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Abstract

Most of the existing literature on panel data cointegration assumes cross-

sectional independence, an assumption that is difficult to satisfy. This paper

studies panel cointegration under cross-sectional dependence, which is character-

ized by a factor structure. We derive the limiting distribution of a fully modified

estimator for the panel cointegrating coefficients. We also propose a continuous-

updated fully modified (CUP-FM) estimator. Monte Carlo results show that the

CUP-FM estimator has better small sample properties than the two-step FM

(2S-FM) and OLS estimators.
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1 Introduction

A convenient but difficult to justify assumption in panel cointegration analysis is cross-

sectional independence. Left untreated, cross-sectional dependence causes bias and incon-

sistency estimation, as argued by Andrews (2003). In this paper, we use a factor structure

to characterize cross-sectional dependence. Factors models are especially suited for this

purpose. One major source of cross-section correlation in macroeconomic data is common

shocks, e.g., oil price shocks and international financial crises. Common shocks drive the

underlying comovement of economic variables. Factor models provide an effective way to

extract the comovement and have been used in various studies.1 Cross-sectional correlation

exists even in micro level data because of herd behavior (fashions, fads, and imitation cas-

cades) either at firm level or household level. The general state of an economy (recessions

or booms) also affects household decision making. Factor models accommodate individual’s

different responses to common shocks through heterogeneous factor loadings.

Panel data models with correlated cross-sectional units are important due to increasing

availability of large panel data sets and increasing interconnectedness of the economies.

Despite the immense interest in testing for panel unit roots and cointegration,2 not much

attention has been paid to the issues of cross-sectional dependence. Studies using factor

models for nonstationary data include Bai and Ng (2004), Bai (2004), Phillips and Sul (2003),

and Moon and Perron (2004). Chang (2002) proposed to use a nonlinear IV estimation to

construct a new panel unit root test. Hall et al (1999) considered a problem of determining

the number of common trends. Baltagi et al. (2004) derived several Lagrange Multiplier tests

for the panel data regression model with spatial error correlation. Robertson and Symons

(2000), Coakley et al. (2002) and Pesaran (2004) proposed to use common factors to capture

the cross-sectional dependence in stationary panel models. All these studies focus on either

stationary data or panel unit root studies rather than panel cointegration.

This paper makes three contributions. First, it adds to the literature by suggesting a

factor model for panel cointegrations. Second, it proposes a continuous-updated fully modi-

fied (CUP-FM) estimator. Third, it provides a comparison for the finite sample properties

1For example, Stock and Watson (2002), Gregory and Head (1999), Forni and Reichlin (1998) and Forni

et al. (2000) to name a few.
2see Baltagi and Kao (2000) for a recent survey



of the OLS, two-step fully modified (2S-FM), CUP-FM estimators.

The rest of the paper is organized as follows. Section 2 introduces the model. Section

3 presents assumptions. Sections 4 and 5 develop the asymptotic theory for the OLS and

fully modified (FM) estimators. Section 6 discusses a feasible FM estimator and suggests

a CUP-FM estimator. Section 7 makes some remarks on hypothesis testing. Section 8

presents Monte Carlo results to illustrate the finite sample properties of the OLS and FM

estimators. Section 9 summarizes the findings. The appendix contains the proofs of Lemmas

and Theorems.

The following notations are used in the paper. We write the integral
R 1
0
W (s)ds asR

W when there is no ambiguity over limits. We define Ω1/2 to be any matrix such that

Ω =
¡
Ω1/2

¢ ¡
Ω1/2

¢0
. We use kAk to denote ©tr ¡A0

A
¢ª1/2

, |A| to denote the determinant of
A, ⇒ to denote weak convergence,

p→ to denote convergence in probability, [x] to denote

the largest integer ≤ x, I(0) and I(1) to signify a time-series that is integrated of order zero

and one, respectively, and BM (Ω) to denote Brownian motion with the covariance matrix

Ω. We let M <∞ be a generic positive number, not depending on T or n.

2 The Model

Consider the following fixed effect panel regression:

yit = αi + βxit + eit, i = 1, ..., n, t = 1, ..., T, (1)

where yit is 1× 1, β is a 1× k vector of the slope parameters, αi is the intercept, and eit is

the stationary regression error. We assume that xit is a k × 1 integrated processes of order
one for all i, where

xit = xit−1 + εit.

Under these specifications, (1) describes a system of cointegrated regressions, i.e., yit is

cointegrated with xit. The initialization of this system is yi0 = xi0 = Op(1) as T →∞ for all

i. The individual constant term αi can be extended into general deterministic time trends

such as α0i+α1it+, ...,+αpit or other deterministic component. To model the cross-sectional

dependence we assume the error term, eit, follows a factor model (e.g., Bai and Ng, 2002,

2004):

eit = λ
0
iFt + uit, (2)
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where Ft is a r × 1 vector of common factors, λi is a r × 1 vector of factor loadings and uit

is the idiosyncratic component of eit, which means

E (eitejt) = λ
0
iE
³
FtF

0
t

´
λj

i.e., eit and ejt are correlated due to the common factors Ft.

Remark 1 1. We could also allow εit to have a factor structure such that

εit = γ
0
iFt + ηit.

Then we can use 4xit to estimate Ft and γi. Or we can use eit together with 4xit to

estimate Ft, λi and γi. In general, εit can be of the form

εit = γ0iFt + τ 0iGt + ηit,

where Ft and Gt are zero mean processes, and ηit are usually independent over i and

t.

3 Assumptions

Our analysis is based on the following assumptions.

Assumption 1 As n→∞, 1
n

Pn

i=1 λiλ
0
i −→ Σλ, a r × r positive definite matrix.

Assumption 2 Let wit =
¡
F

0
t , uit, ε

0
it

¢0
. For each i, wit = Πi(L)vit =

P∞
j=0Πijvit−j ,P∞

j=0 j
a kΠijk < ∞, |Πi(1)| 6= 0 for some a > 1, where vit is i.i.d. over t. In addition,

Evit = 0, E(vitv
0
it) = Σv > 0, and Ekvitk8 ≤M <∞.

Assumption 3 Ft and uit are independent; uit are independent across i.

Under Assumption 2, a multivariate invariance principle for wit holds, i.e., the partial

sum process 1√
T

P[Tr]
t=1 wit satisfies:

1√
T

[Tr]X
t=1

wit ⇒ B (Ωi) as T →∞ for all i, (3)
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where

Bi =

⎡⎢⎣ BF

Bui

Bεi

⎤⎥⎦ .
The long-run covariance matrix of {wit} is given by

Ωi =
∞X

j=−∞
E
³
wi0w

0
ij

´
= Πi(1)ΣvΠi(1)

0

= Σi + Γi + Γ
0
i

=

⎡⎢⎣ ΩFi ΩFui ΩFεi

ΩuFi Ωui Ωuεi

ΩεFi Ωεui Ωεi

⎤⎥⎦ ,
where

Γi =
∞X
j=1

E
³
wi0w

0
ij

´
=

⎡⎢⎣ ΓFi ΓFui ΓFεi

ΓuFi Γui Γuεi

ΓεFi Γεui Γεi

⎤⎥⎦ (4)

and

Σi = E
³
wi0w

0
i0

´
=

⎡⎢⎣ ΣFi ΣFui ΣFεi

ΣuFi Σui Σuεi

ΣεFi Σεui Σεi

⎤⎥⎦
are partitioned conformably with wit. We denote

Ω = lim
n→∞

1

n

nX
i=1

Ωi,

Γ = lim
n→∞

1

n

nX
i=1

Γi,

and

Σ = lim
n→∞

1

n

nX
i=1

Σi.

Assumption 4 Ωεi is non-singular, i.e., {xit} are not cointegrated.
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Define

Ωbi =

"
ΩFi ΩFui

ΩuFi Ωui

#
, Ωbεi =

"
ΩFεi

Ωuεi

#
and

Ωb.εi = Ωbi − ΩbεiΩ
−1
εi Ωεbi.

Then, Bi can be rewritten as

Bi =

"
Bbi

Bεi

#
=

"
Ω
1/2
b.εi ΩbεiΩ

−1/2
εi

0 Ω
1/2
εi

#"
Vbi

Wi

#
, (5)

where

Bbi =

"
BF

Bui

#
,

Vbi =

"
VF

Vui

#
,

and "
Vbi

Wi

#
= BM (I)

is a standardized Brownian motion. Define the one-sided long-run covariance

∆i = Σi + Γi

=
∞X
j=0

E
³
wi0w

0
ij

´
with

∆i =

"
∆bi ∆bεi

∆εbi ∆εi

#
.

Remark 2 1. Assumption 1 is a standard assumption in factor models (e.g., Bai and Ng

2002, 2004) to ensure the factor structure is identifiable. We only consider nonrandom

factor loadings for simplicity. Our results still hold when the λ
0
is are random, provided

they are independent of the factors and idiosyncratic errors, and E kλik4 ≤M.

2. Assumption 2 assumes that the random factors, Ft, and idiosyncratic shocks
¡
uit, ε

0
it

¢
are stationary linear processes. Note that Ft and εit are allowed to be correlated. In

particular, εit may have a factor structure as in Remark 1.
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3. Assumption of independence made in Assumption 3 between Ft and uit can be relaxed

following Bai and Ng (2002). Nevertheless, independence is not a restricted assumption

since cross-sectional correlations in the regression errors eit are taken into account by

the common factors.

4 OLS

Let us first study the limiting distribution of the OLS estimator for equation (1). The OLS

estimator of β is

bβOLS =
"

nX
i=1

TX
t=1

yit (xit − xi)
0
#"

nX
i=1

TX
t=1

(xit − xi) (xit − xi)
0
#−1

. (6)

Theorem 1 Under Assumptions 1− 4, we have√
nT
³bβOLS − β

´
−√nδnT ⇒ N

³
0, 6Ω−1ε

n
lim
n→∞

1
n

Pn

i=1

³
λ
0
iΩF.εiλiΩεi + Ωu.εiΩεi

´o
Ω−1ε

´
,

as (n, T →∞) with n
T
→ 0 where

δnT =
1

n

"
nX
i=1

λ
0
i

µ
ΩFεiΩ

1/2
εi

µZ fWidW
0
i

¶
Ω
−1/2
εi +∆Fεi

¶
+ ΩuεiΩ

1/2
εi

µZ fWidW
0
i

¶
Ω
−1/2
εi +∆uεi

#
"
1

n

nX
i=1

1

T 2

TX
t=1

(xit − xit) (xit − xi)
0
#−1

,

fWi =Wi −
R
Wi and Ωε = lim

n→∞
1
n

Pn

i=1Ωεi.

Remark 3 It is also possible to construct the bias-corrected OLS by using the averages of

the long run covariances. Note

E [δnT ] ' 1

n

"
nX
i=1

λ
0
i

µ
−1
2
ΩFεi +∆Fεi

¶
− 1
2
Ωuεi +∆uεi

#µ
1

6
Ωε

¶−1
=

1

n

"
nX
i=1

µ
−1
2

¶³
λ
0
iΩFεi + Ωuεi

´
+ λ

0
i∆Fεi +∆uεi

#µ
1

6
Ωε

¶−1
=

Ã
1

n

nX
i=1

µ
−1
2

¶
λ
0
iΩFεi +

1

n

nX
i=1

Ωuεi +
1

n

nX
i=1

λ
0
i∆Fεi +

1

n

nX
i=1

∆uεi

!µ
1

6
Ωε

¶−1

6



It can be shown by a central limit theorem that

√
n (δnT − E [δnT ])⇒ N (0, B)

for some B. Therefore,

√
nT
³bβOLS − β

´
−√nE [δnT ]

=
√
nT
³bβOLS − β

´
−√nδnT +

√
n (δnT −E [δnT ])

⇒ N (0, A)

for some A.

5 FM Estimator

Next we examine the limiting distribution of the FM estimator, bβFM . The FM estimator

was suggested by Phillips and Hansen (1990) in a different context (non-panel data). The

FM estimator is constructed by making corrections for endogeneity and serial correlation to

the OLS estimator bβOLS in (6). The endogeneity correction is achieved by modifying the
variable yit in (1) with the transformation

y+it = yit −
³
λ
0
iΩFεi + Ωuεi

´
Ω−1εi ∆xit.

The serial correlation correction term has the form

∆+
bεi = ∆bεi − ΩbεiΩ

−1
εi ∆εi,

=

"
∆+

Fεi

∆+
uεi

#
.

Therefore, the infeasible FM estimator is

eβFM =

"
nX
i=1

Ã
TX
t=1

y+it (xit − xi)
0 − T

³
λ
0
i∆

+
Fεi +∆+

uεi

´!#" nX
i=1

TX
t=1

(xit − xi) (xit − xi)
0
#−1

.

(7)

Now, we state the limiting distribution of eβFM .
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Theorem 2 Let Assumptions 1− 4 hold. Then as (n, T →∞) with n
T
→ 0

√
nT
³eβFM − β

´
⇒ N

Ã
0, 6Ω−1ε

(
lim
n→∞

1

n

nX
i=1

³
λ
0
iΩF.εiλiΩεi + Ωu.εiΩεi

´)
Ω−1ε

!
.

Remark 4 The asymptotic distribution in Theorem 2 is reduced to

√
nT
³eβFM − β

´
⇒ N

Ã
0, 6Ω−1ε

ÃÃ
lim
n→∞

1

n

nX
i=1

λ2i

!
ΩF.ε + Ωu.ε

!!
if the long-run covariances are the same across the cross-sectional unit i and r = 1.

6 Feasible FM

In this section we investigate the limiting distribution of the feasible FM. We will show that

the limiting distribution of the feasible FM is not affected when λi, Ωεi, Ωεbi, Ωεi, and ∆εbi

are estimated. To estimate λi, we use the method of principal components used in Stock and

Watson (2002). Let λ = (λ1, λ2, ..., λn)
0
and F = (F1, F2, ..., FT )

0
. The method of principal

components of λ and F minimizes

V (r) =
1

nT

nX
i=1

TX
t=1

³beit − λ
0
iFt

´2
where

beit = yit − bαi − bβxit
= (yit − yi)− bβ (xit − xi) ,

with a consistent estimator bβ. Concentrating out λ and using the normalization that

F
0
F/T = Ir, the optimization problem is identical to maximizing tr

¡
F

0 ¡
ZZ

0¢
F
¢
, where

Z = (be1, be2, ..., ben) is T ×n with bei = (bei1, bei2, ..., beiT )0 . The estimated factor matrix, denoted
by bF , a T × r matrix, is

√
T times eigenvectors corresponding to the r largest eigenvalues of

the T × T matrix ZZ
0
, and

bλ0 =
³ bF 0 bF´−1 bF 0

Z

=
bF 0
Z

T

8



is the corresponding matrix of the estimated factor loadings. It is known that the solution

to the above minimization problem is not unique, i.e., λi and Ft are not directly identifiable

but they are identifiable up to a transformation H. For our setup, knowing Hλi is as good

as knowing λi. For example in (7) using λ
0
i∆

+
Fεi will give the same information as using

λ
0
iH

0
H

0−1∆+
Fεi since ∆

+
Fεi is also identifiable up to a transformation, i.e., λ

0
iH

0
H

0−1∆+
Fεi =

λ
0
i∆

+
Fεi. Therefore, when assessing the properties of the estimates we only need to consider

the differences in the space spanned by, say, between bλi and λi.

Define the feasible FM, bβFM , with bλi, bFt, bΣi, and bΩi in place of λi, Ft, Σi, and Ωi,

bβFM =

"
nX
i=1

Ã
TX
t=1

by+it (xit − xi)
0 − T

³bλ0i b∆+
Fεi +

b∆+
uεi

´!#" nX
i=1

TX
t=1

(xit − xi) (xit − xi)
0
#−1

,

where by+it = yit −
³bλ0ibΩFεi + bΩuεi

´ bΩ−1εi ∆xit.

and b∆+
Fεi and

b∆+
uεi are defined similarly.

Assume that Ωi = Ω for all i. Let

e+it = eit −
³
λ
0
iΩFε + Ωuε

´
Ω−1ε ∆xit,

b∆+
bεn =

1

n

nX
i=1

b∆+
bεi,

and

∆+
bεn =

1

n

nX
i=1

∆+
bεi.

9



Then

√
nT
³bβFM − eβFM´

=
1√
nT

nX
i=1

(Ã
TX
t=1

be+it (xit − xi)
0 − T b∆+

bεn

!
−
Ã

TX
t=1

e+it (xit − xi)
0 − T∆+

bεn

!)
"
1

nT 2

nX
i=1

TX
t=1

(xit − xi) (xit − xi)
0
#−1

=

"
1√
nT

nX
i=1

Ã
TX
t=1

¡be+it − e+it
¢
(xit − xi)

0 − T
³b∆+

bεn −∆+
bεn

´!#
"
1

nT 2

nX
i=1

TX
t=1

(xit − xi) (xit − xi)
0
#−1

.

Before we prove Theorem 3 we need the following lemmas.

Lemma 1 Under Assumptions 1-4
√
n
³b∆+

bεn −∆+
bεn

´
= op(1).

Lemma 1 can be proved similarly by following Phillips and Moon (1999) and Moon and

Perron (2004).

Lemma 2 Suppose Assumptions 1-4 hold. There exists an H with rank r such that as

(n, T →∞)
(i)

1

n

nX
i=1

°°°bλi −Hλi

°°°2 = Op

µ
1

δ2nT

¶
(ii) let ci (i = 1, 2, ..., n) be a sequence of random matrices such that ci = Op(1) and
1
n

Pn

i=1 kcik2 = Op(1) then

1

n

nX
i=1

³bλi −Hλi

´0
ci = Op

µ
1

δ2nT

¶

where δnT = min
n√

n,
√
T
o
.

Bai and Ng (2002) showed that for a known beit that the average squared deviations
between bλi and Hλi vanish as n and T both tend to infinity and the rate of convergence is

10



the minimum of n and T . Lemma 2 can be proved similarly by following Bai and Ng (2002)

that parameter estimation uncertainty for β has no impact on the null limit distribution ofbλi.
Lemma 3 Under Assumptions 1-4

1√
nT

nX
i=1

TX
t=1

¡be+it − e+it
¢
(xit − xi)

0
= op(1)

as (n, T →∞) and
√
n

T
→ 0.

Then we have the following theorem:

Theorem 3 Under Assumptions 1-4 and (n, T →∞) and
√
n

T
→ 0

√
nT
³bβFM − eβFM´ = op(1).

In the literature, the FM-type estimators usually were computed with a two-step pro-

cedure, by assuming an initial consistent estimate of β, say bβOLS. Then, one constructs
estimates of the long-run covariance matrix, bΩ(1), and loading, bλ(1)i . The 2S-FM, denotedbβ(1)2S is obtained using bΩ(1) and bλ(1)i :

bβ(1)2S =

"
nX
i=1

Ã
TX
t=1

by+(1)it (xit − xi)
0 − T

µbλ0(1)i
b∆+(1)
Fεi +

b∆+(1)
uεi

¶!#
"

nX
i=1

TX
t=1

(xit − xi) (xit − xi)
0
#−1

. (8)

In this paper, we propose a CUP-FM estimator. The CUP-FM is constructed by estimating

parameters and long-run covariance matrix and loading recursively. Thus bβFM , bΩ and bλi
are estimated repeatedly, until convergence is reached. In the Section 8, we find the CUP-

FM has a superior small sample properties as compared with the 2S-FM, i.e., CUP-FM has

smaller bias than the common 2S-FM estimator. The CUP-FM is defined as

bβCUP =

"
nX
i=1

Ã
TX
t=1

by+it ³bβCUP´ (xit − xi)
0 − T

³bλ0i ³bβCUP´ b∆+
Fεi

³bβCUP´+ b∆+
uεi

³bβCUP´´
!#

"
nX
i=1

TX
t=1

(xit − xi) (xit − xi)
0
#−1

. (9)

11



Remark 5 1. In this paper, we assume the number of factors, r, is known. Bai and Ng

(2002) showed that the number of factors can be found by minimizing the following:

IC(k) = log (V (k)) + k

µ
n+ T

nT

¶
log

µ
nT

n+ T

¶
.

2. Once the estimates of wit, bwit =
³ bF 0

t , buit, 4 x
0
it

´0
, were estimated, we used

bΣ = 1

nT

nX
i=1

TX
t=1

bwit bw0
it (10)

to estimate Σ, where buit = beit − bλ0i bFt.

Ω was estimated by

bΩ = 1

n

NX
i=1

(
1

T

TX
t=1

bwit bw0
it +

1

T

lX
τ=1

τl

TX
t=τ+1

³bwit bw0
it−τ + bwit−τ bw0

it

´)
, (11)

where τl is a weight function or a kernel. Using Phillips and Moon (1999), bΣi andbΩi can be shown to be consistent for Σi and Ωi.

7 Hypothesis Testing

We now consider a linear hypothesis that involves the elements of the coefficient vector β.We

show that hypothesis tests constructed using the FM estimator have asymptotic chi-squared

distributions. The null hypothesis has the form:

H0 : Rβ = r, (12)

where r is a m× 1 known vector and R is a known m× k matrix describing the restrictions.

A natural test statistic of the Wald test using bβFM is

W =
1

6
nT 2

³
RbβFM − r

´0 "
6bΩ−1ε

(
lim
n→∞

1

n

nX
i=1

³bλ0ibΩF.εi
bλibΩεi + bΩu.εi

bΩεi

´) bΩ−1ε
#−1 ³

RbβFM − r
´
.

(13)
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It is clear that W converges in distribution to a chi-squared random variable with k

degrees of freedom, χ2k, as (n, T →∞) under the null hypothesis. Hence, we establish the
following theorem:

Theorem 4 If Assumptions 1−4 hold, then under the null hypothesis (12), with (n, T →∞) ,
W ⇒ χ2k,

Remark 6 1. One common application of the theorem 6 is the single-coefficient test: one

of the coefficient is zero; βj = β0,

R =
h
0 0 · · · 1 0 · · · 0

i
and r = 0. We can construct a t-statistic

tj =

√
nT
³bβjFM − β0

´
sj

(14)

where

s2j =

"
6bΩ−1ε

(
lim
n→∞

1

n

nX
i=1

³bλ0ibΩF.εi
bλibΩεi + bΩu.εi

bΩεi

´) bΩ−1ε
#
jj

,

the jth diagonal element of"
6bΩ−1ε

(
lim
n→∞

1

n

nX
i=1

³bλ0ibΩF.εi
bλibΩεi + bΩu.εi

bΩεi

´) bΩ−1ε
#

It follows that

tj ⇒ N (0, 1) . (15)

2. General nonlinear parameter restriction such as H0 : h(β) = 0, where h(·) is k∗ × 1
vector of smooth functions such that ∂h

∂β
0 has full rank k∗ can be conducted in a similar

fashion as in Theorem 6. Thus, the Wald test has the following form

Wh = nT 2h
³bβFM´0 bV −1h h

³bβFM´
where

bV −1h =

⎛⎝∂h
³bβFM´
∂β

0

⎞⎠ bV −1β

⎛⎜⎝∂h
³bβ 0

FM

´
∂β

⎞⎟⎠
13



and bVβ = 6bΩ−1ε
(
lim
n→∞

1

n

nX
i=1

³bλ0ibΩF.εi
bλbΩεii + bΩu.εi

bΩεi

´) bΩ−1ε . (16)

It follows that

Wh ⇒ χ2k∗

as (n, T →∞) .

8 Monte Carlo Simulations

In this section, we conduct Monte Carlo experiments to assess the finite sample properties of

OLS and FM estimators. The simulations were performed by a Sun SparcServer 1000 and an

Ultra Enterprise 3000. GAUSS 3.2.31 and COINT 2.0 were used to perform the simulations.

Random numbers for error terms, (F ∗t , u
∗
it, ε

∗
it) were generated by the GAUSS procedure

RNDNS. At each replication, we generated an n(T + 1000) length of random numbers and

then split it into n series so that each series had the same mean and variance. The first

1, 000 observations were discarded for each series. {F ∗t } , {u∗it} and {ε∗it} were constructed
with F ∗t = 0, u

∗
i0 = 0 and ε∗i0 = 0.

To compare the performance of the OLS and FM estimators we conducted Monte Carlo

experiments based on a design which is similar to Kao and Chiang (2000)

yit = αi + βxit + eit

eit = λ
0
iFt + uit,

and

xit = xit−1 + εit

for i = 1, ..., n, t = 1, ..., T, where⎛⎜⎝ Ft

uit

εit

⎞⎟⎠ =

⎛⎜⎝ F ∗t
u∗it
ε∗it

⎞⎟⎠+
⎛⎜⎝ 0 0 0

0 0.3 −0.4
θ31 θ32 0.6

⎞⎟⎠
⎛⎜⎝ F ∗t−1

u∗it−1
ε∗it−1

⎞⎟⎠ (17)
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with ⎛⎜⎝ F ∗t
u∗it
ε∗it

⎞⎟⎠ iid∼ N

⎛⎜⎝
⎡⎢⎣ 00
0

⎤⎥⎦ ,
⎡⎢⎣ 1 σ12 σ13

σ21 1 σ23

σ31 σ32 1

⎤⎥⎦
⎞⎟⎠ .

For this experiment, we have a single factor (r = 1) and λi are generated from i.i.d.

N(µλ, 1). We let µλ = 0.1. We generated αi from a uniform distribution, U [0, 10], and set

β = 2. From Theorems 1-3 we know that the asymptotic results depend upon variances and

covariances of Ft, uit and εit. Here we set σ12 = 0. The design in (17) is a good one since the

endogeneity of the system is controlled by only four parameters, θ31, θ32, σ31 and σ32. We

choose θ31 = 0.8, θ32 = 0.4, σ31 = −0.8 and θ32 = 0.4.

The estimate of the long-run covariance matrix in (11) was obtained by using the proce-

dure KERNEL in COINT 2.0 with a Bartlett window. The lag truncation number was set

arbitrarily at five. Results with other kernels, such as Parzen and quadratic spectral kernels,

are not reported, because no essential differences were found for most cases.

Next, we recorded the results from our Monte Carlo experiments that examined the

finite-sample properties of (a) the OLS estimator, bβOLS in (6), (b) the 2S-FM estimator,bβ2S, in (8), (c) the two-step naive FM estimator, bβbFM , proposed by Kao and Chiang (2000)

and Phillips and Moon (1999), (d) the CUP-FM estimator bβCUP , in (9) and (e) the CUP
naive FM estimator bβdFM which is similar to the two-step naive FM except the iteration

goes beyond two steps. The naive FM estimators are obtained assuming the cross-sectional

independence. The maximum number of the iteration for CUP-FM estimators is set to 20.

The results we report are based on 1, 000 replications and are summarized in Tables 1 - 4.

All the FM estimators were obtained by using a Bartlett window of lag length five as in (11).

Table 1 reports the Monte Carlo means and standard deviations (in parentheses) of³bβOLS − β
´
,
³bβ2S − β

´
,
³bβbFM − β

´
,
³bβCUP − β

´
,and

³bβdFM − β
´
for sample sizes T = n

= (20, 40, 60) . The biases of the OLS estimator, bβOLS, decrease at a rate of T . For example,
with σλ = 1 and σF = 1, the bias at T = 20 is − 0.045, at T = 40 is −0.024, and at T = 60
is −0.015. Also, the biases stay the same for different values of σλ and σF .

TABLE 1 ABOUT HERE
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While we expected the OLS estimator to be biased, we expected FM estimators to produce

better estimates. However, it is noticeable that the 2S-FM estimator still has a downward

bias for all values of σλ and σF , though the biases are smaller. In general, the 2S-FM

estimator presents the same degree of difficulty with bias as does the OLS estimator. This

is probably due to the failure of the nonparametric correction procedure.

In contrast, the results in Table 1 show that the CUP-FM, is distinctly superior to the

OLS and 2S-FM estimators for all cases in terms of the mean biases. Clearly, the CUP-FM

outperforms both the OLS and 2S-FM estimators.

TABLE 2 ABOUT HERE

It is important to know the effects of the variations in panel dimensions on the results,

since the actual panel data have a wide variety of cross-section and time-series dimensions.

Table 2 considers 16 different combinations for n and T , each ranging from 20 to 120 with

σ31 = −0.8, σ21 = −0.4, θ31 = 0.8, and θ21 = 0.4. First, we notice that the cross-section

dimension has no significant effect on the biases of all estimators. From this it seems that in

practice the T dimension must exceed the n dimension, especially for the OLS and 2S-FM

estimators, in order to get a good approximation of the limiting distributions of the estima-

tors. For example, for OLS estimator in Table 2, the reported bias, −0.008, is substantially
less for (T = 120, n = 40) than it is for either (T = 40, n = 40) , (the bias is −0.024), or
(T = 40, n = 120) , (the bias is −0.022). The results in Table 2 again confirm the superiority
of the CUP-FM.

TABLE 3 ABOUT HERE

Monte Carlo means and standard deviations of the t-statistic, tβ=β0, are given in Table

3. Here, the OLS t-statistic is the conventional t-statistic as printed by standard statistical

packages. With all values of σλ and σF with the exception σλ =
√
10, the CUP-FM t-statistic

is well approximated by a standard N(0,1) suggested from the asymptotic results. The CUP-

FM t-statistic is much closer to the standard normal density than the OLS t-statistic and

the 2S-FM t-statistic. The 2S-FM t-statistic is not well approximated by a standard N(0,1).

16



TABLE 4 ABOUT HERE

Table 4 shows that both the OLS t-statistic and the FM t-statistics become more nega-

tively biased as the dimension of cross-section n increases. The heavily negative biases of the

2S-FM t-statistic in Tables 3-4 again indicate the poor performance of the 2S-FM estimator.

For the CUP-FM, the biases decrease rapidly and the standard errors converge to 1.0 as T

increases.

It is known that when the length of time series is short the estimate bΩ in (11) may be

sensitive to the length of the bandwidth. In Tables 2 and 4, we first investigate the sensitivity

of the FM estimators with respect to the choice of length of the bandwidth. We extend the

experiments by changing the lag length from 5 to other values for a Barlett window. Overall,

the results (not reported here) show that changing the lag length from 5 to other values does

not lead to substantial changes in biases for the FM estimators and their t-statistics.

9 Conclusion

A factor approach to panel models with cross-sectional dependence is useful when both the

time series and cross-sectional dimensions are large. This approach also provides significant

reduction in the number of variables that may cause the cross-sectional dependence in panel

data. In this paper, we study the estimation and inference of a panel cointegration model

with cross-sectional dependence. The paper contributes to the growing literature on panel

data with cross-sectional dependence by (i) discussing limiting distributions for the OLS and

FM estimators, (ii) suggesting a CUP-FM estimator and (iii) investigating the finite sample

proprieties of the OLS, CUP-FM and 2S-FM estimators. It is found that the 2S-FM and

OLS estimators have a non-negligible bias in finite samples, and that the CUP-FM estimator

improves over the other two estimators.

Acknowledgements

We thank Badi Baltagi, Yu-Pin Hu, Giovanni Urga, Kamhon Kan, Chung-Ming Kuan,

Hashem Pesaran, Lorenzo Trapani and Yongcheol Shin for helpful comments. We also thank

17



seminar participants at Academia Sinica, National Taiwan University, Syracuse University,

Workshop on Recent Developments in the Econometrics of Panel Data in London, March

2004 and the European Meeting of the Econometric Society in Madrid, August 2004 for

helpful comments and suggestions. Jushan Bai acknowledges financial support from the

NSF (grant SES-0137084).

Appendix

Let

BnT =

"
nX
i=1

TX
t=1

(xit − xi) (xit − xi)
0
#
.

Note √
nT
³bβOLS − β

´
=
h√

n 1
n

Pn

i=1

³
1
T

PT

t=1 eit (xit − xi)
0´i £ 1

n
1
T 2
BnT

¤−1
=
£√

n 1
n

Pn

i=1 ζ1iT
¤ £

1
n

Pn

i=1 ζ2iT
¤−1

=
√
nξ1nT [ξ2nT ]

−1
,

where xi =
1
T

PT

t=1 xit, yi =
1
T

PT

t=1 yit, ζ1iT =
1
T

PT

t=1 eit (xit − xi)
0
, ζ2iT =

1
T 2

PT

t=1 (xit − xi) (xit − xi)
0
,

ξ1nT =
1
n

Pn

i=1 ζ1iT , and ξ2nT =
1
n

Pn

i=1 ζ2iT . Before going into the next theorem, we need to

consider some preliminary results.

Define Ωε = lim
n→∞

1
n

Pn

i=1Ωεi and

θn =
1

n

"
nX
i=1

λ
0
i

µ
ΩF.εiΩ

−1/2
εi

µZ fWidW
0
i

¶
Ω
1/2
εi +∆Fεi

¶
+ ΩuεiΩ

−1/2
εi

µZ fWidW
0
i

¶
Ω
1/2
εi +∆uεi

#
.

If Assumptions 1− 4 hold, then

Lemma 4 (a) As (n, T →∞) ,
1

n

1

T 2
BnT

p→ 1

6
Ωε.

(b) As (n, T →∞) with n
T
→ 0,

√
n

Ã
1

n

1

T

nX
i=1

TX
t=1

eit (xit − xi)
0 − θn

!
⇒ N

Ã
0,
1

6
lim
n→∞

1

n

nX
i=1

n
λ
0
iΩF.εiλiΩεi + Ωu.εiΩεi

o!
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Proof. (a) and (b) can be shown easily by following the Theorem 8 in Phillips and

Moon (1999).

A Proof of Theorem 1

Proof.

Recall that

√
nT
³bβOLS − β

´
−√n 1

n

⎡⎣ Pn

i=1 λ
0
i

³
ΩFεiΩ

−1/2
εi

³R fWidW
0
i

´
Ω
1/2
εi +∆Fεi

´
+ΩεuiΩ

−1/2
εi

³R fWidW
0
i

´
Ω
1/2
εi +∆εui

⎤⎦
£
1
n
1
T 2
BnT

¤−1
=

⎡⎣√n 1
n

Pn

i=1

⎧⎨⎩ ζ1iT − λ
0
i

³
ΩFεiΩ

−1/2
εi

³R fWidW
0
i

´
Ω
1/2
εi +∆Fεi

´
−ΩuεiΩ

−1/2
εi

³R fWidW
0
i

´
Ω
1/2
εi +∆uεi

⎫⎬⎭
⎤⎦ £ 1

n

Pn

i=1 ζ2iT
¤−1

=
£√

n 1
n

Pn

i=1 ζ
∗
1iT

¤ £
1
n

Pn

i=1 ζ2iT
¤−1

=
√
nξ∗1nT [ξ2nT ]

−1
,

where

ζ∗1iT = ζ1iT − λ
0
i

µ
ΩFεiΩ

−1/2
εi

µZ fWidW
0
i

¶
Ω
1/2
εi +∆Fεi

¶
−ΩuεΩ

−1/2
ε

µZ fWidW
0
i

¶
Ω1/2ε +∆uε

and

ξ∗1nT =
1

n

nX
i=1

ζ∗1iT .

First, we note from Lemma 4 (b) that

√
nξ∗1nT ⇒ N

Ã
0,
1

6
lim
n→∞

1

n

nX
i=1

n
λ
0
iΩF.εiλiΩεi + Ωu.εiΩεi

o!
as (n, T →∞) and n

T
→ 0. Using the Slutsky theorem and (a) from Lemma 4, we obtain

√
nξ∗1nT [ξ2nT ]

−1 ⇒ N

Ã
0, 6Ω−1ε

(
lim
n→∞

1

n

nX
i=1

³
λ
0
iΩF.εiλiΩεi + Ωu.εiΩεi

´)
Ω−1ε

!
.

Hence, √
nT
³bβOLS − β

´
−√nδnT

⇒ N
³
0, 6Ω−1ε

n
lim
n→∞

1
n

Pn

i=1

³
λ
0
iΩF.εiλiΩεi + Ωu.εiΩεi

´o
Ω−1ε

´
,

(18)
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proving the theorem, where

δnT =
1

n

"
nX
i=1

λ
0
i

µ
ΩF.εiΩ

−1/2
εi

µZ fWidW
0
i

¶
Ω1/2εi +∆Fεi

¶
+ ΩuεiΩ

−1/2
εi

µZ fWidW
0
i

¶
Ω1/2εi +∆uεi

#
∙
1

n

1

T 2
BnT

¸−1
.

Therefore, we established Theorem 1.

B Proof of Theorem 2

Proof. Let

F+
it = Ft − ΩFεiΩ

−1
εi εit,

and

u+it = uit − ΩuεiΩ
−1
εi εit.

The FM estimator of β can be rewritten as follows

eβFM =
hPn

i=1

³PT

t=1 y
+
it (xit − xi)

0 − T
³
λ
0
i∆

+
Fεi +∆+

uεi

´´i
B−1nT

= β +
hPn

i=1

³PT

t=1

³
λ
0
iF

+
it + u+it

´
(xit − xi)

0 − T
³
λ
0
i∆

+
Fεi +∆+

uεi

´´i
B−1nT .

(19)

First, we rescale
³eβFM − β

´
by
√
nT

√
nT
³eβFM − β

´
=
√
n 1
n

Pn

i=1
1
T

PT

t=1

h³
λ
0
iF

+
it + u+it

´
(xit − xi)

0 − λ
0
i∆

+
Fεi −∆+

uεi

i £
1
n
1
T 2
BnT

¤−1
=

£√
n 1
n

Pn

i=1 ζ
∗∗
1iT

¤ £
1
n

Pn

i=1 ζ2iT
¤−1

=
√
nξ∗∗1nT [ξ2nT ]

−1
,

(20)

where ζ∗∗1iT =
1
T

PT

t=1

h³
λ
0
iF

+
it + bu+it´ (xit − xi)

0 − λ
0
i∆

+
Fεi −∆+

uεi

i
, and ξ∗∗1nT =

1
n

Pn

i=1 ζ
∗∗
1iT .

Modifying the Theorem 11 in Phillips and Moon (1999) and Kao and Chiang (2000) we

can show that as (n, T →∞) with n
T
→ 0

√
n

Ã
1

n

1

T

nX
i=1

TX
t=1

³
λ
0
iF

+
it (xit − xi)

0 − λ
0
i∆

+
Fεi

´!
⇒ N

Ã
0,
1

6
lim
n→∞

1

n

nX
i=1

λ
0
iΩF.εiλiΩεi

!
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and
√
n

Ã
1

n

1

T

nX
i=1

TX
t=1

³bu+it (xit − xi)
0 −∆+

uεi

´!
⇒ N

Ã
0,
1

6
lim
n→∞

1

n

nX
i=1

Ωu.εiΩεi

!
and combing this with the Assumption 4 that Ft and uit are independent and Lemma 4(a)

yields

√
nT
³eβFM − β

´
⇒ N

Ã
0, 6Ω−1ε

(
lim
n→∞

1

n

nX
i=1

³
λ
0
iΩF.εiλiΩεi + Ωu.εiΩεi

´)
Ω−1ε

!

as required.

C Proof of Lemma 3

Proof. We note that λi is estimating Hλi, and bΩFε is estimating H−10bΩFε. Thus bλ0ibΩFε is

estimating λ
0
iΩFε, which is the object of interest. For the purpose of notational simplicity,

we shall assume H being a r × r identify matrix in our proof below. From

be+it = eit −
³bλ0ibΩFε + bΩuε

´ bΩ−1ε ∆xit

and

e+it = eit −
³
λ
0
iΩFε + Ωuε

´
Ω−1ε ∆xit,

be+it − e+it = −
hn³bλ0ibΩFε + bΩuε
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ε
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∆xit

i
.

Then,
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because bΩuε
bΩ−1ε − ΩuεΩ

−1
ε = op (1)

and
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The remainder of the proof needs to show that
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We write A for ΩFεΩ
−1
ε and bA for bΩFε

bΩ−1ε respectively and then
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nX
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TX
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λ
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iΩFεΩ

−1
ε − bλ0ibΩFε

bΩ−1ε ´∆xit (xit − xi)
0

=
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nX
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TX
t=1

³
λ
0
iA− bλ0i bA´∆xit (xit − xi)

0

=
1√
n

1

T

nX
i=1

TX
t=1

h
λ
0
i

³
A− bA´+ ³λ0i − bλ0i´ bAi∆xit (xit − xi)

0

=
1√
n

1

T

nX
i=1

TX
t=1

λ
0
i

³
A− bA´∆xit (xit − xi)

0

+
1√
n

1

T

nX
i=1

TX
t=1

³
λ
0
i − bλ0i´ bA∆xit (xit − xi)

0

= I + II, say.

Term I is a row vector. Let Ij be the jth component of I. Let j be the jth column of

an identity matrix so that j = (0, ..., 0, 1, 0, ...0)
0. Left multiply I by j to obtain the jth

component, which is scalar and thus is equal to its trace. That is

Ij = tr

"³
A− bA´Ã 1√

n

1

T

nX
i=1

TX
t=1

λ
0
i∆xit (xit − xi)

0
jλi

!#
= tr

h
(A− bA)Op(1)

i
= op(1)Op(1)

= op(1)

because 1√
n
1
T

Pn

i=1

PT

t=1 λ
0
i∆xit (xit − xi)

0
jλi = Op(1) and A− bA = op(1).

Next consider II. Let ci = bA 1
T

Pn

i=1∆xit (xit − xi)
0
. Then ci = Op(1) and

1
n

Pn

i=1 kcik2 =
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Op(1), thus by Lemma 2 (ii), we have

II ≤ √
n

¯̄̄̄
¯ 1n

nX
i=1

³
λ
0
i − bλ0i´ ci

¯̄̄̄
¯

=
√
nOp

µ
1

δ2nT

¶
=
√
nOp

µ
1

min[n, T ]

¶
= Op

µ √
n

min {n, T}
¶

= Op

µ
1√
n

¶
+Op

µ√
n

T

¶
= op(1)

since (n, T →∞) and
√
n

T
→ 0. This establishes

1√
n

1

T

nX
i=1

TX
t=1

³
λ
0
iΩFεΩ

−1
ε − bλ0ibΩFε

bΩ−1ε ´∆xit (xit − xi)
0
= op(1).

and proves Lemma 3.
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Table 1: Means Biases and Standard Deviation of OLS and FM Estimato

σλ = 1 σλ =
√
10

OLS FMa FMb FMc FMd OLS FMa FMb FMc FMd OLS F

σF = 1
T=20 -0.045 -0.025 -0.029 -0.001 -0.006 -0.046 -0.025 -0.029 -0.001 -0.006 -0.045 -0

(0.029) (0.028) (0.029) (0.034) (0.030) (0.059) (0.054) (0.059) (0.076) (0.060) (0.026) (0.

T=40 -0.024 -0.008 -0.011 -0.002 -0.005 -0.024 -0.009 -0.012 -0.003 -0.005 -0.024 -0

(0.010) (0.010) (0.010) (0.010) (0.010) (0.020) (0.019) (0.019) (0.021) (0.018) (0.009) (0.

T=60 -0.015 -0.004 -0.005 -0.001 -0.003 -0.015 -0.003 -0.005 -0.001 -0.002 -0.015 -0

(0.006) (0.005) (0.005) (0.005) (0.005) (0.011) (0.010) (0.010) (0.011) (0.010) (0.005) (0.

σF =
√
10

T=20 -0.054 -0.022 -0.036 0.011 -0.005 -0.057 -0.024 -0.038 0.013 -0.003 -0.054 -0

(0.061) (0.054) (0.061) (0.078) (0.062) (0.176) (0.156) (0.177) (0.228) (0.177) (0.046) (0.

T=40 -0.028 -0.007 -0.015 0.001 -0.007 -0.030 -0.009 -0.017 -0.001 -0.009 -0.028 -0

(0.021) (0.019) (0.019) (0.021) (0.019) (0.059) (0.054) (0.057) (0.061) (0.053) (0.016) (0.

T=60 -0.018 -0.002 -0.007 0.001 -0.004 -0.017 -0.001 -0.006 0.002 -0.003 -0.018 -0

(0.011) (0.011) (0.011) (0.011) (0.010) (0.032) (0.029) (0.030) (0.031) (0.029) (0.009) (0.

σF =
√
0.5

T=20 -0.044 -0.025 -0.028 -0.003 -0.006 -0.045 -0.026 -0.028 -0.002 -0.006 -0.044 -0

(0.026) (0.026) (0.026) (0.030) (0.028) (0.045) (0.041) (0.045) (0.056) (0.046) (0.024) (0.

T=40 -0.023 -0.009 -0.010 -0.003 -0.004 -0.023 -0.009 -0.011 -0.003 -0.005 -0.023 -0

(0.009) (0.009) (0.009) (0.009) (0.009) (0.016) (0.015) (0.015) (0.016) (0.014) (0.009) (0.

T=60 -0.015 -0.004 -0.005 -0.001 -0.003 -0.015 -0.004 -0.005 -0.001 -0.002 -0.015 -0

(0.005) (0.005) (0.005) (0.005) (0.005) (0.009) (0.008) (0.008) (0.008) (0.008) (0.005) (0.

Note: (a) FMa is the 2S-FM, FMb is the naive 2S-FM, FMc is the CUP-FM and FMd is the naive CUP-FM

(b) µλ = 0.1, σ31 = −0.8, σ21 = −0.4, θ31 = 0.8, and θ21 = 0.4.



Table 2: Means Biases and Standard Deviation

of OLS and FM Estimators for Different n and T

(n,T) OLS FMa FMb FMc FMd

(20, 20) -0.045 -0.019 -0.022 -0.001 -0.006

(0.029) (0.028) (0.029) (0.034) (0.030)

(20, 40) -0.024 -0.006 -0.009 -0.001 -0.004

(0.014) (0.014) (0.013) (0.014) (0.013)

(20, 60) -0.017 -0.004 -0.006 -0.001 -0.003

(0.010) (0.009) (0.009) (0.009) (0.009)

(20, 120) -0.008 -0.001 -0.002 -0.000 -0.001

(0.005) (0.004) (0.005) (0.004) (0.004)

(40, 20) -0.044 -0.018 -0.021 -0.002 -0.006

(0.021) (0.019) (0.019) (0.023) (0.021)

(40, 40) -0.024 -0.007 -0.009 -0.002 -0.004

(0.010) (0.010) (0.010) (0.010) (0.010)

(40, 60) -0.015 -0.003 -0.005 -0.001 -0.002

(0.007) (0.007) (0.007) (0.007) (0.007)

(40, 120) -0.008 -0.001 -0.002 -0.001 -0.001

(0.003) (0.003) (0.003) (0.003) (0.003)

(60, 20) -0.044 -0.018 -0.022 -0.002 -0.007

(0.017) (0.016) (0.016) (0.019) (0.017)

(60, 40) -0.022 -0.006 -0.008 -0.002 -0.004

(0.009) (0.008) (0.008) (0.008) (0.008)

(60, 60) -0.015 -0.003 -0.005 -0.001 -0.003

(0.006) (0.005) (0.005) (0.005) (0.005)

(60, 120) -0.008 -0.001 -0.002 -0.001 -0.001

(0.003) (0.002) (0.002) (0.002) (0.002)

(120, 20) -0.044 -0.018 -0.022 -0.002 -0.007

(0.013) (0.011) (0.012) (0.013) (0.012)

(120, 40) -0.022 -0.006 -0.008 -0.002 -0.004

(0.006) (0.006) (0.006) (0.006) (0.006)

(120, 60) -0.015 -0.003 -0.005 -0.001 -0.003

(0.004) (0.004) (0.004) (0.004) (0.004)

(120, 120) -0.008 -0.001 -0.002 -0.001 -0.002

(0.002) (0.002) (0.002) (0.002) (0.002)

(a) µλ = 0.1, σ31 = −0.8, σ21 = −0.4, θ31 = 0.8, and θ21 = 0.4.



Table 3: Means Biases and Standard Deviation of t-statistics

σλ = 1 σλ =
√
10

OLS FMa FMb FMc FMd OLS FMa FMb FMc FMd OLS F

σF = 1
T=20 -1.994 -1.155 -1.518 -0.056 -0.285 -0.929 -0.546 -0.813 -0.006 -0.122 -2.248 -1

(1.205) (1.267) (1.484) (1.283) (1.341) (1.149) (1.059) (1.495) (1.205) (1.254) (1.219) (1.

T=40 -2.915 -0.941 -1.363 -0.227 -0.559 -1.355 -0.465 -0.766 -0.128 -0.326 -3.288 -1

(1.202) (1.101) (1.248) (1.054) (1.141) (1.127) (0.913) (1.207) (0.912) (1.049) (1.221) (1.

T=60 -3.465 -0.709 -1.158 -0.195 -0.574 -1.552 -0.308 -0.568 -0.074 -0.261 -3.926 -0

(1.227) (1.041) (1.177) (0.996) (1.100) (1.146) (0.868) (1.113) (0.851) (1.016) (1.244) (1.

σF =
√
10

T=20 -1.078 -0.484 -0.984 0.180 -0.096 -0.373 -0.154 -0.350 0.085 -0.006 -1.427 -0

(1.147) (1.063) (1.501) (1.220) (1.271) (1.119) (0.987) (1.508) (1.194) (1.223) (1.163) (1.

T=40 -1.575 -0.355 -0.963 0.042 -0.407 -0.561 -0.152 -0.397 -0.014 -0.190 -2.082 -0

(1.131) (0.917) (1.214) (0.926) (1.063) (1.097) (0.844) (1.179) (0.871) (1.008) (1.154) (0.

T=60 -1.809 -0.155 -0.776 0.111 -0.390 -0.588 -0.041 -0.247 0.049 -0.111 -2.424 -0

(1.158) (0.879) (1.131) (0.867) (1.035) (1.108) (0.812) (1.078) (0.811) (0.983) (1.192) (0.

σF =
√
0.5

T=20 -2.196 -1.319 -1.606 -0.137 -0.327 -1.203 -0.734 -1.008 -0.054 -0.176 -2.367 -1

(1.219) (1.325) (1.488) (1.307) (1.362) (1.164) (1.112) (1.488) (1.217) (1.273) (1.231) (1.

T=40 -3.214 -1.093 -1.415 -0.311 -0.576 -1.752 -0.619 -0.922 -0.188 -0.385 -3.462 -1

(1.226) (1.057) (1.155) (1.104) (1.169) (1.148) (0.962) (1.222) (0.944) (1.087) (1.236) (1.

T=60 -3.839 -0.868 -1.217 -0.296 -0.602 -2.037 -0.446 -0.712 -0.139 -0.331 -4.149 -0

(1.239) (1.088) (1.183) (1.037) (1.112) (1.169) (0.908) (1.131) (0.881) (1.038) (1.249) (1.

Note: (a) FMa is the 2S-FM, FMb is the naive 2S-FM, FMc is the CUP-FM and FMd is the naive CUP- FM.

(b) µλ = 0.1, σ31 = −0.8, σ21 = −0.4, θ31 = 0.8, and θ21 = 0.4.



Table 4: Means Biases and Standard Deviation

of t-statistics for Different n and T

(n,T) OLS FMa FMb FMc FMd

(20, 20) -1.994 -0.738 -1.032 -0.056 -0.286

(1.205) (1.098) (1.291) (1.283) (1.341)

(20, 40) -2.051 -0.465 -0.725 -0.105 -0.332

(1.179) (0.999) (1.126) (1.046) (1.114)

(20, 60) -2.129 -0.404 -0.684 -0.162 -0.421

(1.221) (0.963) (1.278) (0.983) (1.111)

(20, 120) -2.001 -0.213 -0.456 -0.095 -0.327

(1.222) (0.923) (1.083) (0.931) (1.072)

(40, 20) -2.759 -1.017 -1.404 -0.103 -0.402

(1.237) (1.116) (1.291) (1.235) (1.307)

(40, 40) -2.915 -0.699 -1.075 -0.227 -0.559

(1.202) (1.004) (1.145) (1.054) (1.141)

(40, 60) -2.859 -0.486 -0.835 -0.173 -0.493

(1.278) (0.998) (1.171) (1.014) (1.154)

(40, 120) -2.829 -0.336 -0.642 -0.181 -0.472

(1.209) (0.892) (1.047) (0.899) (1.037)

(60, 20) -3.403 -1.252 -1.740 -0.152 -0.534

(1.215) (1.145) (1.279) (1.289) (1.328)

(60, 40) -3.496 -0.807 -1.238 -0.255 -0.635

(1.247) (1.016) (1.165) (1.053) (1.155)

(60, 60) -3.465 -0.573 -0.987 -0.195 -0.574

(1.227) (0.974) (1.111) (0.996) (1.100)

(60, 120) -3.515 -0.435 -0.819 -0.243 -0.609

(1.197) (0.908) (1.031) (0.913) (1.020)

(120, 20) -4.829 -1.758 -2.450 -0.221 -0.760

(1.345) (1.162) (1.327) (1.223) (1.308)

(120, 40) -4.862 -1.080 -1.679 -0.307 -0.831

(1.254) (1.022) (1.159) (1.059) (1.143)

(120, 60) -4.901 -0.852 -1.419 -0.329 -0.846

(1.239) (0.964) (1.097) (0.978) (1.077)

(120, 120) -5.016 -0.622 -1.203 -0.352 -0.908

(1.248) (0.922) (1.059) (0.927) (1.048)

(a) µλ = 0.1, σ31 = −0.8, σ21 = −0.4, θ31 = 0.8, and θ21 = 0.4.


