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Abstract
Gordon and Shapiro (1956 Management Sci. 10 102–10) first equated the
price of a share with the present value of future dividends and derived the
well known relationship. Since then, there have been many improvements on
the theory. For example, Thompson (1985 Managerial Decis. Economics 6
132–40, 1987 Managerial Decis. Economics 8 321–32) combined the
‘dividend yield plus growth’ method with Box–Jenkins time series analysis of
past dividend experience to estimate the cost of capital and its ‘reliability’ for
individual firms. Thompson and Wong (1991 Managerial Decis. Economics
12 27–42, 1996 Eng. Economist 41 123–47) proved the existence and
uniqueness of the cost of capital and provided a formula to estimate both the
cost of capital and its reliability. However, their approaches cannot be used if
the ‘reliability’ does not exist or if there are multiple solutions for the
‘reliability’. In this paper, we extend their theory by proving the existence
and uniqueness of this reliability. In addition, we propose estimators for the
reliability and prove that the estimators converge to a true parameter. The
estimation approach is further simplified, hence rendering computation easier.
In addition, the properties of the cost of capital and its reliability will be
analysed with illustrations of several commonly used Box–Jenkins models.

1. Introduction
Assuming a constant rate for the future dividends and income,
Gordon and Shapiro (1956) first equated the price of a share
with the present value of future dividends and derived the
venerable and durable ‘dividend yield plus growth’ method
for estimating the cost of capital. Since the cost of capital
plays a prominent role in setting rates that customers pay,
estimating the ‘dividend yield plus growth’ method is therefore
an important element in rate cases for regulated firms.

Miller and Modigliani (1966), Litzenberger and Rao
(1971), McDonald (1971), Higgens (1974) and Thompson
(1979) have all used a variant of the ‘dividend yield plus
growth’ method to estimate the cost of equity capital for a
cross section of electric utilities. Makhija and Thompson

(1984) have compared the various cross-sectional models using
this method with regard to their efficiency as a tool for rate
cases. Thompson (1984) used the same technique along
with cross-sectional data to estimate the cost of capital for
individual utilities, but measures of reliability of the estimates
were not obtained. To cope with the ‘reliability’ question,
Thompson (1985, 1987) combined the ‘dividend yield plus
growth’ method with Box–Jenkins time series analysis of past
dividend experience to estimate the cost of capital and its
‘reliability’ for individual firms. His approach has the desirable
feature of relaxing the constant growth rate assumption which
had served as the basis for all the preceding models.

The credibility of cost of capital estimates from statistical
forecasts using time series methodology has also been
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examined by Thompson and Wong (1991). Their analysis
raises the question of whether the estimation procedure
developed by Thompson (1987) would always produce
finite estimates of dividends and ultimately the cost of
capital. Moreover, there is the question of simplification of
Thompson’s estimation approach. In his approach, the cost
of capital is solved from a non-linear equation which is in
terms of past dividend realizations and the parameters of the
Box–Jenkins model as well as the covariance matrix of the
parameters. Thus a change in the Box–Jenkins model will
result in a change of the form of the non-linear equation for
solving the cost of capital estimates. This makes the estimation
procedure complicated. In fact, since the reliability relies
on the parameters of the Box–Jenkins model, it makes the
estimation ‘model dependent’ and the computation difficult.

To resolve this issue, Thompson and Wong (1996) proved
the existence and uniqueness of the cost of capital and provided
formulae to estimate both the cost of capital and its reliability.
In their approach, the equation to solve for the cost of
capital is only in terms of forecast future dividends while
the reliability is only in terms of forecast future dividends
and their covariance matrix. The parameters of the Box–
Jenkins model and the covariance matrix of those parameters
are no longer needed in the development of a measure of
‘reliability’. Thus their approach to estimating the cost of
capital and its ‘reliability’ is ‘model free’—the same program
can be used for any Box–Jenkins model or any time series
model so long as the covariance of future dividend forecasts
can be estimated. However, their approaches cannot be used if
the ‘reliability’ does not exist or if there are multiple solutions
for the ‘reliability’. This paper extends their theory by proving
the existence and uniqueness of the reliability. This enables
their approach to be carried out in practice.

Conceptually, the formulae for estimating both the cost
of capital and its reliability are in terms of infinite sums
and infinite-dimensional matrices for the estimate and its
reliability. Computation in this case is impossible. Thompson
and Wong (1996) developed the formula for the estimators in
terms of finite sums only such that computation can be carried
out. However, the proposed estimators for the ‘reliability’
did not provide evidence that the estimators converge to the
true parameter. Thus this paper will propose another set
of estimators for the reliability and will also prove that the
estimators converge to the true parameter. The estimation
approach is further simplified, hence rendering computation
easier. In addition, the properties of the cost of capital and
its reliability will be analysed with illustrations of several
commonly used Box–Jenkins models.

The next section will state the theory of the cost of capital
and the condition for the existence and uniqueness of the
reliability of the cost of capital. Section 3 investigates the
validity of the conditions made in section 2 by examining
three typical ARIMA models and the situation for general
models. Section 4 includes a study on the estimation procedure
of finding the cost of equity capital and its reliability. The
paper concludes with a discussion on the applicability of the
procedure.

2. The theory
Assume that the dividends are issued m times a year and the
expected dividend, discount rate, cost of capital and stock price
at time t are denoted by dt , rt , ρt and Pt respectively. The
discount rate, rt , at time t is defined such that the price of a share
is equal to the present value of the expected future dividends
(Gordon and Shapiro 1956, Thompson 1985, Thompson and
Wong 1991, 1996),

Pt =
∞∑
i=1

dt+i

(1 + rt )i
(1)

and the cost of capital, ρt , at time t is defined as

ρt = F(rt ) = (1 + rt )
m − 1. (2)

Let
dt = (dt+1, dt+2, . . . , dt+i , . . .) (3)

and consider the set St of the collection of dt satisfying the
following assumptions.

Assumption 1. There exists a positive number K such that∑∞
i=1 dt+i > K .

Assumption 2. There exists a number r > −1 such that

∞∑
i=1

dt+i

(1 + r)i
< ∞.

Assumption 3. The series of dividends per share follows a
time series model such that the expected future dividends can
be forecast.

As the dividends are non-negative, assumptions 1 and 2
together imply that for any positive value of stock price Pt

there exists a number r0 > −1 such that

Pt <

∞∑
i=1

dt+i

(1 + r0)i
< ∞.

Let ft : St × (r0, ∞) −→ R be defined by

ft (dt , r) =
∞∑
i=1

dt+i

(1 + r)i
− Pt (4)

where R is the set of real numbers. Thompson and Wong
(1996) have shown that there exists a variable rt > r0 such
that ft (dt , rt ) = 0.

The estimation of the cost of capital and its reliability
requires the existence and uniqueness of the solution for
ft = 0. It also requires the condition of continuity and
differentiability of ft . Thompson and Wong (1996) proved
that the solution rt exists and is unique. The conditions of
continuity and differentiability of ft were also stipulated. Once
the estimate of rt is obtained, equation (2) can be applied to
obtain the estimate of ρt .

Nevertheless, the estimation cannot be obtained if the
reliability does not exist or if there are multiple solutions for the
reliability. This paper seeks to substantiate the existence and
uniqueness of the reliability, which guarantees the estimation
is possible. To do this, the following assumption is introduced.

366



QUANTITATIVE FI N A N C E On the estimation of cost of capital and its reliability

Assumption 4. The covariance matrix of the forecast errors3

�t = E[ (d̂t − dt )(d̂t − dt )
′ ] = (σij )

can be estimated and there exist constants M and k such that
for all {(i, j)}

|σij | < Mki+j and k < 1 + r̂t (5)

except for a finite set of {(i, j)} where dt is defined in (3), d̂t

is the estimate of dt and r̂t satisfies

ft (d̂t , r̂t ) = 0 (6)

with ft defined in (4).

We then extend the theory of the cost of capital by proving
the existence and uniqueness of the reliability as stated in the
following theorem.

Theorem 1. Suppose that a sequence of dividends {dι} issued
m times a year satisfying assumptions 1–4 is observed from
ι = 1 to t . The discount rate rt and the cost of capital ρt are
defined in equations (1) and (2) respectively. Let the function
ft be defined as in equation (4). For any
dt = (dt+1, dt+2, . . . , dt+i , . . .) and any positive price Pt , we
have

(1) for the estimator r̂t of rt satisfying (6), there exists a
unique solution for its variance σ 2

rt satisfying

σ 2
rt =

[ ∞∑
j=1

j d̃t+j

(1 + r̃t )
j+1

]−2

ã′
t�t ãt , (7)

where d̃t = (d̃t+1, d̃t+2, . . . , d̃t+i , . . .) lies between dt and
d̂t , ãt = (ãt , ã

2
t , . . ., ãn

t , . . .)′ with ãt = 1/(1 + r̃t ), r̃t lies
between rt and r̂t , and

(2) for the estimator ρ̂t of ρt , there exists a unique solution
for its variance σ 2

ρt satisfying

σ 2
ρt = m2(1 + řt )

2m−2σ 2
rt , (8)

where řt lies between rt and r̃t , and the estimate ρ̂t is
obtained by F(r̂t ) using equation (2).

The proof is in appendix A.1. Next we study the validity of
assumption 4.

3. Covariance matrix of the forecast
errors
Theorem 1 provides all the necessary and sufficient conditions
for the estimation for the reliability of the cost of capital.
In spite of the conditions, the theory is still not considered
complete if assumption 4 does not hold. In this connection, the
validity of assumption 4 is tested by examining the covariance
structure on three ARIMA models and discussing the situations
for the general models. For simplicity, in this section ãt is
replaced by a.

3 For simplicity, we omit the subscript t in σij .

Firstly consider the covariance matrix of the forecast errors
when the dividends {dt }T

t=1 follow an ARIMA(0,1,1) model.

Model A: (1 − B)dt = δ + (1 − θB)εt .

For this model, referring to the proof in appendix A.2, we have

a′�ta = a2(1 − θa)2σ 2

(1 − a2)(1 − a)2
. (9)

For this example, we can set k = 1 + r/2. Then, assumption 4
holds automatically.

Next will be a study of the covariance matrix of the forecast
errors when the dividends {dt }T

t=1 follow an ARIMA(0, 1, q)

model.

Model B: (1−B)dt = δ+(1−θ1B−θ2B
2−· · ·−θqB

q)εt .

For this example, assumption 4 holds automatically (see
appendix A.3).

Finally, the covariance matrix of the forecast errors when
the dividends {dt }T

t=1 follow an ARIMA(0,1,1) is analysed as
shown in the model.

Model C: (1 − φB)dt = δ + εt .

As proved in appendix A.4, we have

a′�ta = a2σ 2

(1 − a2)(1 − aφ)2
. (10)

For this example, assumption 4 holds if |φ/(1 + r)| < 1.
As |φ/(1 + r)| < 1 can be obtained easily by applying
assumption 2, assumption 4 holds automatically.

Model C is important in the theory of the estimation of
the cost of capital because (i) it is common for academics or
financial practitioners to use an AR model with |φ| > 1 (see
Thompson 1987) to include situations in which the growth
rate is considered in the dividends; (ii) in practice, most
of the dividend series will be stationary after differencing
once. In this case, ARIMA(0, 1, q) will be the correct model.
However, the covariance matrix of the forecast errors for the
ARIMA(0, 1, q) will be dominated by the AR(1) with |φ| > 1
for large {(i, j)}. Hence, the study of model C guarantees
that theorem 1 holds for any ARIMA model. Refer to the
discussion after (17) in the next section; we can further drop
the requirement of the ARIMA model to be any general time
series model used for the forecasting of the dividend series.

4. The estimation procedure
This section describes the estimation procedure and explores
the properties for the estimation of the reliability for the cost of
capital. Note that the iterative procedure for estimating the cost
of capital itself has been fully explored by Thompson (1985,
1987) and Thompson and Wong (1991, 1996).

Begin with an estimation of a time series model of past
dividends. From the time series model, all parameters can
be estimated and future dividends, dt , can be estimated by
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d̂t using the statistical procedures germane to the time series
model. Thereafter rt can be estimated by r̂t which satisfies (6).

It is difficult to obtain r̂t by solving equation (6) directly
in most of the situations because it involves an infinite
sum. Summation has been completed by Thompson (1985)
algebraically together with the procedure of applying Newton’s
method to estimate the cost of capital. Thompson and Wong
(1996) introduce an alternative iterative approach to get r̂t . The
estimate ρ̂t can then be obtained by F(r̂t ) using equation (2).

After obtaining the estimates r̂t and ρ̂t , the variance σ 2
rt

can be estimated by

σ̂ 2
rt =

[ ∞∑
j=1

j d̂t+j

(1 + r̂t )
j+1

]−2

â′
t �̂t ât (11)

and the variance σ 2
ρt can be estimated by

σ̂ 2
ρt = m2(1 + r̂t )

2m−2σ̂ 2
rt . (12)

The reliabilities of the discount rate rt and of the cost of capital
ρt can be measured by their standard deviations σ̂rt and σ̂ρt

respectively. We note that in theorem 1, the estimator for σ 2
rt

is in terms of d̃t+j , ãt and r̃t while the estimator for σ 2
ρt is in

terms of řt . In practice, we use d̂t+j to estimate d̃t+j , use ât to
estimate ãt and use r̂t to estimate both r̃t and řt .

In order to estimate σ 2
rt , two sequences {σ̂ 2

1,t,n} and {σ̂ 2
2,t,n}

have been proposed by Thompson and Wong (1996) such that

σ̂ 2
1,t,n =

[
2n∑

j=1

id̂t+j

(1 + r̂t )
j+1

]−2

â′
t,n�̂t,nât,n (13)

σ̂ 2
2,t,n =

[
n∑

j=1

j d̂t+j

(1 + r̂t )
j+1

]−2

â′
t,n�̂t,nât,n (14)

where ât,n = (ât , â
2
t , . . . , â

n
t )′ with ât = 1/(1 + r̂t ) and �t,n =

E[(d̂t,n − dt,n)(d̂t,n − dt,n)
′] with dt,n = (dt+1, dt+2, . . . , dt+n)

and d̂t,n = (d̂t+1, d̂t+2, . . . , d̂t+n). For the Wisconsin Power Pte
Ltd data, it has been observed that the sequence {σ̂ 2

1,t,n} (and
respectively {σ̂ 2

2,t,n}) is an increasing (respectively decreasing)
sequence converging to σ̂ 2

rt . Thus they can be used in the
estimation of σ 2

rt . For a tolerance level α, we can then find n

such that σ̂ 2
1,t,n and σ̂ 2

2,t,n satisfy

|σ̂1,t,n − σ̂2,t,n| � α. (15)

In this situation, both σ̂ 2
1,t,n and σ̂ 2

2,t,n or any of their linear
combinations can be used as an estimate of σ 2

rt . Thereafter,
σ 2

ρt can be estimated by applying equation (12).
However, it is well known that in general {σ̂ 2

1,t,n} and
{σ̂ 2

2,t,n} may not necessarily be an increasing function and
a decreasing function respectively. If they are not, then
|σ̂1,t,n − σ̂rt | and/or |σ̂2,t,n − σ̂rt | can be greater than α even
if (15) holds. In this situation, neither σ̂ 2

1,t,n nor σ̂ 2
2,t,n can be

used as an estimate for σ 2
rt . To overcome the difficulty, we

define

σ̂ 2
t,m,n = G(t, m, n) =

[
m∑

j=1

j d̂t+j

(1 + r̂t )
j+1

]−2

â′
t,n�̂t,nât,n (16)

and introduce the following theorem to make the theory of the
estimation for the cost of capital complete.

Theorem 2. There exist subsequences {n1}, {n2}, {n3} and
{n4} such that

(1) σ̂ 2
t,n1,n2

defined in (16) is an increasing series converging
to σ̂ 2

rt and
(2) σ̂ 2

t,n3,n4
defined in (16) is a decreasing series converging

to σ̂ 2
rt .

The proof is shown in appendix A.5.
To estimate σ 2

rt , the most difficult way will be computing
â′

t,n�̂t,nât,n, especially since each entry in the matrix �t =
(σij ) depends on the time series model for {dt }. To make the
entries of the matrix �t independent of the model for the class
of ARIMA models, we assume that {dt } follows the model


(B)(1 − B)ddt = �(B)εt .

Alternatively the model can easily be re-written as

dt = �(B)εt =
∞∑
i=0

ψiεt−i (17)

with ψ0 = 1.
Actually, the assumption that the dividends follow an

ARIMA model can be omitted as equation (17) can be obtained
by Wold’s representation theorem (see Box et al 1994) for
nearly any time series model. As long as ψi can be estimated
for any i, the estimation of the cost of capital and its reliability
in the paper can also be obtained and hence it becomes ‘model
free’. Nevertheless, estimating σ 2

rt is still the most difficult
part. To make the computation easier, the following theorem
is introduced.

Theorem 3. The product â′
t,N �̂t,N ât,N defined in (16) can be

written as

â′
t,N �̂t,N ât,N = σ 2

N∑
i=1

ψi−1

N∑
j=1

ai−j øj , (18)

where

øj = ψj−1

(
a2j − a2N+2

1 − a2

)
.

Thus, the computation of â′
t,N �̂t,N ât,N can be done in

O(N log N) operations.

The proof is in appendix A.6.
Here,

∑N
j=1 ai−j øj is the product of a Toeplitz matrix

and a vector. This can be done in O(N log N) operations by
embedding the Toeplitz matrix in a circulant matrix and then
using a fast Fourier transform; see Chan and Ng (1996). Hence
â′

t,N �̂t,N ât,N can be done in O(N log N) operations too, and
equation (18) speeds up the estimation procedure.

The reliabilities of both the discount rate and the cost
of capital ρt can be measured by equations (11) and (12)
respectively, which unfortunately involve infinite sums.
Thompson and Wong (1996) use the estimates in equations (13)
and (14) for the reliability of the discount rate, and they
involve only finite sums. This makes the estimation possible.
Application of equation (18) further reduces the computation
complexity, resulting in higher estimation accuracy.
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5. Discussion
In this paper we have been concerned with the applicability
of the old, but venerable, ‘dividend yield plus growth’ model.
Our analysis rests squarely on four assumptions to guarantee
that there will be a solution, in terms of rt , to the equation

Pt =
∞∑
i=1

dt+i

(1 + rt )i
.

Thompson and Wong (1996) have discussed in detail the
validity of assumptions 1–3 in reality. Hence, the only
assumption that concerns the application of our method is
the fourth one, that the {(i, j)} entry of the covariance
matrix of the forecast errors is bounded by M ki+j as in
equation (5). As discussed in section 3, assumption 4 is valid
as ARIMA(0, 1, q) is a good approximation for most of the
models used for the dividends and the estimate of the forecast
errors of nearly all models should be bounded by the forecast
errors of the AR(1) model with |φ| � 1. Applying Wold’s
representation theorem, one can conclude that the methods
presented here can be applied to most, if not all, practical
situations and can therefore be used without fear of troubling
anomalies.

Above all, the approach shown in this paper to determine
the cost of capital is adaptable to PCs. It consists of calculating
a sequence on cost of capital estimates which are guaranteed to
converge to the cost of capital. The calculation of a sequence
on the reliability of the cost of capital is also certain to converge
to the reliability.

The formula of the reliabilities for the discount rate had
previously involved infinite-dimensional vectors and matrices,
hence the estimation is not feasible. Thompson and Wong
(1996) have therefore introduced the estimates of the reliability
for the discount rate in which all vectors and matrices in the
formula are finite. This enables estimation to be carried out.
Nevertheless, when the dimensions of the vectors and matrices
are large, the estimation will take up considerable computation
time and incur more rounding error in the estimation process.
In this paper, a formula is introduced to reduce the computation
complexity, thus it speeds up the estimation procedure, leading
to a higher accuracy rate.

The method presented here rests solidly on the basis where
past historical observations are relevant to the future dividends,
notwithstanding situations where the estimates cannot be
precise. However, it is common knowledge that estimates are
inherently inaccurate. Thompson and Wong (1996) concluded
that the methods developed for the estimation of the cost of
capital and its reliability in most situations are still relevant
especially to regulated industries. This is because the statistical
time series models have the ability to track gradual changes and
adapt to them.

Since the 1980s, one cannot help but be struck by the
massive changes taking place in the business world. Changes
would include precipitous declines in the business fortunes
of many highly regarded firms; deregulation in the trucking,
airline, and banking industries; restructuring in the oil industry;
the rise and fall of internet stocks; a move toward globalization

and enhanced competition; and countless other changes which
were unexpected prior to the 1980s. One may wonder how well
the cost of capital can be applied in this changing environment.
Even though the estimation may not be so accurate, our
approach is still useful for the following reasons:

(i) the estimated cost of capital and its reliability provides
the best information we can get based on the present price
and past and present dividends, which gives investors the
figure for estimated returns if the time series model for the
past and present dividends is correct;

(ii) the model may change as time varies, and our approach
provides the formula for investors to update the cost of
capital and its reliability from time to time; and

(iii) for those companies with significant dividend fluctuations,
the forecast errors of the future dividends will
consequently be large.

In return the reliability of the cost of capital will become
immense and hence the confidence interval for the cost of
capital will be wider. Thus, the approach demonstrated in
this paper still provides investors with useful information on
the returns and reliability of the stocks purchased.

Nevertheless, investors may incorporate other approaches
to improve the estimation of the cost of capital and its
reliability. One such technique is the Bayesian approach
(Matsumura et al 1990, Wong and Bian 2000), while another
is the repeated time series approach (Wong and Miller 1990,
Wong et al 2001b). Once the cost of capital is computed,
it may be applied in stock selection. It will definitely be
better if some other methodologies are included, e.g. the
stochastic dominance approach (Wong and Li 1999, Li and
Wong 1999) and the technical analysis approach (Wong et al
2001a, 2003), and the economic and financial situations of the
market (Manzur et al 1999, Wan and Wong 2001, Wong et al
2004) are incorporated in the decision-making process.

This paper has developed the estimators for the cost of
capital and its reliability. However, we are still not able
to construct the confidence interval for the cost of capital
as the distribution of the estimator for the cost of capital
is unknown. To study its distribution, one may have to
use Monte Carlo methods. The distribution may still be
normal but it is more likely that it is non-normal or even
skewed. One may refer to Tiku et al (2000) for the flat-
tailed symmetric distribution or to Tiku et al (1999) for the
asymmetric distribution. After acquiring information on the
distribution, one can then construct simulation to obtain the
critical values and thereafter the confidence intervals can be
achieved.

Finally, although academics and finance practitioners
usually believe that the dividend series will be stationary, even
after differencing once, the series may remain stationary. In
this situation, a unit root test and cointegration test (Tiku and
Wong 1998, Wong et al 2004) should be incorporated in the
estimation.
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Appendix
For simplicity, we use a, aN , a, r and �t,N for ãt , ãt,N , ãt , r̃t

and �̃t,N respectively for all the proofs below.

A.1. Proof of theorem 1

We only prove the finiteness of |a′�ta| here. The rest of the
proof is either straightforward or can be modified from the
proof in Thompson and Wong (1996). From assumption 4, as
|σij | < M ki+j and k < 1 + r except for a finite set of {(i, j)},
there exists a constant A such that

|a′�ta| < A + M

∞∑
i=1

∞∑
j=1

(
k

1 + r

)i+j

= A + M

(
1

1 − k
1+r

)2

< ∞.

��

A.2. Proof of equation (9)

One can easily show that the covariance for the future dividend
(σnm) at time T + n is

σnm = cov(eT +n, eT +m)

=
{

σ 2[1 + (n − 1)(1 − θ)2] n = m � 1,

σ 2[(1 − θ) + (m − 1)(1 − θ)2] n > m � 1.

For simplicity, we let � = 1 − θ . Then, we have

ã′
t�t ãt = σ 2a′




1 � � · · ·
� 1 + �2 � + �2 · · ·
� � + �2 1 + 2�2 · · ·
...

...
...

. . .

· · · · · · · · · · · ·
� � + �2 � + 2�2 · · ·
· · · · · · · · · · · ·

· · · � · · ·
· · · � + �2 · · ·
· · · � + 2�2 · · ·
...

...
...

1 + (n − 1)�2 � + n�2 · · ·
� + n�2 1 + n�2 · · ·

· · · · · · · · ·




a

= σ 2a′




1 � � · · · · · · � · · ·
� 1 � · · · · · · � · · ·
� � 1 · · · · · · � · · ·
...

...
...

. . .
...

...
...

· · · · · · · · · · · · 1 � · · ·
� � � · · · � 1 · · ·
· · · · · · · · · · · · · · · · · · · · ·




a

+ a2σ 2a′




�2 �2 · · · · · · �2 · · ·
�2 2�2 · · · · · · 2�2 · · ·
...

...
. . .

...
...

...

· · · · · · · · · (n − 1)�2 n�2 · · ·
�2 2�2 · · · n�2 n�2 · · ·
· · · · · · · · · · · · · · · · · ·




a

= θσ 2a′Ia + �σ 2a′1a + a2�2σ 2a′

×




1 1 1 · · · 1 · · ·
1 2 2 · · · 2 · · ·
1 2 3 · · · 3 · · ·
...

...
...

. . .
...

...

1 2 3 · · · n · · ·
· · · · · · · · · · · · · · · · · ·




a

= θσ 2a′Ia + �σ 2a′1a + a2�2σ 2a′Ea,

where I and 1 are the identity matrix and matrix of all ones
respectively. As

E =




1 1 1 · · · 1 · · ·
1 1 1 · · · 1 · · ·
1 1 1 · · · 1 · · ·
...

...
...

. . .
...

...

1 1 1 · · · 1 · · ·
· · · · · · · · · · · · · · · · · ·




+




0 0 0 · · · 0 · · ·
0 1 1 · · · 1 · · ·
0 1 2 · · · 2 · · ·
...

...
...

. . .
...

...

0 1 2 · · · n − 1 · · ·
· · · · · · · · · · · · · · · · · ·




,

we have
a′Ea = a′1a + a2a′Ea.

Hence,

a′Ea = 1

1 − a2
a′1a.

If we let s = a + a2 + a3 + · · ·, we have

a′1a = a′




s

s

s

· · ·


 = as + a2s + a3s + · · · = s2 =

(
a

1 − a

)2

.

Since

a′Ia = a2 + a4 + a6 + · · · = a2

1 − a2
,

we then have

a′�ta = θσ 2a′Ia + �σ 2a′1a + a2�2σ 2 1

1 − a2
a′1a

= θσ 2 a2

1 − a2
+ �σ 2

(
a

1 − a

)2

+ a2�2σ 2 1

1 − a2

(
a

1 − a

)2

= θa2σ 2

1 − a2
+

�a2σ 2

(1 − a)2
+

a4�2σ 2

(1 − a2)(1 − a)2

= a2(1 − θa)2σ 2

(1 − a2)(1 − a)2
.

��
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A.3. Proof of the finiteness of a′Σta in model B

Let ki = 1 − θ1 − · · · − θi with k0 = 1 and let si =
1 + (1 − θ1)

2 + · · · + (1 − θ1 − · · · − θi)
2 for 1 � i � q

with s0 = 1. One can easily show that the covariance for the
future dividend (σnm) at time T + n is

σnn =
{

σ 2sn−1 1 � n � q + 1,

σ 2[sq−1 + mk2
q] n = m + q, m � 1,

(19)

σn1 =
{

kn−1σ
2 2 � n � q + 1,

kqσ
2 n = m + q, m � 1,

(20)

σnp =




σ 2
p−1∑
i=0

kn−p+iki

1 � p � q, p < n � q + p − 1,

σ 2kqK
p−1
0

n = q + m, m � p, q � p � 1,

(21)

σq+p+n,q+p =




σ 2

(q−1∑
i=0

kn+iki + pk2
q

)

1 � n � q − 1, p � 1,

σ 2(kqK
q−1
0 + pk2

q)

n � q, p � 1

(22)

where K
p

0 = ∑p

i=0 ki for p > 0. From (19)–(22), we can
tell that σm,n is bounded by an arithmetic process while an is
a geometric process. Hence, a′�ta is finite and assumption 4
holds. ��

A.4. Proof of equation (10)

For the AR(1) model, one can easily show that the covariance
for the future dividend (σnm) at time T + n is:

σnm =




σ 2
n−1∑
i=0

φ2i n = m � 1,

σ 2(φn−m + φn−m+2 + · · · + φn+m−2) n > m � 1.

For simplicity, we let 
n
m = φm + φm+2 + φm+4 + · · · + φn for

n � m,

D =




1 φ φ2 φ3 · · · · · ·
0 1 φ φ2 φ3 · · ·
0 0 1 φ φ2 · · ·
· · · · · · · · · · · · · · · · · ·


 ,

and let � = D′ + D − I. Then we have

�t = σ 2




1 φ φ2 · · · φn−1 · · ·
φ 
2

0 
3
1 · · · 
n

n−2 · · ·
φ2 
3

1 
4
0 · · · 
n+1

n−3 · · ·
...

...
...

. . .
...

...

φn−1 
n
n−2 
n+1

n−3 · · · 
2n−2
0 · · ·

· · · · · · · · · · · · · · · · · ·




and

a′�ta = σ 2a′�a + a2φ2a′�ta = σ 2

1 − a2φ2
a′�a. (23)

As

a′Da = a′D′a = a′




a + a2φ + a3φ2 + a4φ3 + · · ·
a2 + a3φ + a4φ2 + a5φ3 + · · ·
a3 + a4φ + a5φ2 + a6φ3 + · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·




= a′




as

a2s

a3s

a4s

· · ·




= a2s + a4s + a6s + · · · = s(a2 + a4 + a6 + · · ·)
= a2st = a2

(
1

1 − aφ

) (
1

1 − a2

)
,

where s = 1+aφ+a2φ2+a3φ3+· · · and t = 1+a2+a4+a6+· · ·.
Hence,

a′�a = 2a2st − a′Ia = 2a2st − ||a||2

= 2a2

(
1

1 − aφ

) (
1

1 − a2

)
− a2

1 − a2

=
(

a2

1 − a2

) (
1 + aφ

1 − aφ

)
. (24)

From (23) and (24), we have

a′�ta =
(

σ 2

1 − a2φ2

) (
a2

1 − a2

) (
1 + aφ

1 − aφ

)

= a2σ 2

(1 − a2)(1 − aφ)2
.

��

A.5. Proof of theorem 2
As the sequence 


[

n∑
i=1

id̂t+i

(1 + r̂t )
i+1

]−2



is a decreasing sequence while the sequence {â′
t,n�̂t,nât,n} is

an increasing sequence, there exist subsequences


[
n1∑

i=1

id̂t+i

(1 + r̂t )
i+1

]−2

 ,




[
n2∑

i=1

id̂t+i

(1 + r̂t )
i+1

]−2

 ,

{â′
t,n3

�̂t,n3 ât,n3} and {â′
t,n4

�̂t,n4 ât,n4} such that


[
n1∑

i=1

id̂t+i

(1 + r̂t )
i+1

]−2

â′
t,n3

�̂t,n3 ât,n3




is increasing while the sequence


[
n2∑

i=1

id̂t+i

(1 + r̂t )
i+1

]−2

â′
t,n4

�̂t,n4 ât,n4




is decreasing. ��
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A.6. Proof of theorem 3

One can easily show that the forecast error for the future
dividend (eT +n) and the covariance for the future dividend (σnm)
at time T + n are respectively

eT +n =
n−1∑
i=0

ψiεT +n−i ,

σnm = cov(eT +n, eT +m) n > m � 1

= cov

(n−1∑
i=0

ψiεT +n−i ,

m−1∑
j=0

ψjεT +m−j

)

= σ 2
m−1∑
i=0

ψiψn−m+i .

Hence,

a′
N�t,NaN =

N∑
m=1

N∑
n=1

an+m(σnm)

= σ 2
N∑

m=1

N∑
n=1

an+m
m−1∑
i=0

n−1∑
j=0

ψiψjδn−i,m−j

= σ 2
N∑

m=1

N∑
n=1

m∑
i=1

n∑
j=1

an+mψi−1ψj−1δn−i,m−j

= σ 2
N∑

i=1

N∑
j=1

N∑
m=j

N∑
n=i

ψi−1ψj−1a
n+mδn−i,m−j

= σ 2
N∑

i=1

N∑
j=1

N∑
m=j

ψi−1ψj−1a
i−j

N∑
m=j

a2m

= σ 2
N∑

i=1

N∑
j=1

N∑
m=j

ψi−1ψj−1a
i−j

(
a2j − a2N+2

1 − a2

)

= σ 2
N∑

i=1

ψi−1

N∑
j=1

ai−j øj ,

where

øj = ψj−1

(
a2j − a2N+2

1 − a2

)
.
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