‘7T7 (1)

where y;; is 1 X 1, 8 is a 1 X k vector of the slope parameters, «; is the intercept, and e;; is
the stationary regression error. We assume that x;; is a k x 1 integrated processes of order
one for all 7, where

Tit = Tit—1 + Eit-
Under these specifications, (1) describes a system of cointegrated regressions, i.e., y; is
cointegrated with z;;. The initialization of this system is y;0 = ;0 = O,(1) as T'— oo for all
1. The individual constant term «; can be extended into general deterministic time trends
such as ag; + a1t +, ..., +ay,t or other deterministic component. To model the cross-sectional
dependence we assume the error term, e;, follows a factor model (e.g., Bai and Ng, 2002,
2004):

it = )\;Ft + Wit (2)
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where F} is a r x 1 vector of common factors, ); is a 7 x 1 vector of factor loadings and u;;

is the idiosyncratic component of e;;, which means
E(eacy) = NE (FiF}) A
i.e., e; and ej; are correlated due to the common factors F;.
Remark 1 1. We could also allow ; to have a factor structure such that
€it = ’Y;Ft + Nt

Then we can use Ax; to estimate Fy and ;. Or we can use ey together with Ax; to

estimate Fy, \; and ;. In general, €;; can be of the form
eit = Vit + TGy + 1y,

where Fy and Gy are zero mean processes, and n;, are usually independent over ¢ and
t.

3 Assumptions
Our analysis is based on the following assumptions.
Assumption 1 Asn — oo, %Z?:l )\Z-)\; — X\, ar X r positive definite matriz.

Assumption 2 Let wy; = (Ft/, Ut E;t)/. For each i, wy = IL;(L)vy = Z;io IL;vi—j,

207 IT;]| < oo, |TI(1 0 for some a > 1, where vy s i.i.d. over t. In addition,
7=0 J

Evyy =0, E(vyvly) =3, >0, and E|lvy|]® < M < co.
Assumption 3 F; and u;; are independent; u;; are independent across 1.

Under Assumption 2, a multivariate invariance principle for w; holds, i.e., the partial

1 N7 ; .
sum process = > iy wi satisfies:

[T'r]
1
7T Zwit = B(§;) as T'— oo for all 1, (3)
t=1

3



where

Br
B; = | Bu
B.;
The long-run covariance matrix of {wy} is given by

o0

Q, = Z E(wiow;j)

j=—o0
= IL(1)S, (1)
= Y+ T+ T
Qri Qpui Qe
= Quri Qi Qe
Qeri Qe Qe

where
0o I'ri Tru
=" B (wow,) = | Turi T
7=l FEFi Paui
and
X, =F (wiow;o) = | Yuri Dui
2sFi Esui

are partitioned conformably with w;;. We denote

and

Assumption 4 ), is non-singular, i.e., {x;} are not cointegrated.

Y

|y
Puai
Pai

2Ff:‘i
Eusi
Esi



Define

Oy = RVES
and
Qi = Ui — Qi Q2 Qg
Then, B; can be rewritten as
By 02 Qe | | Vi
BZ = = 1/2 s
where )
B
Bbi = " 5
Bui
%
‘/bi = r )
L Vuz
and
Vi
"1 =BM()

is a standardized Brownian motion. Define the one-sided long-run covariance
A = N+ T
o0
- ZE (wiowm‘)
=0
with

Abi Abai

A =
Asbi Asi

Remark 2 1. Assumption 1 is a standard assumption in factor models (e.g., Bai and Ng

2002, 2004) to ensure the factor structure is identifiable. We only consider nonrandom

factor loadings for simplicity. Our results still hold when the )\;s are random, provided

they are independent of the factors and idiosyncratic errors, and E H)‘iH4 < M.

2. Assumption 2 assumes that the random factors, Fy, and idiosyncratic shocks (uit, E;t)

are stationary linear processes. Note that Fi and € are allowed to be correlated. In

particular, £ may have a factor structure as in Remark 1.

bt



3. Assumption of independence made in Assumption 3 between F, and u; can be relaxed
following Bai and Ng (2002). Nevertheless, independence is not a restricted assumption
since cross-sectional correlations in the regression errors ey are taken into account by

the common factors.

4 OLS

Let us first study the limiting distribution of the OLS estimator for equation (1). The OLS

estimator of [ is

. n T n T , -1
Bors = [ Yir (Tir — ] [ZZ Ty — ;) (Tie — T )] : (6)
i=1 t=1

i=1 t=1

Theorem 1 Under Assumptions 1 — 4, we have

\/HT (EOLS - 6) - \/ﬁ5nT = N (0, 695_1 { le % Z?:l ()‘;QF.si)\ngi + Qu.EiQEi) } Qs_l) :

n—oo
as (n,T — oo0) with % — 0 where

[Z)\ (QF 0L/ ( / de) UL AF&) + Q.00 < / V[N/;dWi') O 4 A
T

1 1

—Z—Z Tt — i) (T — Ti)

[n =1 T2 t=1

W, =W, — S Wi and Q. = lim: Y " Q..

Remark 3 [t is also possible to construct the bias-corrected OLS by using the averages of
1 -1
()
6
1 i 1 (XQ 4+ Q ')+XA ol (fa)
n K 9 S EFes UET = Fei UL 6 e
1 -1
= - —= | A0 et Quaz )‘ A et Auez =
<ng()F+Z +Z F+Z )()

6

the long run covariances. Note

A 1
E [6nT] =~ Z )\Z <_§QF5i + AFEZ) - iguaz + Ausi
i=1




It can be shown by a central limit theorem that
\/ﬁ(énT —F [6nT]) =N (0, B)
for some B. Therefore,

VAT (Bors = B) = VA b.1]
( — ) = Vb + Vi (Our = E [bur])

for some A.

5 FM Estimator

Next we examine the limiting distribution of the FM estimator, B ru- The FM estimator
was suggested by Phillips and Hansen (1990) in a different context (non-panel data). The
FM estimator is constructed by making corrections for endogeneity and serial correlation to
the OLS estimator /6\0 Ls in (6). The endogeneity correction is achieved by modifying the

variable y;; in (1) with the transformation
yr = i — ()\;QF&' + Qusi) Q;ilﬁﬂﬁit-
The serial correlation correction term has the form

A+

bei

-1
= Apei — Dei 2 A,

+
AFE’L

A+

UEL

Therefore, the infeasible FM estimator is

Brar = [i (i v (e —T) =T (A;ARZ + AL))] [i > (i —T) (i — T)

i=1 t=1

Now, we state the limiting distribution of 3 M-



Theorem 2 Let Assumptions 1 —4 hold. Then as (n,T — oo) with % — 0

VAT (B = 8) = N (o, 60:! { lim 2_; (NSreihife + Quciler) } Q;1> .

Remark 4 The asymptotic distribution in Theorem 2 is reduced to

if the long-run covariances are the same across the cross-sectional unit i and r = 1.

6 Feasible FM

In this section we investigate the limiting distribution of the feasible FM. We will show that
the limiting distribution of the feasible FM is not affected when A;, €0.;, Qi, Qe, and Ay
are estimated. To estimate )\;, we use the method of principal components used in Stock and
Watson (2002). Let A = (A1, Az, ...,/\n), and F = ([}, Fs, ...,FT),. The method of principal
components of A and £’ minimizes
n T
Vi(r)= % 2 ; (@-t — )\;Ft)2
where
€t = Y — Q; — Bﬂfz‘t
= (e —T) — B (a — T),
with a consistent estimator B Concentrating out A and using the normalization that
F/F/ T = I,., the optimization problem is identical to maximizing tr (F' (Z Z ') F) , where
7Z = (ey,es,...,6,) is T x n with &; = (€1, €59, ...,é}T)/ . The estimated factor matrix, denoted
by F . a T x r matrix, is v/T times eigenvectors corresponding to the r largest eigenvalues of
the T' x T matrix ZZ , and
v o\ —1 A
N o= (F ) Fz
Fz

T
8



is the corresponding matrix of the estimated factor loadings. It is known that the solution
to the above minimization problem is not unique, i.e., A\; and F; are not directly identifiable
but they are identifiable up to a transformation H. For our setup, knowing H\; is as good
as knowing );. For example in (7) using \;A} 5o; will give the same information as using
MNH H' 'A%, since Af_, is also identifiable up to a transformation, i.e., N\H H 1AL =
)\;A};m. Therefore, when assessing the properties of the estimates we only need to consider
the differences in the space spanned by, say, between XZ and A;.
Define the feasible FM, EFM, with XZ-, E, EAJi, and (AZZ in place of \;, F}, ¥;, and €2;,

n T -1
Bras = [Z (Zﬂf{ (i — i) (A Al +AI&)>] [ZZ v —T) (wq —T) |,
i=1 \t=1 i=1 t=1

where

T = vu— (A + Q) 051 A

and AL and A are defined similarly.

Assume that ; = Q for all 7. Let

e; = e — ()\;QFE + Qua) leAxit,

bsn = E :Absw
and

ban - E :Absz



Then

T
{ (Zé\z—; Tit — - Tg&n) - (Z 6;; (‘Iit - ) TA&n) }
=1 t=1 t=1

fT >
TLT2 Z Z Tit — xzt T; >/

=1 t=1

_ Wﬁ:(z o = i) (ea—7) =T (B, - Agm))]

t=1

n T -1
1 — )/
zzt - $2 zzt — I .
n1? 4
i=1 t=1

Before we prove Theorem 3 we need the following lemmas.
Lemma 1 Under Assumptions 1-4 \/_( o Ag;n) = 0,(1).

Lemma 1 can be proved similarly by following Phillips and Moon (1999) and Moon and
Perron (2004).

Lemma 2 Suppose Assumptions 1-4 hold. There exists an H with rank r such that as

(n, T — 00)
RS 2 1
el o, ()
i=1 nT

(1)
(ii) let ¢; (i = 1,2,...,n) be a sequence of random matrices such that ¢; = Opy(1) and

%Z?:l ci]|? = Op(1) then

%i (% - H)\Z-)/ci ~0, <52i)

=1 nT
where ,7 = min {\/ﬁ, \/T} )

Bai and Ng (2002) showed that for a known e; that the average squared deviations

between XZ and H\; vanish as n and T both tend to infinity and the rate of convergence is

10



the minimum of n and 7. Lemma 2 can be proved similarly by following Bai and Ng (2002)

that parameter estimation uncertainty for S has no impact on the null limit distribution of

~

i

Lemma 3 Under Assumptions 1-/
ZZ % — i) (e~ 1) = 0,(1)
=1 t=1

as (n,T — o0) and # — 0.
Then we have the following theorem:

Theorem 3 Under Assumptions 1-4 and (n,T — o00) and # — 0
VnT (BFM - 5FM) = 0p(1).

In the literature, the FM-type estimators usually were computed with a two-step pro-
cedure, by assuming an initial consistent estimate of (3, say Bo rs- Then, one constructs

~ ~(1
estimates of the long-run covariance matrix, Q) and loading, A, ). The 25-FM, denoted

7

~(1 o~ ~(1
ﬁés) is obtained using Q) and )\< :

~(1) N A1)
625 - Z (Z Yir xlt - ’IZ) =T <)‘ A;sz + A:sz ))]

Li=1 t=1

ZZ v — Ti) (T — Ti)

Li=1 t=1

-1

(8)

In this paper, we propose a CUP-FM estimator. The CUP-FM is constructed by estimating
parameters and long-run covariance matrix and loading recursively. Thus B FMs Q and \;
are estimated repeatedly, until convergence is reached. In the Section 8, we find the CUP-
FM has a superior small sample properties as compared with the 2S-FM, i.e., CUP-FM has
smaller bias than the common 2S-FM estimator. The CUP-FM is defined as

gCUP = _Z (Z Yit (BC’UP) (i — ) -T (X; (BC’UP) 3;52 (BC’UP) + &ng (BCUP)))]

Li=1

ZZ Ty — T;) (g — x)l] ) 9)

Li=1 t=1

11



Remark 5 1. In this paper, we assume the number of factors, r, is known. Bai and Ng

7

(2002) showed that the number of factors can be found by minimizing the following:

1C(k) = log (V (k) + k (”;—TT> log (n”fT) .

!

. ~ N o~ ’ .
2. Once the estimates of wy, Wy = (Ft, Uy, A xit) , were estimated, we used

to estimate Y, where

Q was estimated by
1 1 1 d
0=-%" {? ; Duily + > 27;1 (@it@t_f + @t_@it) } . (1)

where wy; is a weight function or a kernel. Using Phillips and Moon (1999), iz and

ﬁi can be shown to be consistent for ¥; and §2;.

Hypothesis Testing

We now consider a linear hypothesis that involves the elements of the coefficient vector 3. We

show that hypothesis tests constructed using the FM estimator have asymptotic chi-squared

distributions. The null hypothesis has the form:

H(J : Rﬁ =T, (12)

where r is a m X 1 known vector and R is a known m X k£ matrix describing the restrictions.

A natural test statistic of the Wald test using E Fu s

W = 1nT2 (RBFM — r)/

-1

6

=1

12



It is clear that W converges in distribution to a chi-squared random variable with &
degrees of freedom, 2, as (n,T — oo) under the null hypothesis. Hence, we establish the

following theorem:

Theorem 4 If Assumptions 1—4 hold, then under the null hypothesis (12), with (n, T — ),
W = Xz,

Remark 6 1. One common application of the theorem 6 is the single-coefficient test: one
of the coefficient is zero; B; = f,

R=[00 - 10 0]

and r = 0. We can construct a t-statistic

_ VnT (BjFM - 50)

t; - (14)
J
where
SJQ. = [6@;1 { lim l Z (XZQFEZXZQEZ + Quszﬁal) } Qg_l )
= ji
the jth diagonal element of
~ 1 e /A o~ o~ o~ ~
60" 4 lim = 3 (3,0 + 0280 £ O
o { 5 ({00 + 0t 2
It follows that
t;= N(0,1). (15)

2. General nonlinear parameter restriction such as Hy : h(3) = 0, where h(-) is k* x 1
oh
a8
fashion as in Theorem 6. Thus, the Wald test has the following form

vector of smooth functions such that has full rank k* can be conducted in a similar

Wy, = nT?h (BFM>/ Vh_lh (6FM>

where
-1 ah@FM) -1
Vi = ——= VB
B

oh (e
Tor)

13



and

~ ~ 1 G o~ o~ ~
— -1 i — E ) . . ). -1
Vg = 695 {nh—{gon £ (AZQF.sz)\Qszz + Qu.52962> } Qs : (16)
It follows that

Wi, = X3

as (n, T — 00).

8 Monte Carlo Simulations

In this section, we conduct Monte Carlo experiments to assess the finite sample properties of
OLS and FM estimators. The simulations were performed by a Sun SparcServer 1000 and an
Ultra Enterprise 3000. GAUSS 3.2.31 and COINT 2.0 were used to perform the simulations.
Random numbers for error terms, (F}',u},c},) were generated by the GAUSS procedure
RNDNS. At each replication, we generated an n(7" + 1000) length of random numbers and
then split it into n series so that each series had the same mean and variance. The first
1,000 observations were discarded for each series. {F;}, {u};} and {e},} were constructed
with F}" =0, uj; = 0 and €}, = 0.

To compare the performance of the OLS and FM estimators we conducted Monte Carlo

experiments based on a design which is similar to Kao and Chiang (2000)
Yie = @ + Pra + e

!
it = NIy 4 Uy,

and

Tit = Tip—1 1 Eit

fori=1,...n,t=1,...,T, where

F, Fy 0 0 0 Fy,
wr | = w |+ 0 03 —04 W, (17)
Eit 62} 931 932 0.6 5;}_1

14



with

Ft* 0 1 o012 o013
tid

U;kt ~ N 0 5 021 1 0923

62} 0 031 0392 1

For this experiment, we have a single factor (r = 1) and \; are generated from i.i.d.
N(uy,1). We let uy = 0.1. We generated «; from a uniform distribution, U[0, 10], and set
£ = 2. From Theorems 1-3 we know that the asymptotic results depend upon variances and
covariances of F; u; and €;. Here we set 012 = 0. The design in (17) is a good one since the
endogeneity of the system is controlled by only four parameters, 031, 035, 031 and o33. We
choose 03, = 0.8, 035 = 0.4, 031 = —0.8 and 3, = 0.4.

The estimate of the long-run covariance matrix in (11) was obtained by using the proce-
dure KERNEL in COINT 2.0 with a Bartlett window. The lag truncation number was set
arbitrarily at five. Results with other kernels, such as Parzen and quadratic spectral kernels,
are not reported, because no essential differences were found for most cases.

Next, we recorded the results from our Monte Carlo experiments that examined the
finite-sample properties of (a) the OLS estimator, BOLS in (6), (b) the 2S-FM estimator,
Bys, in (8), (c) the two-step naive FM estimator, BI; 1> broposed by Kao and Chiang (2000)
and Phillips and Moon (1999), (d) the CUP-FM estimator B¢y p, in (9) and (e) the CUP
naive FM estimator Ei as Which is similar to the two-step naive FM except the iteration
goes beyond two steps. The naive FM estimators are obtained assuming the cross-sectional
independence. The maximum number of the iteration for CUP-FM estimators is set to 20.
The results we report are based on 1,000 replications and are summarized in Tables 1 - 4.
All the FM estimators were obtained by using a Bartlett window of lag length five as in (11).

Table 1 reports the Monte Carlo means and standard deviations (in parentheses) of
(BOLS - 5) ) (325 - 5) ) (BI;FM - 5) ) (ECUP - 5) ,and (BdFM - 5) for sample sizes T' = n
= (20,40, 60) . The biases of the OLS estimator, /Bo Lg» decrease at a rate of T'. For example,
with oy =1 and or = 1, the bias at T'= 20 is —0.045, at T' = 40 is —0.024, and at T' = 60

is —0.015. Also, the biases stay the same for different values of o) and op.

TABLE 1 ABOUT HERE
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While we expected the OLS estimator to be biased, we expected FM estimators to produce
better estimates. However, it is noticeable that the 2S-FM estimator still has a downward
bias for all values of o) and op, though the biases are smaller. In general, the 25-FM
estimator presents the same degree of difficulty with bias as does the OLS estimator. This
is probably due to the failure of the nonparametric correction procedure.

In contrast, the results in Table 1 show that the CUP-FM, is distinctly superior to the
OLS and 2S-FM estimators for all cases in terms of the mean biases. Clearly, the CUP-FM
outperforms both the OLS and 2S-FM estimators.

TABLE 2 ABOUT HERE

It is important to know the effects of the variations in panel dimensions on the results,
since the actual panel data have a wide variety of cross-section and time-series dimensions.
Table 2 considers 16 different combinations for n and 7', each ranging from 20 to 120 with
o31 = —0.8, 091 = —0.4, 6331 = 0.8, and #y; = 0.4. First, we notice that the cross-section
dimension has no significant effect on the biases of all estimators. From this it seems that in
practice the 7" dimension must exceed the n dimension, especially for the OLS and 25-FM
estimators, in order to get a good approximation of the limiting distributions of the estima-
tors. For example, for OLS estimator in Table 2, the reported bias, —0.008, is substantially
less for (7"=120,n = 40) than it is for either (7= 40,n = 40), (the bias is —0.024), or
(T = 40,n = 120), (the bias is —0.022). The results in Table 2 again confirm the superiority
of the CUP-FM.

TABLE 3 ABOUT HERE

Monte Carlo means and standard deviations of the t-statistic, tg—g,, are given in Table
3. Here, the OLS t-statistic is the conventional ¢-statistic as printed by standard statistical
packages. With all values of oy and o with the exception o) = /10, the CUP-FM t-statistic
is well approximated by a standard N(0,1) suggested from the asymptotic results. The CUP-
FM t-statistic is much closer to the standard normal density than the OLS t-statistic and
the 25-FM t-statistic. The 2S-FM t-statistic is not well approximated by a standard N(0,1).

16



TABLE 4 ABOUT HERE

Table 4 shows that both the OLS t¢-statistic and the FM t-statistics become more nega-
tively biased as the dimension of cross-section n increases. The heavily negative biases of the
2S-FM t-statistic in Tables 3-4 again indicate the poor performance of the 2S-FM estimator.
For the CUP-FM, the biases decrease rapidly and the standard errors converge to 1.0 as T’
increases.

It is known that when the length of time series is short the estimate Q in (11) may be
sensitive to the length of the bandwidth. In Tables 2 and 4, we first investigate the sensitivity
of the FM estimators with respect to the choice of length of the bandwidth. We extend the
experiments by changing the lag length from 5 to other values for a Barlett window. Overall,
the results (not reported here) show that changing the lag length from 5 to other values does

not lead to substantial changes in biases for the FM estimators and their ¢-statistics.

9 Conclusion

A factor approach to panel models with cross-sectional dependence is useful when both the
time series and cross-sectional dimensions are large. This approach also provides significant
reduction in the number of variables that may cause the cross-sectional dependence in panel
data. In this paper, we study the estimation and inference of a panel cointegration model
with cross-sectional dependence. The paper contributes to the growing literature on panel
data with cross-sectional dependence by (i) discussing limiting distributions for the OLS and
FM estimators, (ii) suggesting a CUP-FM estimator and (iii) investigating the finite sample
proprieties of the OLS, CUP-FM and 2S-FM estimators. It is found that the 2S-FM and
OLS estimators have a non-negligible bias in finite samples, and that the CUP-FM estimator

improves over the other two estimators.
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Appendix

Let

i=1 t=1

Byr = [iz Tt — (o — T4 )/] )
Note
VAT (Bors = 8
= [\/5% > i (% Zthl eit (Tit — fz))] [
= [\/ﬁ% Z?:l CliT} [% Z?:l C2iT]_1
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Einr = 2 300 Cuary and Egpp = 2 37 . Before going into the next theorem, we need to
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consider some preliminary results.

Define Q. = lim ZZ 1 Q. and

n—>oo

1 “ ! — — = ’
= [Z A (QFH % ( / Waaw, ) 0L+ Am) + Qe ( / WidWi) 0l + A
=1

If Assumptions 1 — 4 hold, then

Lemma 4 (a) As (n,T — o0),
11 ,

EﬁBnT — QE.

[ N

(b) As (n,T — oo) with % — 0,

T n
< Z Z €it xzt - ‘971) = N (07 énh—{lolo% Z {)‘;QFsz)‘sz + QuszQEz})

=1 t=1 =1
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Proof. (a) and (b) can be shown easily by following the Theorem 8 in Phillips and
Moon (1999). &

A Proof of Theorem 1

Proof.
Recall that

_ S ( Qe ([ WadW ) Q2 4+ Ap
VnT (BOLS - 5) —/nt [ 1+Q€<ui£5i1/2 (f T(/VZdVVZ> 922/2 N Aim F )

[ Bur]

n CliT A QFEZ 12 f WdW Ql/2 + AFsi n 1
= \/ﬁ% Zi:l { Qu(aiQEil/2 (f V(VZdVVZ> Qi)Z/Q N AUEi ) [l ZZ 1 CQ’LT]

- [\/ﬁ% Z:‘L:l Gz‘T] [% Z?:l szT] -

- \/ﬁg{nT [52nT]_1

where

CLT = CliT )\ (QFEZ 1/2 (/ WdW) Ql/2 + AF&) Qusg 1/2 (/WdW) 91/2 + Aua

and

Y

1 n
{lnr = n Z Clir-
i=1
First, we note from Lemma 4 (b) that

n

Vg = N (o, é lim > { N0+ QQ})

1=

(n,T — o00) and % — 0. Using the Slutsky theorem and (a) from Lemma 4, we obtain

R
* -1 = -1 e E i 2.0 . O . -1
\/ﬁglnT [SQnT] N (07 695 {1}1—{2077, : (AZQF.E’L)\ZQE’L + QU.E’LQEZ> } Q ) .

€
i=1
Hence,

VAT (Bors = 8) = vidur "
= N (0,6Q! {nh_{gloé S ()\;QF.si)\iQsi + Qu.sz’Qsz‘) } Qs_1> ; 1)
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proving the theorem, where

SN (QF a;? </de) 1/2+Ang) + 0,057 (/ VAVZdWG/)
=1

11 -

[WB"T] '

Therefore, we established Theorem 1. W

B Proof of Theorem 2

Proof. Let
El =F — QpaQ5 eu,

and

+ _ —1
gy = Ui — Quei€d; €t

The FM estimator of 5 can be rewritten as follows

Bea = | Xin (SLvd (e —7) =T (WAL, +AL) )| Bt

= B+ [T (S0 (NFF + ) (@ —3) =T (NAL + AL) )| B

First, we rescale (B AL 6) by /nT

9;/2 + Ausi

(19)
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where (ip = % 25:1 [()‘zFﬁL + ﬂ;@) (i — ) A A;m - A;rez} ,and £1p = w 2ic1 Clir-
Modifying the Theorem 11 in Phillips and Moon (1999) and Kao and Chiang (2000) we

can show that as (n,T — oo) with & — 0
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and

( ZZ( (ie = Aim)) = N (0 ET}LIEOnZQWQ“)

=1 t=1
and combing this with the Assumption 4 that F; and u; are independent and Lemma 4(a)

yields

JAT (BFM B 5) LN (07 60! {7}1_{20711 i ()\;QF.EMZ'QEZ‘ + Qu.sngi) } Q;1>
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as required. W

C Proof of Lemma 3

Proof. We note that \; is estimating H \;, and (AZF€ is estimating H -1'Q) re. Thus XZKAZ Fe 18
estimating )\;Q r=, which is the object of interest. For the purpose of notational simplicity,

we shall assume H being a r X r identify matrix in our proof below. From

/6\;; = €t — (XZQFE + ng) Q;lAl‘it

and
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Then,
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because

and

Thus
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The remainder of the proof needs to show that
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We write A for Q07! and A for Qp. Q2! respectively and then

!

E:E:(AQ&Q‘ A0 )Aﬁdﬁt )

=1 t=1

_ %%ZZ()\A %.3) A (1 - 72)
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1T sy

Term [ is a row vector. Let I; be the jth component of /. Let ¢; be the jth column of
an identity matrix so that ¢; = (0,...,0,1,0,...0)". Left multiply I by ¢; to obtain the jth

component, which is scalar and thus is equal to its trace. That is

n T

)\;szt xzt ) g)w)]
i=1 t=1

because J=4 S ST NAmy (i — ) (A = Op(1) and A — A = g,(1).
Next con81der II. Let ¢; = ﬁ% S Az (zy —T;) . Then ¢; = O,(1) and L3 ell? =
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O,(1), thus by Lemma 2 (ii), we have

17 <

({T)
o) els

= op(1)

since (n,T — o) and % — 0. This establishes

n T
L% ZZ (A;QFEle )\ QFEQ ) Axy (i — T ), = Op(l)'
i=1 t=1

and proves Lemma 3. B
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Table 1: Means Biases and Standard Deviation of OLS and FM Estimatc

o)\ = 1 o)\ = \/m

OLS FM® FM? FM¢ FM? OLS FM® FM? FM¢ FM¢ OLS F

Op = 1
T=20 -0.045 -0.025 -0.029 -0.001 -0.006 -0.046 -0.025 -0.029 -0.001 -0.006 -0.045 -0
(0.029) (0.028) (0.029) (0.034) (0.030) (0.059) (0.054) (0.059) (0.076) (0.060) (0.026) (0.
T=40 -0.024  -0.008 -0.011 -0.002 -0.005 -0.024 -0.009 -0.012 -0.003 -0.005 -0.024 -0
(0.010)  (0.010) (0.010) (0.010) (0.010) (0.020) (0.019) (0.019) (0.021) (0.018) (0.009) (0.
T=60 -0.015 -0.004 -0.005 -0.001 -0.003 -0.015 -0.003 -0.005 -0.001 -0.002 -0.015 -0
(0.006) (0.005) (0.005) (0.005) (0.005) (0.011) (0.010) (0.010) (0.011) (0.010) (0.005) (0.

o = \/E
T=20 -0.054 -0.022 -0.036 0.011 -0.005 -0.057 -0.024 -0.038 0.013 -0.003 -0.054 -0
(0.061) (0.054) (0.061) (0.078) (0.062) (0.176) (0.156) (0.177) (0.228) (0.177) (0.046) (0.
T=40 -0.028 -0.007 -0.015 0.001 -0.007 -0.030 -0.009 -0.017 -0.001 -0.009 -0.028 -0
(0.021) (0.019) (0.019) (0.021) (0.019) (0.059) (0.054) (0.057) (0.061) (0.053) (0.016) (0.
T=60 -0.018 -0.002 -0.007 0.001 -0.004 -0.017 -0.001 -0.006 0.002 -0.003 -0.018 -0
(0.011) (0.011) (0.011) (0.011) (0.010) (0.032) (0.029) (0.030) (0.031) (0.029) (0.009) (0.
O = \/ﬁ

T=20 -0.044  -0.025 -0.028 -0.003 -0.006 -0.045 -0.026 -0.028 -0.002 -0.006 -0.044 -0
(0.026) (0.026) (0.026) (0.030) (0.028) (0.045) (0.041) (0.045) (0.056) (0.046) (0.024) (0.
T=40 -0.023  -0.009 -0.010 -0.003 -0.004 -0.023 -0.009 -0.011 -0.003 -0.005 -0.023 -0
(0.009)  (0.009) (0.009) (0.009) (0.009) (0.016) (0.015) (0.015) (0.016) (0.014) (0.009) (0.
T=60 -0.015 -0.004 -0.005 -0.001 -0.003 -0.015 -0.004 -0.005 -0.001 -0.002 -0.015 -0
(0.005)  (0.005) (0.005) (0.005) (0.005) (0.009) (0.008) (0.008) (0.008) (0.008) (0.005) (0.

Note: (a) FM® is the 2S-FM, FM?’ is the naive 25-FM, FM¢ is the CUP-FM and FM? is the naive CUP-FM

(b) My = 01, 031 — —08, 091 — —04, ‘931 = 08, and 921 =0.4.



Table 2: Means Biases and Standard Deviation
of OLS and FM Estimators for Different n and T

(0, T) OLS  FM® FM?  FM° FM?
(20,20) -0.045 -0.019 -0.022 -0.001 ~0.006
(0.029) (0.028) (0.029) (0.034)  (0.030)

(20,40)  -0.024 -0.006 -0.009 -0.001 -0.004
(0.014) (0.014) (0.013) (0.014)  (0.013)

(20,60)  -0.017 -0.004 -0.006 -0.001 -0.003
(0.010)  (0.009) (0.009) (0.009)  (0.009)

(20,120) -0.008 -0.001 -0.002 -0.000 -0.001
(0.005) (0.004) (0.005) (0.004)  (0.004)

(40,20)  -0.044 -0.018 -0.021 -0.002 -0.006
(0.021) (0.019) (0.019) (0.023)  (0.021)

(40,40)  -0.024 -0.007 -0.009 -0.002 -0.004
(0.010) (0.010) (0.010) (0.010)  (0.010)

(40,60)  -0.015 -0.003 -0.005 -0.001 -0.002
(0.007) (0.007) (0.007) (0.007)  (0.007)

(40,120) -0.008 -0.001 -0.002 -0.001 -0.001
(0.003) (0.003) (0.003) (0.003)  (0.003)

(60,20)  -0.044 -0.018 -0.022 -0.002 -0.007
(0.017) (0.016) (0.016) (0.019)  (0.017)

(60,40)  -0.022 -0.006 -0.008 -0.002 -0.004
(0.009) (0.008) (0.008) (0.008)  (0.008)

(60,60)  -0.015 -0.003 -0.005 -0.001 -0.003
(0.006) (0.005) (0.005) (0.005)  (0.005)

(60,120) -0.008 -0.001 -0.002 -0.001 -0.001
(0.003) (0.002) (0.002) (0.002)  (0.002)

(120,20) -0.044 -0.018 -0.022 -0.002 -0.007
(0.013) (0.011) (0.012) (0.013)  (0.012)

(120,40) -0.022 -0.006 -0.008 -0.002 -0.004
(0.006) (0.006) (0.006) (0.006)  (0.006)

(120,60) -0.015 -0.003 -0.005 -0.001 -0.003
(0.004) (0.004) (0.004) (0.004)  (0.004)
(120,120) -0.008 -0.001 -0.002 -0.001 -0.002

(0.002) (0.002) (0.002) (0.002)  (0.002)

(a) My = 01, 031 — —08, 091 — —04, ‘931 = 08, and 921 = 0.4.



Table 3: Means Biases and Standard Deviation of t-statistics

ox=1 oy =10

OLS FM® FM? FM¢ FM? OLS FM® FM? FM¢ FM¢ OLS F

Op = 1
T=20 -1.994  -1.155 -1.518 -0.056 -0.285 -0.929 -0.546 -0.813 -0.006 -0.122 -2.248 -1
(1.205) (1.267) (1.484) (1.283) (1.341) (1.149) (1.059) (1.495) (1.205) (1.254) (1.219) (1.
T=40 -2.915 -0.941 -1.363 -0.227 -0.559 -1.355 -0.465 -0.766 -0.128 -0.326 -3.288 -1
(1.202) (1.101) (1.248) (1.054) (1.141) (1.127) (0.913) (1.207) (0.912) (1.049) (1.221) (1.
T=60 -3.465 -0.709 -1.158 -0.195 -0.574 -1.552 -0.308 -0.568 -0.074 -0.261 -3.926 -0
(1.227) (1.041) (1.177) (0.996) (1.100) (1.146) (0.868) (1.113) (0.851) (1.016) (1.244) (1.

o = \/E
T=20 -1.078 -0.484 -0.984 0.180 -0.096 -0.373 -0.154 -0.350 0.085  -0.006 -1.427 -0
(1.147)  (1.063) (1.501) (1.220) (1.271) (1.119) (0.987) (1.508) (1.194) (1.223) (1.163) (1.
T=40 -1.575  -0.355  -0.963  0.042 -0.407 -0.561 -0.152 -0.397 -0.014 -0.190 -2.082 -0
(1.131)  (0.917) (1.214) (0.926) (1.063) (1.097) (0.844) (1.179) (0.871) (1.008) (1.154) (0.
T=60 -1.809  -0.155 -0.776  0.111  -0.390 -0.588 -0.041 -0.247 0.049 -0.111 -2.424 -0
(1.158)  (0.879) (1.131) (0.867) (1.035) (1.108) (0.812) (1.078) (0.811) (0.983) (1.192) (0.
O = \/ﬁ

T=20 -2.196 -1.319 -1.606 -0.137 -0.327 -1.203 -0.734 -1.008 -0.054 -0.176 -2.367 -1
(1.219) (1.325) (1.488) (1.307) (1.362) (1.164) (1.112) (1.488) (1.217) (1.273) (1.231) (1.
T=40 -3.214  -1.093 -1415 -0.311 -0.576 -1.752 -0.619 -0.922 -0.188 -0.385 -3.462 -1
(1.226) (1.057) (1.155) (1.104) (1.169) (1.148) (0.962) (1.222) (0.944) (1.087) (1.236) (1.
T=60 -3.839  -0.868 -1.217 -0.296 -0.602 -2.037 -0.446 -0.712 -0.139 -0.331 -4.149 -0
(1.239) (1.088) (1.183) (1.037) (1.112) (1.169) (0.908) (1.131) (0.881) (1.038) (1.249) (1.

Note: (a) FM® is the 2S-FM, FM? is the naive 25-FM, FM¢ is the CUP-FM and FM? is the naive CUP- FM.
(b) My = 01, 031 — —08, 091 — —04, ‘931 = 08, and 921 =0.4.



Table 4: Means Biases and Standard Deviation
of t-statistics for Different n and T

(0, T) OLS  FM® FM?  FM° FM?

(20,20) -1.994 -0.738 -1.032 -0.056 -0.286
(1.205) (1.098) (1.291) (1.283)  (1.341)

(20,40)  -2.051 -0.465 -0.725 -0.105 -0.332
(1.179) (0.999) (1.126) (1.046)  (1.114)

(20,60)  -2.129  -0.404 -0.684 -0.162 -0.421
(1.221) (0.963) (1.278) (0.983)  (1.111)

(20,120) -2.001 -0.213 -0.456 -0.095 -0.327
(1.222) (0.923) (1.083) (0.931)  (1.072)

(40,20)  -2.759 -1.017 -1.404 -0.103 -0.402
(1.237) (1.116) (1.291) (1.235)  (1.307)

(40,40)  -2.915 -0.699 -1.075 -0.227 -0.559
(1.202) (1.004) (1.145) (1.054)  (1.141)

(40,60) -2.859 -0.486 -0.835 -0.173 -0.493
(1.278) (0.998) (1.171) (1.014)  (1.154)

(40,120) -2.829 -0.336 -0.642 -0.181 -0.472
(1.209) (0.892) (1.047) (0.899)  (1.037)

(60,20) -3.403 -1.252 -1.740 -0.152 -0.534
(1.215) (1.145) (1.279) (1.289)  (1.328)

(60,40)  -3.496 -0.807 -1.238 -0.255 -0.635
(1.247) (1.016) (1.165) (1.053)  (1.155)

(60,60)  -3.465 -0.573 -0.987 -0.195 -0.574
(1.227) (0.974) (1.111) (0.996)  (1.100)

(60,120) -3.515 -0.435 -0.819 -0.243 -0.609
(1.197) (0.908) (1.031) (0.913)  (1.020)

(120,20) -4.829 -1.758 -2.450 -0.221 -0.760
(1.345) (1.162) (1.327) (1.223)  (1.308)

(120,40) -4.862 -1.080 -1.679 -0.307 -0.831
(1.254) (1.022) (1.159) (1.059)  (1.143)

(120,60) -4.901 -0.852 -1.419 -0.329 -0.846
(1.239) (0.964) (1.097) (0.978)  (1.077)

(120,120) -5.016 -0.622 -1.203 -0.352 -0.908

(1.248) (0.922) (1.059) (0.927)  (1.048)

(a) My = 01, 031 — —08, 091 — —04, ‘931 = 08, and 921 = 0.4.



