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On the Estimation of the Order of a Markov 
Chain and Universal Data Compression 

Abstract-We focus on the estimation of the order of a finite Markov 
source based on empirically observed statistics. The following performance 
criterion is adopted minimize the probability of underestimating the model 
order while keeping the overestimation probability exponent at a given 
prescribed level. A universal asymptotically optimal test, in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsense just 
defined, is proposed for the case where a given integer is known to upper 
bound the true order. For the case where such a bound is unavailable, an 
alternative rule, based on the Lempel-Ziv (LZ) data compression algo- 
rithm, is also shown to be asymptotically optimal and computationally more 
efficient. 

1. INTRODUCTION 

HE PROBLEM of selecting the model order of a T stochastic process has been widely studied by Akaike 
[1]-[3], Kayshap [4], Shibata [ 5 ] ,  Rissanen [6]-[9], Parzen 
[lo], Hannan [ l l ] ,  Hannan and Quinn [12], Schwarz [13], 
Tong [14], Wax and Kailath [15], Broersen [16], and others. 
Most of the methods proposed for order selection are 
heuristic in the sense that they do not directly minimize a 

certain measure of the error between the order estimate 
and the true order. Instead, they define various informa- 

tion criteria [e.g., A information criterion (AIC), Bayesian 

information criterion (BIC), criterion autoregressive trans- 
fer function (CAT), final prediction error (FPE), minimum 
description length (MDL), etc.], that depend upon the 

unknown order. The order estimator is usually defined as 
the minimizing value of this information criterion. How- 

ever, no optimality results concerning their statistical per- 
formance (beyond strong consistency) have been reported 
for the case where a true order does exist. An exception is 
Rissanen [6]-[9], whose minimum description length 
(MDL) rule was shown by Schwarz [13] to be optimal in 
the Bayesian sense of minimizing the error probability. His 

results hold for the independent identically distributed 
(i.i.d.) exponential family (Darmois-Koopman). Rissanen 
was the first to point out an interesting relation between 
estimation and coding. His information criterion, the MDL, 

was motivated by a tight lower bound [9, Theorem 11 on 

Manuscript received November 23, 1987. 
N. Merhav was with the Department of Electrical Engineering, Tech- 

nion-Israel Institute of Technology, Haifa, Israel. He is now with 
AT&T Bell Laboratories. 600 Mountain Avenue, Murray Hill, NJ 07974. 

M. Gutman was with the Department of Electrical Engineering, Tech- 
nion-Israel Institute of Technology, Haifa, Israel. He is now with Codex 
Corporation, 20 Cabot Boulevard, Mansfield, MA 02048-1193. 

J.  Ziv is with the Department of Electrical Engineering, 
Technion-Israel Institute of Technology, Haifa 32000, Israel. 

IEEE Log Number 8930431. 

the expected length of a universal lossless code for a given 
class of probabilistic sources zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ P o }  where B takes values in 

a compact set Q c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ‘. To approach this lower bound, one 

should first estimate the parameter vector 6 = (e , ,  . * ,  6,)  
from the observed sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = (x1; -, x n ) ,  then encode 

each component of the estimate 4 (i = 1; . . , k)  by 5 log n 
bits, and finally, allocate -log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPe( x)  bits for encoding the 
observation sequence. Hence the total length of the code- 
word is 

MDL(k)  2 - l o g P g ( x ) + ~ k l o g n .  

The order estimator L, proposed by Rwanen, is the value 
of k w@ch minimizes MDL(k), and the minimum value 
MDL(k)  is a measure of the information treasured in the 
observed sequence. Notice that the term jklogn plays a 
role of “penalty” for selecting hgh orders. Rissanen also 

proposed predictive versions [9] of the MDL, but these 
have the same asymptotic behavior as the nonpredictive 
MDL. Although Rissanen’s criterion for the model choice 
has been shown to be strongly consistent and optimal in 

the Bayesian sense (as mentioned earlier), his discussion is 
not limited to the case where a “true” order exists (i.e., the 

case where the source obeys one of the competing models). 
When there is no real underlying model for generating the 

data, there is no longer a meaning for the “performance” 
of the order estimator in the usual statistical sense but only 
in the sense of minimizing the description length. 

In this paper, we study the order estimation for 
discrete-time finite-alphabet ergodic Markov chains. In 
contrast to Rissanen, we limit ourselves to the case where a 

true order k exists; that is, we assume the data to be 
actually generated by a k th-order Markov source, and our 
goal is to estimate the true order k as “accurately” as 
possible. To measure accuracy, we employ th,e following 
performance criterion. Among all*estimators k for which 
the overestimation probability Pk(k > k)  decays faster than 

(for a given X > O )  uniform4 for any Markovian 
probability measure Pk of order k, we wish to find an 
estirpator that minimizes the underestimation probability 

Pk( k < k )  uniformly for every Pk. (A more precise defini- 
tion will be given in Section 11.) This criterion, which can 
be viewed as an extension to the Neyman-Pearson crite- 
rion, makes sense for the following two reasons. 

1) The overestimation event can be interpreted as a 
“false alarm” event where “too much effort” is dedicated 

2 - A n  
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to model the given data, while the underestimation case - 
represents an identification failure (missed detection). The 

statistician would like to guarantee a certain tolerable level 
of overestimation probability if his computational re- 
sources (e.g., memory, computational power) are limited. 

2) The trade-off between overestimation and underesti- 
mation probability can be balanced by appropriately vary- 
ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. This is different from other existing methods [1]-[15], 
where the overestimation probability is balanced by adding 
to the log-likelihood penalty terms which are proportional 
to the model order. 

It should be pointed out that our optimal estimator (in 

the sense defined earlier), turns out to have an intuitively 
appealing interpretation related to universal data compres- 

sion. However, in contrast to Rissanen, who approaches 
the problem from an information-theoretic point of view 

a priori, here we first define a performance criterion to be 
optimized, while the relation of our optimal estimator to 
universal coding is only observed a posteriori. (In other 
words, while Rissanen's rule is efficient for coding, our 
algorithm is optimal in the extended Neyman-Pearson 
sense described earlier.) 

Furthermore, it is shown that every Pk (which can not 
be reduced to Pk- l ) ,  some A > 0 exists such that both 
overestimation and underestimation probabilities vanish 
exponentially fast as n -, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. On the other hand, it is 
demonstrated that other existing algorithms yield an over- 

estimation probability larger than 2-'" for any c > 0 and n 
sufficiently large (i.e., a nonexponential decay). This does 
not contradict Schwarz [13], who proved the optimality of 
the MDL rule in the Bayesian sense, because our result is 
uniformly optimal for any Pk and satisfies the exponential 
constraint. 

Another advantage of the proposed estimator, as com- 
pared to existing estimators, concerns its computational 
complexity and is discussed later. 

In the remainder of this paper we propose an optimal 
order estimator for a case where some given integer k, is 
known to upper-bound the true order k. The proposed 
estimator involves empirical entropies of orders 0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj I k, 

and is therefore closely related to universal data compres- 
sion (where the unknown letter probabilities are replaced 
by their ML estimates). For the case where such an upper 
bound k, is unavailable, we derive an alternative estima- 
tor, based upon the Lempel-Ziv (LZ) data compression 
algorithm [17], which is also shown to be asymptotically 
optimal and computationally more efficient. The tech- 
niques applied here are similar to those used by Gutman 

WI .  

11. PROBLEM FORMULATION 

Let P, denote the class of all stationary ergodic 
discrete-time k th-order Markov sources (i.e., P (  x, IxL-:) 
= P ( x , I x ~ I ~ ) ) ,  whereby each random variable x, takes on 
values in a finite set A (alphabet) with cardinality IAl= a. 
Denote by P, E P,, a k th-order Markovian probability 

measure. Let x = (xl, x2; . -, x,) E A" be an observed se- 

quence emitted from an unknown k th-order Markovian 

source Pk E P,. We wish to estimate the order k y d e r  the 
following performance criterion. Minimize Pk( k(n) < k )  
for all k and every Pk EP,, subject to the following 
constraint: for every k and every P, E P,, 

(1) > k )  > A  1 
where X > 0 is a given number and f ( n )  A L is an order 
estimator. That is, we seek a rule which on the one hand 
guarantees, for every Pk E P,, a certain level of overesti- 
mation error exponent, and on the other hand, minimizes 

the underestimation probability, whatever the true under- 
lying probability measure is. We first assume that there is 
a known integer k, which upper-bounds the true order k, 
namely, 0 I k I k, (k  = 0 denotes a memoryless source). 
This assumption will be later relaxed. 

111. MAIN RESULTS 

Let s, 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx::: = ( x , - ~ ,  x , - ~ , .  . -, x , ~ , )  E Ak,  (1 I i I n )  
denotes the state of the Markov source at time i. (It is 
assumed that the source starts at a fixed state sl= 
(x,,, xP l , .  . ., x - , + ~ )  E A k ) .  We denote by 6(x,, U ,  s,, s) 
the indicator function for x, = U and s, = s ( U  E A ,  s E A,) .  
Now let 

1 "  
q,k(u,s)  A; c 6(x, ,u ,s , ,s)  (2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 - 1  

(3) 

The ak X a matrix whose entries are q,k(u, s), U E A ,  s E 

Ak will be referred to as the kth-order Markov type of x 
and denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,k. Clearly, q,k can be viewed as a kth- 
order Markovian probability measure for any x. 

We next define the k th-order empirical entropy and the 
k th-order divergence as follows: 

H(4,k)  A - c 4,kW c 4,k(uIs)logq,k(Uls) ( 5 )  
s E Ah u € A  

where ~ ( ~ 1 s )  A Pr{x, = uls, =s}, log(-) ii log2(.) and 

OlogO A 0. Let P i ( x )  denote the probability of x E A" 
under P,. It can now be easily shown that 

Define the following order estimator: 

k* = min { j :  H (  q i )  - H (  q i 0 )  I A}. 

1 
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The following theorem establishes the asymptotic optimal- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a, where 52, is the set of x'~slfor which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= j .  k, 
ity of k*. is the maximum possible value of k, it can be shown that 

q,ko is a sufficient statistic for optimal estimation in the 
sense of error exponents. Following (l), some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 > 0 exists 
such that for sufficiently large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX'EU:P,+~~~,, 
and all k: 

Theorem I :  For any integer k and Pk E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,, 
a) liminf,,,,[-(l/n)logP,(k*> k)] > A ;  
b) for any estimator k satisfying (l), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I1 + m [ a  
Notice that the estimator k* (defined in (8)) has a 

k o  

2-('+')"> max P , ( L > k )  2 max P,(x) 
E 'A ' k E P k j = k t l  ~ € 0 ,  

1 
1 

limsup - l o g P , ( k * < k )  ~ l i m i n f  - l o g P , ( i < k )  . ] t l 4 m  [ n  

simple interpretation related to universal data compres- 
sion. We start from j = 0 and seek the first integer j for 
which H (  q i )  is sufficiently close to H (  4;"). The empirical 
entropy H (  q i )  is approximately (up to a vanishingly small 

quantity) equal to the normalized length of Rissanen's 
universal code for the class P,. Similarly, H(q,ko) is related 
to Pko. If these two quantities are close enough (with 

difference less than A),  then there is no significant saving 
in the codeword length if one increases the memory of the 

codebook from j to k,. In that case we therefore decide 
that j is the order of the Markovian source. Another way 

is to observe that k* is asymptotically equivalent to 

n 

1 
MDL( j)-  - MDL(k,) < A 

where MDL is defined in the Introduction. This then 

differs from Rwanen's original rule that just minimizes 
MDL( j )  over the integers 0 I j S k,. 

Pk( k* < k )  = Pk 
Proof of Theorem I: Let M ,  e { x : H( q i )  - H( 4;") I j S k - 1  

(13) 
A}, and let T; be the set of all-sequences in A" with the 
same jth-order Markov type as x. The cardinality of T,' 
will be denoted by IT,'[. To prove a) we first establish an 

= P k ( L <  k ) .  

This completes the proof of Theorem 1. 

auxiliary lemma. 
Lemmu A:  For every c > 0 and n sufficiently large, 

2n[Jf(4i)-'I < ITJI < 2 n H ( 4 ! )  
x -  - 

The proof appears in Appendix I (Sharper bounds are 

Since all sequences in T,k,cT,k are equiprobable, we 
given in [19]). 

have 

P , ( k * > k ) c P , ( M ; ) <  max P k ( M i )  
' k  ' h  

= IT,ko12-""4,k' 
T,",, c Mi 

Assume now that k, is unknown, but still k is bounded. 
Clearly, the algorithm k* as defined in (8) is no longer 

applicable. We now demonstrate an alternative estimator 

k**, based on the LZ data compression algorithm [17], 
which is also shown to be asymptotically optimal. 

Let 

1 
k** Li min j :  H (  q i )  - n ULz(x) I A] (14) 

where UL,(x) is the LZ codeword length of x. That is, the 
unknown term H(q$)  is simply approximated by the 

normalized LZ codeword length function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

(by Lemma A) Theorem 2: For any integer k and Pk E P,, 

a) liminf, +m[ - l / n  iog Pk( k** > k)] 2 A; 
b) for any estimator k satisfying (l), 

5 c exp2{ - n [ H ( q , k ) - H ( q , k 4 }  
T:,, c Mi 

1 
+ I 1 

limsup - logP , (k**<k)  11iminf - logP , (L<k)  . 

Proof: We use the following inequality (Plotnik and 

[: ] n - w  [ n  
( n  + 1) 

2-x"  2 2-(x- ')" 

I 1  - m for any c > 0 and n sufficiently large. Hence, 

liminf - - l o g P , ( k * > k )  > A .  (9) Ziv [ ~ o I ) ,  

1 
-U,,(.) 5 H ( q , k , ) + q v , k , )  (15) 

[ '  n 1 
Part b) follows from the following consideration. Let L 

be an arbitrary order estimator satisfying (1) and induced 
by the partition of A" to k, disjoint decision regions where a(&, n ,  k,) = O(loglogn/logn), uniformly for every 
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x E A". To make the paper self-contained the proof of (15) 
is given in Appendix 111. 

Now let 

1 
X :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( q i ) -  -ULz(.) I A ) .  (16) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As for part a), we use Kraft's inequality for uniquely 
decipherable binary codeword length functions, 

P k ( k * * > k ) s P k ( N , ' ) =  c P k ( x ) <  max P k ( x )  
X E  NL x E N; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApk E pk 

- - 2-n[H(d)l< 2-A" ~ - U L Z ( X )  

x E N i  x E N; 

(17) - 2 - X n  2 - U d x )  - < 2-X". 

X E A "  

It follows from (16) that N, c Mi for Mi defined with a 
threshold A + 6(a ,  n ,  k,) .  However, &a, n ,  k , )  -+ 0 as 

n h m .  
Now, by Theorem 1, 

<Px( U Q , ) = P k ( L i k ) .  (18) 
j < k  

This completes the proof of Theorem 2. 

The following remarks are appropriate. 
1) For any j < k ,  let 

D ( P k I I P j ) A  p k ( x l k )  P k ( x k + l I x , k )  
x/ E Ah X k + l e A  

a) If A < D( Pk\lP,), 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj I k - 1, then the underesti- 

mation probabilities associated with k* and k** 
tend to zero exponentially fast as n .+ W. Let 

1 
r q  1 

There exists a value A = A, (depending on Pk) ,  for 
which e(A,) = A,, namely, the errors are symmet- 
ric. 

b) If A > D(PkllP,), then the probability of underesti- 
mation tends to 1 as n -, M. 

The choice of A is, of course, dictated by the maximum 
tolerable level of overestimation probability (see (1)). 
However, in view of a) and b), one should select A to be 

small enough to guarantee the exponential decay of both 
error probabilities, for a large set of probability measures 

in the class. However, since A is just a single parameter, it 

can easily be adjusted empirically to balance appropriately 
the trade-off between rates of the two kinds of errors. In 
fact, this is always the case in Neyman-Pearson detection. 

The detector first computes a test statistic and then com- 
pares it to an adjustable threshold. 

2) In view of remark l) ,  it is demonstrated in Appendix 
I1 that, for existing order estimators (MDL, AIC, etc.), the 
overestimation probability vanishes more slowly than any 
exponent. This result does not contradict Schwarz [13], 
who proved the optimality of the MDL rule in the Bayesian 
sense, because the integration over the parameter space 
(defined by the transition probabilities) includes Marko- 
vian measures for which D(PkIIPJ) = 0. 

3) The estimation rules k* and k** are optimal only if 

the true order is bounded. This bound is either known ( k * )  
or unknown (k* * ) .  These rules are universal in the sense 
that the optimality holds for every source in the class Pk. 

4) The computational complexity involved in applying 
k* or k** is smaller than that associated with the existing 
rules, with probability larger than 1 - 2-'", because the 
first group stops at the first time a threshold is exceeded, 
while the last group seeks a global minimum among the 
integers. In addition, k** saves the computational effort 
associated with the calculation of H( q?), which grows 
exponentially as k ,  increases. In other words, since k ,  
might be much larger than k ,  the computational complex- 
ity involved with the evaluation of ULz(x) is, in general, 
much smaller than that associated with the evaluation of 
H( 4:"). (In many cases the complexity of calculating 
ULz( x) is smaller than that of H( q,k).) 

5) The estimators k* and k** are optimal if no prior 
information whatsoever exists about the parameters of the 
true underlying Pk. The reader might argue that some gain 

in performance can be achieved if one knows a priori that 
PJ must lie in a smaller subset FJ c PJ (0 s j I k , ) .  In fact 
this partial prior knowledge can be utilized to improve 
performance. The modification needed for k* and k** 
would be to decrease the threshold A by the quantity 
minpEF,D(q~llP),  in (8) and (14), respectively. 

6 )  The estimator k* can be extended in two different 
directions: 

a) 

b) 

7) It 

estimation of the number of states of a finite-state 
finite-alphabet unifilar/nonunifilar source (Ziv and 

Merhav [21]); 
estimation of the model order in exponential fami- 
lies [22] (by applying the theory of large devia- 
tions). This class includes the widely used con- 
tinuous alphabet models: the Gaussian linear 

regression model, the autoregressive (AR) model, 
and several well-known hypothesis testing prob- 

lems. 

should be emphasized that, despite the indirect 

relation of our algorithm to data compression, it is not 
optimal for coding, in contrast to Rissanen's rule. How- 
ever, it minimizes the above defined cost, if a "true" order 
exists. 
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APPENDIX I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PROOF OF LEMMA A 

referees for their 
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- - 1~;'12-"Wq:) (AI) 

and therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1T;'I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 2'"(q!). As for the lower bound, suppose 
there exist some E > 0 and infinitely many values of n such that 
lcl< ~ [ ~ ( q ! ) - ' ] .  It follows that 

2-"6 > ~ - ~ W ~ ! ' I T ; ' I  = m a  p { T: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx > 2 p { T . } .  (A2) 
P E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, 

As the number of distinct jth-order Markov types is never larger 
than ( n  + l)"'+', we obtain by (A2), 

1 =  P{T"}  < 2T"f<(n+1)"'+12-"'. (A3) 

Since the right side tends to zero as n + 00, the assumption is 
contradicted. This completes the proof of Lemma A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi C A" Ti C A, 

APPENDIX I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
THE OVERESTIMATION PROBABILITIES FOR EXISTING RULES 

To demonstrate the slow convergence of the overestimation 
probabilities for existing rules, we focus on the MDL rule 
(Rissanen [6]-[9]). The considerations are similar for other rules 
as well (AIC, BIC, FPE, etc.). 

Consider the case a = 2, k ,  = 1; that is, we select k in accor- 
dance with 

where a,(.) = 2/-'(log n ) / n .  Thus, we decide in favor of Iz  = 1 

whenever zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x E 0, { x: H (  4:) - H( q i )  > 6( n)} (B2) 

where 6(n) =6,(n) -6, (n)  =:(logn)/n. 
We now lower-bound the overestimation probability, 

P,(k=l)= Po(.)= Po@,') 
X€& r,' c 0, 

(since T,' c T:) 

- - lp lpo( .) 2,,[H(q~)-(f/3)12-nIH(q,o)+D(q,ollpo)l 

T,' C 51, 

033) - - 2 - j J [  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn( 4.,"l!po) + d )  - f f ( d )  + (c/3)1 

for any x E a,, E > 0 and n sufficiently large. Since 6( n)  + 0 as 
n 4 00, there exists x E for which S(n) < H(q: ) -  H(4: )  I 
t /3  and at the same time D(4:11P0) 5 c/3 for any-c > 0 and n 
sufficiently large. It now follows from (B2) that Po ( k  -1) 2 2-"' 
for any E > 0 and n sufficiently large; that is the overestimation 
probability tends to zero slower than any exponent. 

APPENDIX 111 
PROOF OF INEQUALITY (15) 

Let us apply the incremental parsing procedure [17] to the 
observed sequence x, and let c denote the resulting number of 
distinct phrases in x. Denote by xi the ith phrase (1 I i I c). It is 
easy to show that there exists a Markovian probability measure 
pk, E pk0 for which p k j x )  = 2-nH(+) (by taking the maximum 
likelihood estimator for the transition probabilities). Thus 

C 

"H( 4;") = - log pk,( x) - log n p( XI Is,) 
r = l  

(where s, denotes the initial state of phrase i) 

I = l s = l  j= l  

where c(1, s) denotes the number of I-length phrases starting with 
state s, S = a h a  is the number of states, and I,, is the length of 
the longest phrase. Let us consider the inner summation: 

(by Jensen's inequality) 

where we used the fact that C P ( x , ( s )  I 1 for fixed length distinct 
phrases. Plugging (C2) into (Cl) we get 

I,.. s 
nH(4;") 2 2- c c(I,s)logc(I,s) 

/ = 1  s - 1  

where c(I) = C,c( I, s). 
The first term in the inner sum has the form of an entropy 

(with the sign changed); thus it is always greater than -1ogS. 
We therefore obtain 

4nax 

nH( 42") 2 c( I) log c( I) - clog s. ( C4) 
1 = 1  

As for the first term on the right-hand side of (C4), 

Jmax I , ,  c ( f )  1 
c(I)logc(I) = - c c  -1og- 

I = 1  / = I  c 4 1 )  

(where i ( l /c )Ehlc( l )  = n / c )  

/mm c ( l )  2-//i 4lm 

/ = 1  c c(I) 1-1  
>-clog ---c2-c+clogc-clog c 2-//i 

2- i / i  

2 - c + clog c - clog 2 - c + clog c + c1og(2-'// - 1) 

(by the Taylor expansion for 2") 

2 - c + clog c + clog ( 7 )  = clog c - c(1- logln2) - clog 

n 
= clogc - c6 - clog- 

C 
(C5) 

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 01:03 from IEEE Xplore.  Restrictions apply.



MERHAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a/ . :  MARKOV CHAIN AND UNIVERSAL DATA COMPRESSION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1019 

where 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 - logln2. 
Thus by (C4) 

nH( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA42”) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 clog c - c( 6 +log S )  - clog If.. (C6) 
C 

On the other hand, it is shown in [17] that 

(C7) ULz( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) I clog c + clog a + c.  

It follows from (C6) and (C7) that 

1 c n  
n n n c  
- ULZ( x) - H( 420) I (1 +log a +logs + 6) + - log - 

where K is a constant. 
It is shown in [23, Theorem 21 that c < n/[(l- cn)log n ]  where 

c,, = 2[1 +loglog(an)]/logn. Therefore, the first term in (C8) 
tends to zero as quickly as l/log n. As for the second term, since 
the function (logx)/x is monotonically decreasing for x > e, it 
follows that for n large enough ( n / c  > e) 

log(n/c) < log[(1-c,)lognl 

n /c (1 - E,,) logn 

This completes the proof of inequality (15). 
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