
ON THE ESTIMATION OF NON-STATIONARY
FUNCTIONAL SERIES TARMA MODELS

Aggelos G. Poulimenos and Spilios. D. Fassois

Stochastic Mechanical Systems & Automation (SMSA) Laboratory
Department of Mechanical and Aeronautical Engineering

University of Patras, GR 26500 Patras, Greece
Tel/Fax: (++30) 2610 997405, e-mail: {poulimen,fassois}@mech.upatras.gr

Internet: www.mech.upatras.gr/∼sms

ABSTRACT

Maximum Likelihood (ML) and Multi-Stage Weighted Lin-
ear / Non-Linear Least Squares (MS-WLLS / MS-WNLS)
estimation methods are formulated for non-stationary Func-
tional Series Time-dependent ARMA (FS-TARMA) mod-
els. The methods’ effectiveness, as well as their superiority
over Ordinary Linear / Non-Linear Least Squares (OLLS /
ONLS) type methods not accounting for innovations serial
heteroscedasticity, are demonstrated via Monte Carlo exper-
iments.

1. INTRODUCTION

Non-stationary stochastic signals, that is signals with time-
dependent characteristics, are frequently encountered in en-
gineering, and have been receiving increasing attention in re-
cent years [1]. Examples include signals relating to seismic
motion, speech, rotating machinery, and so on.

Parametric methods for the modelling and analysis of
non-stationary stochastic signals complement their non-
parametric counterparts and offer advantages such as rep-
resentation parsimony, improved accuracy, resolution, and
tracking [2]. A notable class of such methods is based upon
Functional Series Time-dependent AutoRegressive Moving
Average (FS-TARMA) models, which resemble their con-
ventional ARMA counterparts with the important differ-
ence that their parameters and innovations variance are
time-dependent, belonging to specific functional subspaces
[1, 2, 3]. FS-TARMA methods are particularly attractive over
alternative approaches, as they offer high parsimony, the ca-
pability of tracking “fast” or “slow” variations in the dynam-
ics, as well as high achievable accuracy and resolution [2].

Functional Series TARMA model estimation has been,
thus far, mainly based upon Ordinary Linear / Non-Linear
Least Squares (OLLS / ONLS) type methods [1, 2]. The re-
sulting estimators are, in the general case of time-dependent
innovations variance (the heteroscedastic case), inefficient.
On the other hand, Maximum Likelihood (ML) estimation
leads to non-linear estimators of increased complexity even
in the pure AutoRegressive (FS-TAR) case [4].

The goal of the present study is the formulation of Max-
imum Likelihood (ML) and Multi-Stage Weighted Linear /
Non-Linear Least Squares (MS-WLLS / MS-WNLS) estima-
tors for FS-TAR/TARMA models, as well as their testing and
comparison to Ordinary Linear / Non-Linear Least Squares
(OLLS / ONLS) estimators via Monte Carlo experiments.

2. FUNCTIONAL SERIES TARMA MODELS

FS-TARMA models constitute conceptual extensions of their
conventional (stationary) ARMA counterparts, in that their
parameters are explicit functions of time by belonging
to functional subspaces spanned by selected deterministic
functions (basis functions). An FS-TARMA(na,nc)[pa,pc,ps]
model, with na, nc designating its AutoRegressive (AR) and
Moving Average (MA) orders, respectively, and pa, pc, ps its
AR, MA and innovations standard deviation functional basis
dimensionalities, respectively, is of the form [1, 2]:

x[t]+
na

∑
i=1

ai[t] · x[t − i]

︸ ︷︷ ︸

AR-part

= e[t]+
nc

∑
i=1

ci[t] · e[t − i]

︸ ︷︷ ︸

MA-part

(1)

with t designating normalized discrete time, x[t] the non-
stationary signal modelled, and e[t] an uncorrelated (white)
innovations (residual) sequence with zero mean and time-
dependent variance σ 2

e [t]. ai[t] and ci[t] stand for the i-th
time-dependent AR and MA parameter, respectively, which,
along with the residual standard deviation, belong to their
respective functional subspaces:

FAR
∆
= {Gba(1)[t], Gba(2)[t], ..., Gba(pa)[t]}

FMA
∆
= {Gbc(1)[t], Gbc(2)[t], ..., Gbc(pc)[t]}

Fσe
∆
= {Gbs(1)[t], Gbs(2)[t], ..., Gbs(ps)[t]}

In these expressions the indices ba( j) ( j = 1, . . . , pa), bc( j)
( j = 1, . . . , pc) and bs( j) ( j = 1, . . . , ps) designate the func-
tions (from a properly ordered set, such as Chebyshev or
other polynomials) that are included in each basis. The time-
dependent AR/MA parameters and the residual standard de-
viation may be thus expressed as:

ai[t]
∆
=

pa

∑
j=1

ai, j ·Gba( j)[t], ci[t]
∆
=

pc

∑
j=1

ci, j ·Gbc( j)[t]

σe[t]
∆
=

ps

∑
j=1

s j ·Gbs( j)[t]

with ai, j, ci, j and s j designating the corresponding coeffi-
cients of projection. The model is thus parameterized in
terms of the projection coefficients ai, j, ci, j, s j, and the model
structure (M ) parameters (the model orders na, nc, and the
functional subspace indices).



3. MAXIMUM LIKELIHOOD ESTIMATION OF
FS-TARMA MODELS

Maximum Likelihood (ML) estimation of the model projec-
tion coefficient vector 1:

θ ∆
=
[

ϑ T | sT ]T

ϑ ∆
= [ a1,1 . . . ana,pa | c1,1 . . . cnc,pc ]T , s

∆
= [s1 . . .sps ]

T

is presently considered based upon available signal samples
xN = {x[1] . . .x[N]} and a given model structure M .

The ML estimator is defined as the estimator that maxi-
mizes the likelihood of the unknown vector θ given the ob-
servations xN :

θ̂ML = argmax
θ

lnL (θ |xN)

L (θ |xN)
∆
= f (xN |θ) = f (eN |θ)

with L (·) designating the likelihood function, f (·) proba-
bility density function, and eN = {e[1], . . . ,e[N]}. Assuming
Gaussian observations, the conditional (upon the initial con-
ditions) form of the log-likelihood is:

ln f (eN |θ) = ln
N

∏
t=1

f (e[t]|θ) =
N

∑
t=1

ln f (e[t]|θ) =

=
N

∑
t=1

ln
(

(2π σ2
e [t,s])

−1/2 · exp
{
−e2[t,ϑ ]

2σ2
e [t,s]

})

=

= −
N
2
· ln2π −

1
2
·

N

∑
t=1

(

ln(gT
s [t] · s)2 +

e2[t,ϑ ]

(gT
s [t] · s)2

)

(2a)

gs[t]
∆
=
[

Gbs(1)[t] Gbs(2)[t] ... Gbs(ps)[t]
]T (2b)

with e[t,ϑ ] designating the residual corresponding to the ϑ
parameter vector and obtained via Eq. (1).

Maximization of the log-likelihood function of Eq. (2a)
constitutes a non-linear optimization problem that has to
be handled via iterative techniques. This is due to the
non-quadratic dependence of the log-likelihood function
upon the MA coefficients of projection (TARMA case) and
the innovations standard deviation coefficients of projection
(TAR/TARMA cases).

It is, nevertheless, well known that iterative non-linear
optimization techniques are, in particular in the present case,
amenable to acute wrong convergence problems typically
due to the existence of several local maxima [2, 5]. For this
reason quite accurate parameter estimates are normally re-
quired for starting the optimization. Such estimates may be
provided by Multi-Stage Weighted Linear / Non-Linear Least
Squares (MS-WLLS / MS-WNLS) based estimation meth-
ods which are discussed next. Notice that (depending upon
the desired accuracy) the MS-WLLS / MS-WNLS methods
may be used either as stand-alone (suboptimal) schemes or
as essential parts of (optimal) ML estimation.

1Bold face symbols designate (column) vector quantities.

4. MULTI-STAGE WEIGHTED LEAST SQUARES
ESTIMATION OF FS-TARMA MODELS

Multi-Stage methods aim at the (suboptimal) decoupling of
the complete estimation problem into a sequence of simpler
subproblems. This presently amounts to decoupling the es-
timation problem into AR/MA coefficients of projection es-
timation and innovations standard deviation coefficients of
projection estimation. In the mixed FS-TARMA case the
AR/MA coefficients of projection estimation may be further
decoupled into separate AR and MA estimation procedures.
These decouplings facilitate estimation, as they permit the
use of Weighted Linear / Non-Linear Least Squares (in the
non-linear case the benefit being the reduction in the opti-
mization space dimensionality) and other techniques (such as
convolution and deconvolution operations) at the price of sta-
tistical inefficiency. The resulting deterioration in the achiev-
able accuracy may be, nevertheless, small.

The first of the above mentioned decouplings is moti-
vated by the fact that, given the true innovations standard de-
viation coefficients of projection, say s

◦, the log-likelihood
simplifies to:

ln f (eN |ϑ) = −

(

1
2
·

N

∑
t=1

e2[t,ϑ ]

(gT
s [t] · s◦)2

)

+ const. (3)

In the pure FS-TAR case ϑ ∆
= a (the AR coefficients of pro-

jection vector) and the dependence of e[t,ϑ ] upon it is lin-
ear. This implies that maximization of the above likelihood
is a quadratic problem, leading to a Weighted Linear Least
Squares (WLLS) estimator. In the mixed FS-TARMA case
a subsequent decoupling [as in the Polynomial-Algebraic (P-
A) or the Two Stage Least Squares (2SLS) methods [2]] may
be used in order to convert the problem into a sequence of
linear subproblems. The obtained estimates may be option-
ally refined via weighted non-linear least squares.

4.1 MS-WLLS Estimation of FS-TAR Models
Stage 1. Initial AR Coefficients of Projection Estimation.

Since the vector s is not a-priori available, initial estimation
of ϑ ≡ a is achieved via the Ordinary Linear Least Squares
(OLLS) estimator:

ϑ̂ in ≡ â
in = argmin

ϑ

N

∑
t=1

(
x[t]−φ T [t] ·ϑ

)2
=⇒

=⇒ ϑ̂ in ≡ â
in =

(
N

∑
t=1

φ [t] ·φ T [t]

)−1

·

(
N

∑
t=1

φ [t] · x[t]

)

(4)

φ [t] ∆
=
[
−Gba(1)[t] · x[t −1] . . . −Gba(pa)[t] · x[t −na]

]T

Stage 2. Residual Standard Deviation Estimation.

The residual series e[t, ϑ̂ in] is obtained via the model expres-
sion of Eq. (1) using the estimate ϑ̂ in ≡ â

in. Estimation of the
residual standard deviation coefficients of projection (vector
s) may be then obtained as [6]:

ŝ = argmin
s

1
N

N

∑
t=1

(

|e[t, ϑ̂ in]|−

√

2
π
·gT

s [t] · s

)2

=⇒



=⇒ ŝ =

√
π
2
·

(
N

∑
t=1

gs[t] ·gT
s [t]

)−1

·

(
N

∑
t=1

gs[t] · |e[t, ϑ̂ in]|

)

(5)

For increased accuracy these estimates may be refined by
maximizing the log-likelihood of s given e[t, ϑ̂ in] (now
treated as observations), that is:

ŝ = argmax
s

{

−
1
2

N

∑
t=1

(

ln(gT
s [t] · s)2 +

e2[t, ϑ̂ in]

(gT
s [t] · s)2

)}

(6)

Estimation of s based upon this expression constitutes a non-
linear optimization problem that may be tackled via proper
(iterative) techniques.

Stage 3. Final AR Coefficients of Projection Estimation.

Once ŝ is available, final estimation of the AR coefficients
of projection may be achieved by maximizing the log-
likelihood function of Eq. (3). This leads to the Weighted
Linear Least Squares (WLLS) estimator:

ϑ̂ ≡ â = argmin
ϑ

N

∑
t=1

(
x[t]−φ T [t] ·ϑ

)2

(gT
s [t] · ŝ)2 =⇒

=⇒ ϑ̂ ≡ â =

(
N

∑
t=1

φ [t] ·φ T [t]
(gT [t] · ŝ)2

)−1

·

(
N

∑
t=1

φ [t] · x[t]
(gT [t] · ŝ)2

)

(7)

4.2 MS-WLLS and MS-WNLS Estimation of FS-
TARMA Models
Stage 1. Initial AR/MA Coefficients of Projection Estimation.

Initial estimation of the AR/MA coefficients of projection
(vector ϑ ) may be achieved via the estimator:

ϑ̂ in = argmin
ϑ

N

∑
t=1

e2[t,ϑ ] (8)

Since the cost function is non-quadratic in terms of the MA
coefficients of projection, the problem may be (suboptimally)
converted into a sequence of linear subproblems via the
Polynomial-Algebraic (P-A) or the Two Stage Least Squares
(2SLS) methods [2] (MS-WLLS version). For increased accu-
racy, these estimates may be refined by the Non-Linear Least
Squares (NLS) estimator of Eq. (8), implemented via itera-
tive optimization techniques (MS-WNLS version).

Stage 2. Residual Standard Deviation Estimation.

The residual series e[t, ϑ̂ in] is obtained via the model expres-
sion of Eq. (1) using the estimate ϑ̂ . Estimation of the resid-
ual standard deviation coefficients of projection (vector s) is
then achieved as in Stage 2 of the FS-TAR case.

Stage 3. Final AR/MA Coefficients of Projection Estimation.

Once ŝ is available, the final estimation of the AR/MA co-
efficients of projection may be based upon maximization of
the log-likelihood function of Eq. (3). Since this criterion is
non-quadratic in terms of the MA coefficients of projection,
the problem may be (suboptimally) converted into a sequence
of linear subproblems via properly adjusted (weighted) ver-
sions of the Polynomial-Algebraic (P-A) or the Two Stage
Least Squares (2SLS) methods [2] (MS-WLLS version). For

Table 1: FS-TAR(2) ML estimation results (500 runs).

Projection Theoretical ML estimate
coefficient value (mean ± std deviation)

a1,1 −0.1269 −0.1264 ± 0.0087
a1,2 −0.2050 0.2043 ± 0.0078
a1,3 0.2058 0.2058 ± 0.0075
a2,1 0.7401 0.7390 ± 0.0083
a2,2 0.0180 0.0176 ± 0.0082
a2,3 −0.0180 −0.0176 ± 0.0072
s1 1.5000 1.4986 ± 0.0149
s2 −0.6000 −0.5994 ± 0.0169
s3 0.4000 0.3990 ± 0.0135

Table 2: FS-TARMA(2,2) ML estimation results (500 runs).

Projection Theoretical ML estimate
coefficient value (mean ± std deviation)

a1,1 −0.3611 −0.3603 ± 0.0118
a1,2 0.0604 0.0605 ± 0.0071
a1,3 0.3129 0.3128 ± 0.0087
a2,1 0.7610 0.7603 ± 0.0115
a2,2 −0.0048 −0.0052 ± 0.0070
a2,3 −0.0283 −0.0281 ± 0.0078
c1,1 −0.1863 −0.1863 ± 0.0174
c1,2 −0.0699 −0.0702 ± 0.0122
c1,3 0.0937 0.0940 ± 0.0147
c2,1 0.0503 0.0508 ± 0.0174
c2,2 0.0141 0.0144 ± 0.0120
c2,3 −0.0191 −0.0192 ± 0.0141
s1 0.9000 0.8989 ± 0.0088
s2 0.4000 0.3995 ± 0.0070
s3 −0.2000 −0.1999 ± 0.0059

increased accuracy, these estimates may be refined by the
Weighted Non-Linear Least Squares (WNLS) estimator im-
plied by Eq. (3), implemented via iterative optimization tech-
niques (MS-WNLS version).

5. MONTE CARLO EXPERIMENTS

The effectiveness of FS-TAR/TARMA Maximum Likeli-
hood (ML) estimation, based upon initialization via the
Multi-Stage Weighted Linear / Non-Linear Least Squares
(MS-WLLS / MS-WNLS) methods, is examined via two
Monte Carlo experiments (MS-WLLS is used in the FS-TAR
case; MS-WNLS combined with 2SLS estimation, maxi-
mum of 10 2SLS iterations and inverse function order of 12,
is used in the FS-TARMA case).

Non-stationary signals generated by an FS-TAR(2)[3,3]

model with Chebyshev II functional subspaces (FAR =
Fσe = {G0[t], G1[t], G2[t]}) are used in the first experi-
ment, and signals generated by an FS-TARMA(2,2)[3,3,3]

model, also with Chebyshev II functional subspaces (FAR =
{G0[t], G2[t], G3[t]}, FMA = Fσe = {G0[t], G1[t], G3[t]}),
are used in the second experiment. The true model coeffi-
cients of projection are shown in Tables 1 (FS-TAR case)
and 2 (FS-TARMA case).

Each experiment consists of 500 runs, with each run
based upon an N = 6000 sample-long signal realization. The
Maximum Likelihood (ML) FS-TAR/TARMA coefficient of



: Theoretical, : ML estimates, : OLS estimates 

−0.5

0

0.5

1

α 1[t] 200 240 280 2970 3000 3030

Zoom

5570 5600 5630

0 1000 2000 3000 4000 5000 6000

0.6

0.7

0.8

Time

α 2[t]

Figure 1: FS-TAR(2) experiment: The theoretical, ML-
estimated, and OLLS-estimated AR parameter trajectories
(mean estimates ± two standard deviations; 500 runs).

projection estimation results are summarized in Tables 1 and
2, respectively, and are shown to be in excellent agreement
with their theoretical counterparts, being characterized by
reasonably small standard deviations.

The theoretical and ML-estimated (mean ± two standard
deviations) AR/MA parameter trajectories are, as functions
of time, depicted in Figures 1 and 2 for the FS-TAR(2) and
FS-TARMA(2,2) cases, respectively. In the first figure the
corresponding Ordinary Linear Least Squares (OLLS) es-
timated trajectories [estimator of Eq. (4)] are also shown
(mean ± two standard deviations) for purposes of compari-
son. Similarly, the corresponding Ordinary Non-Linear Least
Squares (ONLS; 2SLS based initialization) estimated trajec-
tories [estimator of Eq. (8)] are shown in Figure 2. The
basic difference between the OLLS/ONLS and the ML es-
timators is that the former do not account for the serially
heteroscedastic (time-varying variance) nature of the inno-
vations. The two types of estimates are, in both experiments,
similar, although the ML estimates expectedly exhibit some-
what improved standard deviations.

6. CONCLUSIONS

In this study Maximum Likelihood (ML) and Multi-
Stage Weighted Linear / Non-Linear Least Squares (MS-
WLLS / MS-WNLS) estimators were formulated for FS-
TAR/TARMA models. The effectiveness of the ML estima-
tors and their superiority over their Ordinary Linear / Non-
Linear Least Squares (OLLS / ONLS) counterparts were
demonstrated via Monte Carlo experiments.
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