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On the estimation of the potential of Sinai’s RWRE

Pierre Andreoletti
Université d’Orléans

Abstract. We consider a one-dimensional random walk in random environ-
ment. We prove that the logarithm of the local time can be used as an esti-
mator of the random environment. We give a constructive method allowing
us to locally built, up to a translation, the random potential associated to the
environment from a single trajectory of the random walk.

1 Introduction and results

In this paper we are interested in Sinai’s walk, denoted (Xl, l ∈ N), that is, a one-
dimensional random walk in random environment (RWRE) with three conditions
on the random environment: two necessary hypotheses to get a recurrent process
(see Solomon (1975)) which is not a simple random walk and the uniform ellip-
ticity hypothesis which allows us to have a good control on the fluctuations of the
random environment.

The asymptotic behavior of such walk has been understood by Sinai (1982):
this walk is subdiffusive Xn ≈ (logn)2, and at given instant n is localized in the
neighborhood of a well-defined point of the lattice. It is well known—see, for
example, Zeitouni (2001) for a survey—that this behavior is strongly dependent
of the random environment or, equivalently, to the associated random potential
defined Section 2.1.

The question we solve here is the following: given a single trajectory of the ran-
dom walk (Xl,1 ≤ l ≤ n) where the time n is fixed, can we estimate the trajectory
of the random potential where the walk lives? Let us remark that the law of this
potential is unknown as well.

In their paper, Adelman and Enriquez (2004) are interested in the question of
the distribution of the random environment that could be deduced from a single
trajectory of the walk; on the other hand, our purpose is to get an approximation
of the trajectory of the random potential.

That kind of result is of great interest to biophysicists; indeed Baldazzi et al.
(2006) are interested in a method to predict the sequence of DNA molecules. They
model the unzipping of the molecule as a one-dimensional biased random walk for
the fork position (number of open base pair) k in this landscape. The elementary
opening (k → k+1) and closing (k → k−1) transitions happen with a probability
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that depends on the unknown sequence. This probability of transition follows an
Arrhénius law which is close to the one we discuss here. The question they an-
swer is: given an unzipping signal can we predict the unzipping sequence? Their
approach is based on a Bayesian inference method which gives very good proba-
bilities of prediction for a large amount of data. This means, in term of the walk,
several trajectory on the same environment.

Our approach is purely probabilistic; it is based on good properties of the local
time of the random walk which is the amount of time the walk spends on the
different points of the lattice. We treat a general case with very little information on
the random environment. We are able to reconstruct the difference of the random
potential in a significant interval where the walk spends most of its time. Our proof
is based on improvements of the results of Andreoletti (2006), in particular, in a
weak law of large numbers for the local time on the neighborhood of the point of
localization of the walk.

The largest part of this paper is devoted to the proof of a theoretical result (The-
orem 1.6). We also present, at the end of the document, numerical simulations to
illustrate our result. We give the main steps of the algorithm we use to rebuilt the
random potential only by considering a trajectory of the walk. As an introduction
we would like to comment on one of these simulations (see Figure 1).

In black we have represented the logarithm of the local time and in grey the
potential associated to the random environment. First, note that we get a good
approximation on a large neighborhood of the bottom of the valley around the co-
ordinate −80. Outside this neighborhood and especially after the coordinate −20,
the approximation is not precise at all. We will explain this phenomena by the fact
that after the walk has reached the bottom of the valley, it will not return frequently
to the points with coordinate larger than −20, so we lose information for this part
of the latice.

Figure 1 The logarithm of the local time (in black) and the random potential (in grey).
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Our method of estimation gives us two crucial pieces of information: a confi-
dence interval for the differences of potential in sup-norm, on an observable set of
sites “sufficiently” visited by the walk, and a localization result for the bottom of
the valley linked with the coordinate where the local time achieves its maximum.
First, let us define the process.

1.1 Definition of Sinai’s walk

Let α = (αi, i ∈ Z) be a sequence of i.i.d. random variables taking values in (0,1)

defined on the probability space (�1, F1,Q); this sequence will be called random
environment. A random walk in random environment (Xn,n ∈ N) is a sequence of
random variable taking values in Z, defined on (�, F ,P) such that:

• for every fixed environment α, (Xn,n ∈ N) is a Markov chain with the fol-
lowing transition probabilities, for all n ≥ 1 and i ∈ Z

Pα[Xn = i + 1|Xn−1 = i] = αi,

Pα[Xn = i − 1|Xn−1 = i] = 1 − αi.

We denote (�2, F2,Pα) the probability space associated to this Markov chain.
• � = �1 × �2, ∀A1 ∈ F1 and ∀A2 ∈ F2, P[A1 × A2] = ∫

A1
Q(dw1) ×∫

A2
Pα(w1)(dw2).

The probability measure Pα[·|X0 = a] will be denoted Pα
a [·], the expectation

associated to Pα
a : Eα

a , and the expectation associated to Q: EQ.
Now we introduce the hypothesis we will use in all this work. The first two are

needed to get a nontrivial RWRE

EQ

[
log

1 − α0

α0

]
= 0, (1.1)

VarQ

[
log

1 − α0

α0

]
= σ 2 > 0. (1.2)

Solomon (1975) shows that under (1.1) the process (Xn,n ∈ N) is P almost surely
recurrent and (1.2) implies that the model is not reduced to the simple random
walk. In addition to (1.1) and (1.2) we will consider the uniform ellipticity hypoth-
esis: there exists 0 < η0 < 1/2 such that

sup{x,Q[α0 ≥ x] = 1} = sup{x,Q[α0 ≤ 1 − x] = 1} ≥ η0. (1.3)

We call Sinai’s random walk the random walk in random environment previously
defined with the three hypothesis (1.1), (1.2) and (1.3).

Let us define the local time L, at k (k ∈ Z) within the interval of time [1, T ]
(T ∈ N∗) of (Xn,n ∈ N)

L(k, T ) =
T∑

i=1

1{Xi=k},
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1 is the indicator function. Let V ⊂ Z, we denote

L(V ,T ) = ∑
j∈V

L(j, T ) =
T∑

i=1

∑
j∈V

1{Xi=j}.

To finish, we define the following, associated to L, random variables: L∗(n) the
maximum of the local times (for a given instant n), Fn the set of all the favorite
sites, and k∗ the smallest favorite site,

L∗(n) = max
k∈Z

(L(k, n)),

(1.4)
Fn = {k ∈ Z, L(k, n) = L∗(n)},
k∗ = inf{|k|, k ∈ Fn}. (1.5)

1.2 The random potential and the valleys

From the random environment we define what we will call random potential, let

εi = log
1 − αi

αi

, i ∈ Z,

define:

Definition 1.1. The random potential (Sm,m ∈ Z) associated to the random envi-
ronment α is defined in the following way:

Sk =

⎧⎪⎪⎨
⎪⎪⎩

∑
1≤i≤k

εi, if k > 0,

− ∑
k+1≤i≤0

εi, if k < 0,

S0 = 0 (see Figure 2).

Figure 2 Trajectory of the random potential.
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Definition 1.2. We will say that the triplet {M ′,m,M ′′} is a valley if

SM ′ = max
M ′≤t≤m

St ,

SM ′′ = max
m≤t≤M̃ ′′

St ,

Sm = min
M ′≤t≤M ′′ St .

If m is not unique we choose the one with the smallest absolute value.

Definition 1.3. We will call depth of the valley {M ′,m,M ′′} and we will denote it
d([M ′,M ′′]) the quantity

min(SM ′ − Sm,SM ′′ − Sm).

Now we define the operation of refinement.

Definition 1.4. Let {M ′,m,M ′′} be a valley and let M1 and m1 be such that m ≤
M1 < m1 ≤ M ′′ and

SM1 − Sm1 = max
m≤t ′≤t ′′≤M ′′(St ′ − St ′′).

We say that the couple (m1,M1) is obtained by a right refinement of {M ′,m,M ′′}.
If the couple (m1,M1) is not unique, we will take the one such that m1 and M1
have the smallest absolute value (see Figure 3). In a similar way we define the left
refinement operation.

We denote log2 = log log, in all this section we will suppose that n is large
enough such that log2 n is positive.

Figure 3 Depth of a valley and refinement operation.
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Figure 4 Basic valley, case mn > 0.

Definition 1.5. Let n > 3, γ > 0, and �n = logn + γ log2 n, we say that a valley
{M ′,m,M ′′} contains 0 and is of depth larger than �n if and only if

1. 0 ∈ [M ′,M ′′],
2. d([M ′,M ′′]) ≥ �n,
3. if m < 0, SM ′′ − maxm≤t≤0(St ) ≥ γ log2 n, if m > 0, SM ′ − max0≤t≤m(St ) ≥

γ log2 n.

The basic valley {M ′
n,mn,Mn} (see Figure 4). We recall the notion of basic val-

ley introduced by Sinai and denoted here {M ′
n,mn,Mn}. The definition we give

is inspired by the work of Kesten (1986). First let {M ′,mn,M
′′} be the smallest

valley that contains 0 and of depth larger than �n. Here smallest means that if
we construct, with the operation of refinement, other valleys in {M ′,mn,M

′′} such
valleys will not satisfy one of the properties of Definition 1.5. M ′

n and Mn are
defined from mn in the following way: if mn > 0

M ′
n = sup

{
l ∈ Z−, l < mn,Sl − Smn ≥ �n,Sl − max

0≤k≤mn

Sk ≥ γ log2 n
}
,

Mn = inf{l ∈ Z+, l > mn,Sl − Smn ≥ �n}.
If mn < 0

M ′
n = sup{l ∈ Z−, l < mn,Sl − Smn ≥ �n},

Mn = inf
{
l ∈ Z+, l > mn,Sl − Smn ≥ �n,Sl − max

mn≤k≤0
Sk ≥ γ log2 n

}
.

If mn = 0

M ′
n = sup{l ∈ Z−, l < 0, Sl − Smn ≥ �n},

Mn = inf{l ∈ Z+, l > 0, Sl − Smn ≥ �n}.
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1.3 Main results

We start with some definitions that will be used all along this work.
Let x ∈ Z, define

Tx =
{

inf{k ∈ N∗,Xk = x},
+∞, if such k does not exist.

(1.6)

Let n > 1, (k, l) ∈ Z2 and c0 > 0, define:

Sn
k,l = 1 − 1

logn
(Sk − Sl),

Ŝn
k = log(L(k, n))

logn
,

un = c0 log3 n

logn
.

The random variable Sn
k,l is the function of the potential we want to estimate, Ŝn

k is
the estimator and un is an error function.

Now let us define the following random subset of Z:

Lγ
n =

{
l ∈ Z,

n∑
j=Tk∗

1Xj=l ≥ (logn)γ

}
,

recall that γ > 0. This set Lγ
n is fundamental for our result, we notice that it de-

pends only on the trajectory of the walk and more especially on its local time: Lγ
n

is the set of points for which we are able to give an estimator of the random po-
tential. We will see that this set is large and contains a great amount of the points
visited by the walk (see Proposition 1.8). We recall that Tk∗ is the first time the
walk hit the smallest favorite site. In words, l ∈ Lγ

n , if and only if the local time of
the random walker in l after the instant Tk∗ is large enough (larger than (logn)γ ).
Our main result is the following:

Theorem 1.6. Assume (1.1), (1.2) and (1.3) hold, there exist four constants c0, c1,
c2 and c′

2 such that for all γ > 6, there exists n0 such that for all n > n0 there
exists Gn ⊂ �1 with Q[Gn] ≥ 1 − φ1(n) and

inf
α∈Gn

Pα

[ ⋂
k∈Lγ

n

{|Ŝn
k − Sn

k,mn
| < un}

]
≥ 1 − φ2(n), (1.7)

where

φ1(n) = c1γ log2 n

logn
, (1.8)

φ2(n) = c2(log2 n)2

(logn)γ/2−2 + c′
2(log2 n)8

(logn)γ−6 . (1.9)
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The fact that our result depends on mn seems to be restrictive, we would like to
know where is the bottom of the valley only by considering the local time of the
walk, so we prove the following:

Proposition 1.7. Assume (1.1), (1.2) and (1.3) hold, there exists a constant c3 > 0
such that for all γ > 6, there exists n0 such that for all n > n0 there exists Gn ⊂ �1
with Q[Gn] ≥ 1 − φ1(n) and

inf
α∈Gn

Pα
0

[
max
x∈Fn

|mn − x| ≤ (log2 n)2
]
≥ 1 − φ3(n), (1.10)

inf
α∈Gn

Pα
0 [|Tmn − Tk∗ | ≤ (logn)3] ≥ 1 − φ3(n), (1.11)

where Fn is defined in (1.4), and φ3(n) = c3(log2 n)8/(logn)γ−6.

Notice that the distance between mn (coordinate of the minimum of the poten-
tial) and a favorite site is negligible comparing to a typical fluctuation of the walk
(of order (logn)2). Thanks to Proposition 1.7 we can replace (1.7) in Theorem 1.6
by

inf
α∈Gn

Pα

[ ⋂
k∈Lγ

n

{|Ŝn
k − Sn

k,k∗ | < un}
]

≥ 1 − φ2(n).

Now let us present a result giving some properties of Lγ
n :

Proposition 1.8. Assume (1.1), (1.2) and (1.3) hold, for all γ > 6, there exists n0
such that for all n > n0 there exists Gn ⊂ �1 with Q[Gn] ≥ 1 − φ1(n), and

inf
α∈Gn

Pα
0
[

L(Lγ
n , n) = n

(
1 − o(1)

)] ≥ 1 − φ2(n), (1.12)

inf
α∈Gn

Pα
0 [const(logn)2/(log2 n)2 ≤ |Lγ

n | ≤ const(logn log2 n)2]
≥ 1 − φ2(n). (1.13)

The inequality (1.12) shows that the time spent by the walk in Lγ
n is almost all

the lifetime of the walk: n, (1.13) shows that the size of Lγ
n is comparable to a

typical fluctuation of the walk X.

Remark 1.9. The result we get gives information on the difference of potential
Sk − Smn when k ∈ Lγ

n . So thanks to the definition of S (S0 = 0), if 0 ∈ Lγ
n , then

we also know the value Smn and so the full potential in the interval Lγ
n . In the other

case (0 /∈ Lγ
n ), which also appears with a strictly positive probability, we cannot

say anything precise about the value of Smn . Figure 5 corresponds to a “nice”
random environment where Smn can be deduced from the local time. Conversely,
Figure 6 shows an environment for which the walk does not get back to 0 once
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Figure 5 V
γ
n with mn > 0, with D

γ
n = max0≤k≤mn

(Sj − Smn) ≤ logn − γ log2 n.

Figure 6 V
γ
n with mn > 0, with D

γ
n = max0≤k≤mn

(Sk − Smn) > logn − γ log2 n.

it has reached mn, in this case the value of Smn cannot be deduced from the local
time.

However, notice that to predict the close future of the walk (after the instant n)
the knowledge of the differences of potential together with the value of mn are
enough. Indeed the probability of transition of X (for a fixed environment) can be
given as an explicit formula of the increments of the potential: for all i > 0

αi = exp(−(Si − Si−1))

exp(−(Si − Si−1)) + 1
, (1.14)
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and we have a similar expression when i ≤ 0.

Theorem 1.6 is known to be the quenched result, which means we work under
Pα at a fixed environment α. To get the annealed result, that is to say, that we work
under P instead under Pα we need the following elementary remark:

Remark 1.10. Let Cn ∈ σ(Xi, i ≤ n) and Gn ⊂ �1, we have:

P[Cn] =
∫
�1

Q(dω)

∫
Cn

dPα(ω) (1.15)

≥
∫
Gn

Q(dω)

∫
Cn

dPα(ω). (1.16)

So assume that Q[Gn] = e1(n) ≥ 1 − φ1(n) and that for all ω ∈ Gn,
∫

Cn
dPα(ω) ≡

e2(ω,n) ≥ 1 − φ2(n) we get that

P[Cn] ≥ e1(n) × min
w∈Gn

(e2(w,n)) ≥ 1 − φ1(n) − φ2(n). (1.17)

Then a simple consequence of Theorem 1.6 is the following:

Corollary 1.11. Assume (1.1), (1.2) and (1.3) hold, there exist four constants c0,
c1, c2 and c′

2 such that for all γ > 6, there exists n0 such that for all n > n0

P
[ ⋂
k∈Lγ

n

{|Ŝk
k − Sn

k,k∗| < un}
]

≥ 1 − φ(n), (1.18)

where φ(n) = φ1(n) + φ2(n).

We just notice that, for our purpose, the above result is not useful because the
aim is to reconstruct one trajectory of the random environment, that is to say, one α.
In the above result we get a mean over all the possible random environments.

This paper is organized as follows. In Section 2 we give the proof of Theo-
rems 1.6 (we easily get Corollary 1.11 from Remark 1.10), we have split this proof
into two parts, the first one (Section 2.1) deals with the random environment and
the other one (Section 2.2) with the random walk itself. Then in Section 2.3 we give
the proofs of Propositions 1.7 and 1.8. In Section 3, as an application of our result,
we present an algorithm and some numerical simulations. For completeness, we
recall in the Appendix some basic facts on birth and death processes.

2 Proof of Theorem 1.6

The proof of a result with a random environment involves both arguments and
properties for the random environment and arguments for the random walk itself.
We start with the properties we need for the random environment, then we will use
it to get the result for the walk.
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2.1 Properties needed for the random environment

2.1.1 Construction of (Gn,n ∈ N). Let k and l be in Z, define

Eα
k (l) = Eα

k [L(l, Tk)] (2.1)

in the same way, let A ⊂ Z, define

Eα
k (A) = ∑

l∈A

Eα
k [L(l, Tk)]. (2.2)

Definition 2.1. Let d0 > 0, d1 > 0, and ω ∈ �1, we will say that α = α(ω) is a
good environment if there exists n0 such that for all n ≥ n0 the sequence (αi, i ∈
Z) = (αi(ω), i ∈ Z) satisfies the properties (2.3)–(2.6)

• {M ′
n,mn,Mn} �= ∅, (2.3)

• M ′
n ≥ −d0(σ

−1 log2 n logn)2, Mn ≤ d0(σ
−1 log2 n logn)2. (2.4)

Define M ′
1 and m′

1, respectively, the maximizer and minimizer obtained by the
first left refinement of the valley {M ′

n,mn,Mn} and in the same way M1 and m1,
respectively, the maximizer and minimizer obtained by the first right refinement of
the valley {M ′

n,mn,Mn}.
• SM ′

1
− Sm′

1
≤ logn − γ log2 n, SM1 − Sm1 ≤ logn − γ log2 n, (2.5)

• 1 ≤ Eα
mn

(Wn) ≤ d1(log2 n)2, (2.6)

where Wn = {M ′
n,M

′
n + 1, . . . ,mn, . . . ,Mn}.

Define the set of good environments

Gn = Gn(d0, d1) = {ω ∈ �1, α(ω) is a good environment}. (2.7)

Notice that Gn depends on d0, d1 and n, however we only make explicit the n

dependence.

Proposition 2.2. There exist three constants d0 > 0, d1 > 0 and c1 > 0 such that
if (1.1), (1.2) and (1.3) hold, there exists n0 such that for n > n0

Q[Gn] ≥ 1 − φ1(n), (2.8)

where φ1 is given by (1.8).

Proof. We can find the proof of this proposition in Andreoletti (2006); see Defi-
nition 4.1 and Proposition 4.2. �
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2.2 Arguments for the walk

Let (ρ1(n), n ∈ N) a strictly positive and strictly decreasing sequence such that
limn→∞ ρ1(n) = 0 and for all n large enough, ρ1(n) > 1/ log2 n. First let us show
that Theorem 1.6 is a simple consequence of the following:

Proposition 2.3. Assume (1.1), (1.2) and (1.3) hold, there exists n0 such that for
all n > n0 there exists Gn ⊂ �1 with Q[Gn] ≥ 1 − φ1(n) and

sup
α∈Gn

{
Pα

0

[ ⋃
k∈Lγ

n

{∣∣∣∣ L(k, n)

n
− Eα

mn
(k)

Eα
mn

(Wn)

∣∣∣∣ ≤ wk,n

}]}
≥ 1 − φ2(n), (2.9)

where wk,n = ρ1(n)
Eα

mn
(k)

Eα
mn

(Wn)
, φ1(n) and φ2(n) are given just after (1.7).

Taking the logarithm and for n large enough, using Taylor series expansion, we
remark that

Eα
mn

(k)

Eα
mn

(Wn)

(
1 − ρ1(n)

) ≤ L(k, n)

n
≤ Eα

mn
(k)

Eα
mn

(Wn)

(
1 + ρ1(n)

)
(2.10)

implies

−2ρ1(n) − log(Eα
mn

(Wn))

≤ log L(k, n) − logn − log(Eα
mn

(k))

≤ − log(Eα
mn

(Wn)) + ρ1(n).

Rearranging the terms and using (A.1) (see the Appendix) we get

1

logn

(
Rα

n (k) − 2ρ1(n)
) ≤ Ŝn

k − Sn
k,mn

≤ 1

logn

(
Rα

n (k) − ρ1(n)
)

(2.11)

where Rα
n (k) = log(

αmn

βk
ak,mn) − log(Eα

mn
(Wn)) and ak,mn is given by (A.1). Now

using (A.3) and Property (2.6) we get the theorem. The proof of Proposition 2.3 is
based on four lemmata presented in the following subsections.

2.2.1 Known facts and local time at mn. For all n ∈ N large enough, let ρ(n) =
1/ log2 n, we define

A1 =
{∣∣∣∣ L(mn,n)

n
− 1

Eα
mn

(Wn)

∣∣∣∣ >
ρ(n)

Eα
mn

(Wn)

}
, (2.12)

A2 = {Tmn ≤ n/(logn)4, L(Wn,n) = n}. (2.13)

First we recall an elementary result originaly due to Sinai (1982):
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Lemma 2.4. Assume (1.1), (1.2) and (1.3) hold, there exists a constant b1 > 0 such
that for all γ > 2, there exists n0 such that for all n > n0 there exists Gn ⊂ �1 with
Q[Gn] ≥ 1 − φ1(n) and

sup
α∈Gn

{Pα
0 [A2]} ≤ r1(n), (2.14)

where r1(n) = b1(log2 n)2/(logn)γ−2.

Proof. One can find the proof of this result in Sinai (1982); see also Andreoletti
(2006): Proposition 4.7 and Lemma 4.8. �

Lemma 2.5. Assume (1.1), (1.2) and (1.3) hold, there exists a constant b2 > 0 such
that for all γ > 6, there exists n0 such that for all n > n0 there exists Gn ⊂ �1 with
Q[Gn] ≥ 1 − φ1(n) and

sup
α∈Gn

{Pα
0 [A1]} ≤ r2(n), (2.15)

where r2(n) = b2(log2 n)6/((ρ(n))2(logn)γ−6).

Proof. A weaker version of this result is already present in Andreoletti (2006,
Theorem 3.8), here we get a better rate of convergence for the probability and, for
completeness, we also give a shorter proof. Let us denote

A+
1 =

{ L(mn,n)

n
− 1

Eα
mn

(Wn)
>

ρ(n)

Eα
mn

(Wn)

}
,

A−
1 =

{ L(mn,n
−)

n
− 1

Eα
mn

(Wn)
< − ρ(n)

Eα
mn

(Wn)

}
,

A+
2 = {Tmn ≤ n/(logn)4}, A−

2 = {L(Wn,n) = n},
where n− = n − n/(logn)4. Thanks to Lemma 2.4 we have

Pα
0 [A1] ≤ Pα

0 [A1, A2] + r1(n)
(2.16)

≤ Pα
mn

[A+
1 , A−

2 ] + Pα
mn

[A−
1 , A−

2 ] + r1(n).

Let

Tmn,j =
{

inf{k > Tmn,j−1,Xk = mn}, j ≥ 2,
+∞, if such k does not exist,

Tmn,1 = Tmn (see (1.6)),

we can check that

Pα
mn

[A+
1 , A−

2 ] ≤ Pα
mn

[L(Wn,Tmn,n1) ≤ n], (2.17)
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where n1 = n
Eα

mn
(Wn)

(1 + ρ(n)) (notice that n1 is not necessarily an integer

but for simplicity we disregard that). The strong Markov property implies that
L(k, Tmn,n1) is a sum of n1 i.i.d. random variables, so by Chebyshev’s inequality
we get

Pα
mn

[L(Wn,Tmn,n1) ≤ n] ≤ n1 Var(L(Wn,Tmn))

n2(ρ(n))2

≤ n1|Wn|∑k∈Wn
Var(L(k, Tmn))

n2(ρ(n))2 .

Using (A.2) together with the fact that α ∈ Gn [Properties (2.4) and (2.5)] we
finally obtain

Pα
mn

[L(Wn,Tmn,n1) ≤ n] ≤ n1|Wn|3n
n2(ρ(n))2(logn)γ

(2.18)

≤ const(log2 n)6

(ρ(n))2(logn)γ−6 .

We get the same estimate for Pα
mn

[A1, A+
2 ], then collecting (2.16), (2.17) and

(2.18) we get the lemma. �

Lemma 2.5 is a key point to prove Proposition 2.3; note that we will also need
the result (1.11) of Proposition 1.7 which proof is postponed Section 2.3.

2.2.2 Proof of Proposition 2.3. We split the proof into two steps, the first step
makes the link between Lγ

n and particular points of the random environment con-
tained in the set V

γ
n . The second step is to prove a law of large numbers for the

local time.
Step 1. Let us define the following subsets of Wn:

V̄n =
{
M ′

n ≤ k ≤ mn − 1,
(

max
k≤j≤mn

Sj − Smn

)
< logn − γ

2
log2 n

}
,

V̄ ′
n =

{
mn + 1 ≤ k ≤ Mn,

(
max

mn≤j≤k
Sj − Smn

)
< logn − γ

2
log2 n

}
,

and

V γ
n = V̄n ∩ V̄ ′

n. (2.19)

In words V
γ
n is a subset of Wn, such that for all k ∈ V

γ
n the largest difference of

potential between mn and k is smaller than logn − γ /2 log2 n (see also Figures 5
and 6). For the walk, we will see (lemma below) that if k ∈ V

γ
n then the walk will

hit k after it has reached mn and it will hit this point k a large number of times.
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First let us prove the following lemma:

Lemma 2.6. Assume (1.1), (1.2) and (1.3) hold for all γ > 6, there exists n0 such
that for all n > n0 there exists Gn ⊂ �1 with Q[Gn] ≥ 1 − φ1(n) and

sup
α∈Gn

{Pα
0 [Lγ

n ⊆ V γ
n ]} ≥ 1 − const · r3(n) − const · r2(n), (2.20)

where r3(n) = (log2 n)2/(logn)γ/2−2.

Notice that Lγ
n is a P random set (with two levels of randomness) whereas V

γ
n

is only a Q random set (with one level of randomness), this lemma makes the link
between a trajectory of the walk and the random environment.

Proof. First notice that

Pα
0 [Lγ

n ⊆ V γ
n ] = 1 − Pα

0

[ ⋃
k∈(Vn∪V ′

n)

{k ∈ Lγ
n }

]
, (2.21)

where

Vn =
{
M ′

n ≤ k ≤ mn − 1,
(

max
k≤j≤mn

Sj − Smn

)
≥ logn − γ

2
log2 n

}
,

V ′
n =

{
mn + 1 ≤ k ≤ Mn,

(
max

mn≤j≤k
Sj − Smn

)
≥ logn − γ

2
log2 n

}
.

Let k ∈ Vn we get that

Pα
0 [k ∈ Lγ

n , |Tk∗ − Tmn | ≤ (logn)3]

≤ Pα
0

[
n∑

j=Tk∗
1Xj=k ≥ (logn)γ , |Tk∗ − Tmn | ≤ (logn)3

]

≤ Pα
0

[
n∑

j=Tmn

1Xj=k ≥ (logn)γ − (logn)3

]
.

The strong Markov property together with the fact that Tmn,n ≥ n yields

Pα
0

[
n∑

j=Tmn

1Xj=k ≥ (logn)γ − (logn)3

]

≤ Pα
mn

[Tmn,n∑
j=1

1Xj=k ≥ (logn)γ − (logn)3

]
.
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By using the Markov inequality and (A.1) we finally get

Pα
0 [k ∈ Lγ

n , |Tk∗ − Tmn | ≤ (logn)3] ≤ nEα
mn

[L(k, Tmn)]
(logn)γ − (logn)3

≤ n

η0 exp(Sk − Smn)((logn)γ − (logn)3)

≤ 1

η0(logn)γ/2(1 − (logn)3/(logn)γ )
,

notice that in the last inequality we have used the fact that k ∈ Vn. A similar com-
putation gives the same inequality when k ∈ V ′

n. We can conclude as follow, thanks
to (1.11)

Pα
0

[ ⋃
k∈(Vn∪V ′

n)

{k ∈ Lγ
n }

]

≤ |Vn ∪ V ′
n| max

k∈Vn∪V ′
n

Pα
0 [k ∈ Lγ

n , |Tk∗ − Tmn | ≤ (logn)3]
(2.22)

+ const
(log2 n)8

(logn)γ−6

≤ |Vn ∪ V ′
n|

η0(logn)γ/2(1 − (logn)3/(logn)γ )
+ const

(log2 n)8

(logn)γ−6 .

Collecting (2.21), (2.22) and Property (2.4) yields the lemma. �

Step 2. This second step is devoted to the proof of the following lemma. Recall
that A1 (resp. A2) is defined in (2.12) (resp. (2.13)).

Lemma 2.7. For all α and n we have

Pα
0

[∣∣∣∣ L(k, n)

n
− Eα

mn
(k)

Eα
mn

(Wn)

∣∣∣∣ > wk,n, A1, A2

]
≤ 2 exp

(−n/4ψα
2 (n)

)
(2.23)

recall that wk,n = ρ1(n)Eα
mn

(k)/Eα
mn

(Wn) and ψα
2 (n) = 2 (ρ1(n)−ρ(n))2

1+ρ(n)

(αmn∧βmn)

|k−mn| ×
exp(−(SMk

−Smn))

Eα
mn

(Wn)
. Mk is such that SMk

= maxmn+1≤j≤k Sj if k > mn and conversely

if k < mn SMk
= maxk≤j≤mn−1 Sj . Also ρ1(n) is defined just above Proposi-

tion 2.3.

Proof. We essentially use a concentration inequality for sum of i.i.d. random vari-
ables, for simplicity we only give the proof for k > mn, the other case (k ≤ mn)
is very similar. Using the strong Markov property and the fact that L(k, Tmn) = 0,
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we get

Pα
0

[∣∣∣∣ L(k, n)

n
− Eα

mn
(k)

Eα
mn

(Wn)

∣∣∣∣ > wk,n, A1, A2

]

≤ Pα
mn

[ L(k, n)

n
− Eα

mn
(k)

Eα
mn

(Wn)
> wk,n, A1

]

+ Pα
mn

[ L(k, n−)

n
− Eα

mn
(k)

Eα
mn

(Wn)
< −wk,n, A1

]

and n− is defined just above (2.16). We have

Pα
mn

[ L(k, n)

n
− Eα

mn
(k)

Eα
mn

(Wn)
> wk,n, A1

]

≤ Pα
mn

[ L(k, n)

n
− Eα

mn
(k)

Eα
mn

(Wn)
> wk,n,

L(mn,n)

n
− 1

Eα
mn

(Wn)
≤ ρ(n)

Eα
mn

(Wn)

]

≤ Pα
mn

[ L(k, Tmn,n1)

n
− Eα

mn
(k)

Eα
mn

(Wn)
> wk,n

]

= Pα
mn

[ L(k, Tmn,n1)

n
− Eα

mn
(k)

Eα
mn

(Wn)

(
1 + ρ(n)

)
> w′

k,n

]

where n1 is defined just below (2.17), and w′
k,n = Eα

mn
(k)

Eα
mn

(Wn)
(ρ1(n) − ρ(n)). The

concentration inequality (see equation 6.12, page 164 of Ledoux and Talagrand
(1991)) gives for n large enough

Pα
mn

[ L(k, Tmn,n1)

n
− Eα

mn
(k)

Eα
mn

(Wn)
> w′

k,n, A1

]

≤ exp
[
−n

4

Eα
mn

(Wn)

Varmn(L(k, Tmn))

(w′
k,n)

2

1 + ρ(n)

]
.

With the same method we get the same estimation for Pα
mn

[ L(k,n−)
n

− Eα
mn

(k)

Eα
mn

(Wn)
<

−wk,n, A1]. Using (A.2) we get Lemma 2.7. �

End of the proof of the proposition.
Using Lemmata 2.4, 2.5 and 2.6 we have

Pα
0

[ ⋃
k∈La

n

{∣∣∣∣ L(k, n)

n
− Eα

mn
(k)

Eα
mn

(Wn)

∣∣∣∣ > wk,n

}]

≤ |V γ
n | sup

k∈V
γ
n

Pα
0

[∣∣∣∣ L(k, n)

n
− Eα

mn
(k)

Eα
mn

(Wn)

∣∣∣∣ > wk,n, A1, A2

]

+ const · r1(n) + const · r2(n).
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Then using Lemma 2.7 we get

sup
k∈V

γ
n

Pα
0

[∣∣∣∣ L(k, n)

n
− Eα

mn
(k)

Eα
mn

(Wn)

∣∣∣∣ > wk,n, A1, A2

]

≤ 2 sup
k∈V

γ
n

exp
(−n/2ψα

2 (k, n)
) ≤ 2 exp

(−(logn)γ/2−2/(ρ1(n) log2 n)2)
,

where the last inequality comes from the definition of V
γ
n (see (2.19)), properties

(2.4) and (2.6) of the random environment. To finish we use again the property
(2.4) together with the fact that V

γ
n ⊂ Wn. Notice that, for n large enough, the

contribution of the above probability is negligible comparing to r2(n) and r1(n) so
we get our result.

2.3 Proof of Propositions 1.7 and 1.8

Proof of Proposition 1.7. Notice that (1.10) is a slight improvement of Corol-
lary 3.17 of Andreoletti (2006), for completeness we give a short proof based on
Lemma 2.5. Let K(n) = [mn − (log2 n)2,mn + (log2 n)2] and K̄(n) the comple-
mentary of K(n) in Wn. We prove that the local time on all the points belonging
to K̄(n) is smaller than L(mn,n). By using Lemma 2.4 and 2.5 we get

Pα
0

[
max
x∈Fn

|mn − x| ≤ (log2 n)2
]

≤ Pα
0

[ ⋃
l∈K̄(n)

{L(l, n) ≥ L(mn,n)}, A1

]
+ r1(n)

≤ Pα
0

[ ⋃
l∈K̄(n)

{L(l, Tmn) ≥ n2}, A1

]

+ Pα
mn

[ ⋃
l∈K̄(n)

{L(l, Tmn,n1) ≥ n2}
]

+ r1(n) + r2(n),

where n2 = n−
Eα

mn
(Wn)

(1 − ρ(n)), (recall that n− is defined above (2.16)). Notice

that Pα
0 [⋃l∈K̄(n){L(l, Tmn) ≥ n2}, A1] ≤ Pα

0 [Tmn ≥ n2] ≤ r1(n) thanks to property
(2.6) and Lemma 2.4. Also we have

Pα
mn

[ ⋃
l∈K̄(n)

{L(l, Tmn,n1) ≥ n2}
]

≤ ∑
l∈K̄(n)

Pα
mn

[L(l, Tmn,n1) ≥ n2]

≤ ∑
l∈K̄(n)

n1 Var(L(l, Tmn))

(n2 − n1Eα
mn

(L(l, Tmn)))
2 (2.24)

≤ const(log2 n)2(logn)

n
,



Sinai’s walk: A statistical aspect 139

so we get (1.10).
To get (1.11) we can use (1.10). Indeed, further on, we show that within an

interval of time of length (logn)3 all the points in K(n) are at least visited once,
so as mn and k∗ (thanks to (1.10)) belongs to K(n) we get (1.11). We have

Pα
0 [|Tmn − Tk∗| > (logn)3]

≤ Pα
mn

[ ⋃
l∈K(n)

{L(l, (logn)3) < 1}
]

+ const · r2(n)

≤ ∑
l∈K(n)

Pα
mn

[{L(l, (logn)3) < 1}] + const · r2(n)

≤ exp(−const logn) + const · r2(n),

and for the last inequality we have used Lemma 2.7. �

Proof of Proposition 1.8. The two properties can be deduced from the following
inequality, let ε > 1, for all n large enough and all α ∈ Gn:

Pα
0
[
V 2(γ+ε)

n ⊆ Lγ
n

] ≥ 1 − const · (
r2(n) + r3(n)

)
, (2.25)

where the definition of V
2(γ+ε)
n is the same as V

γ
n , replacing γ by 2(γ + ε). In-

deed, thanks to (2.25) we have

Pα
0
[

L(Lγ
n , n) ≥ n

(
1 − o(1)

)]
≥ Pα

0
[

L
(
V 2(γ+ε)

n , n
) ≥ n

(
1 − o(1)

)] − const · (
r2(n) + r3(n)

)
≥ Pα

0
[

L
(
V 2(γ+ε)

n , n
) ≥ n

(
1 − o(1)

)
, A1, A2

]
(2.26)

− const · (
r2(n) + r3(n)

)
≥ 1 − Pα

mn

[
L

(
V̄ 2(γ+ε)

n , Tmn,n1

) ≥ n/(logn)
] − Pα

0 [A1, A2]
− const · (

r2(n) + r3(n)
)
,

where V̄
2(γ+ε)
n is the complementary of V

2(γ+ε)
n in Wn. By Markov inequality

Pα
mn

[
L

(
V̄ 2(γ+ε)

n , Tmn,n1

) ≥ n/(logn)
]

≤ logn

n
n1

∣∣V̄ 2(γ+ε)
n

∣∣ max
k∈V̄

2(γ+ε)
n

Eα
mn

[L(k, Tmn)],

then using (A.1) and the definition of V̄
2(γ+ε)
n we get

Pα
mn

[
L

(
V̄ 2(γ+ε)

n , Tmn,n1

) ≥ n/(logn)
]

(2.27)

≤ const · n1|V̄ 2(γ+ε)
n |(logn)1+(γ+ε)

n2 .
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Collecting (2.26), (2.27) and using property (2.4) we get (1.12).
To get (1.13), first we notice that thanks to (2.15) and (2.25) we have

Pα
0
[
V 2(γ+ε)

n ⊂ Lγ
n ⊂ Wn

] ≥ 1 − const · (
r2(n) + r3(n)

)
, (2.28)

so we only need to show that |V γ+ε
n | ≥ (logn)2/(log2 n)2 and |Wn| ≤ (logn)2 ×

(log2 n)2 with a high probability but this fact is already included in property (2.4).
We are left to prove (2.25), by using the same method to that of the proof of

Theorem 1.6 we can get

Pα
0
[
V 2(γ+ε)

n � Lγ
n

]
≤ |V γ+ε

n | max
k∈V

2(γ+ε)
n

Pα
mn

[
n1∑

j=1

ηk
j < (logn)γ

]
+ const · r2(n) + const · r3(n)

where (ηk
j , j) is a i.i.d. sequence with the law of L(k, Tmn). Then using again a

concentration inequality we get (2.25). �

3 Algorithm and numerical simulations

3.1 Main steps of the algorithm

First notice that we have no criteria to determine whether or not we can apply this
method to an unknown series of data. All we know is that it works for Sinai’s walk,
however we can apply the following algorithm to every processes. Let us recall the
basic random variables that will be used for our simulations, let x ∈ Z, n ∈ N,

Tx =
{

inf{k ∈ N∗,Xk = x},
+∞, if such k does not exist,

L(x, n) ≡
n∑

i=1

1{Xi=x};

L∗(n) = max
k∈Z

(L(k, n)), Fn = {k ∈ Z, L(k, n) = L∗(n)},
k∗ = inf{|k|, k ∈ Fn};

Lγ
n =

{
k ∈ Z,

n∑
j=Tk∗

1Xj=k ≥ (logn)γ

}
, γ > 6,

Sn
k,mn

= 1 − 1

logn
(Sk − Smn), k ∈ Lγ

n ,

Ŝn
k = log(L(k, n))

logn
.

Notice also that, thanks to Proposition 1.7, in probability we have |mn − k∗| ≤
const(log2 n)2. The algorithm is the following:



Sinai’s walk: A statistical aspect 141

Step 1: We have to determine Lγ
n and to get it we have to compute Tk∗ and

therefore the local time of the process. First we compute L(k, n) for every k, notice
that L(k, n) is not equal to zero only if k has been visited by the walk within the
interval of time [1, n]. Then we can compute L∗(n) and determine k∗ and Tk∗ .
Notice that Tk∗ is not a stopping time, therefore we need to run the algorithm two
times to compute what we need. We are now able to determine Lγ

n computing∑n
j=Tk∗ 1Xj=k .

Step 2: We can check that Lγ
n is connected, contains k∗ and that its size is of

the order of a typical fluctuation of the walk. Now, keeping only the k that belongs
to Lγ

n we compute for those k: Ŝn
k = log(L(k,n))

logn
the estimator of the potential. We

localize the bottom of the valley mn using k∗.

3.2 Simulations

For the first simulation (Figure 7) we show a case where Lγ
n is large, that is, Lγ

n

contains most of the points visited by the walk. The trajectory of the random
potential is in light grey, the interval of confidence in black and grey. We took
n = 500,000 and γ = 7, notice that the larger is γ , the smaller is Lγ

n but better is
the rate of convergence of the probability. We get that Lγ

n = [10,94]. In Figure 8
we plot the difference Sn

x,mn
− Ŝn

x and its linear regression. We notice that the slope
of the linear regression is of order 10−5.

Now let us choose another example where Lγ
n is smaller. For the following

simulation (Figure 9) we have only changed the sequence of random numbers.
We get that Lγ

n = [−150,−85]. We notice that for the coordinates larger than −85
and especially after −40, our estimator is not good at all. In fact, once the walk has
reached the minimum of the valley (coordinate −111) it will never reach again one
of the points of coordinate larger than −40 before n = 500,000, so our estimator
cannot say anything precise about the difference (Sn

x,mn
− Ŝn

x , k ≥ −40). However,

Figure 7 In light grey Sn
x,mn

, in black Ŝn
x − un, in grey Ŝn

x + un.
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Figure 8 In black Sn
x,mn

− Ŝn
x , in grey the linear regression.

Figure 9 In light grey Sn
x,mn

, in black Ŝn
x − un, in grey Ŝn

x + un.

if we look in the past of the walk and especially before time Tk∗ , then we may
be able to get information about (Sn

x,mn
− Ŝn

x , k ≥ −40). We can expect that the
favorite point at that time is localized around the point −2, so a good estimator
between the coordinate −40 and 10 may be given by (

log(L(k,T ∗))
logT ∗ , k).

The difference Sn
x,mn

− Ŝn
x and the linear regression in the interval Lγ

n =
[−150,−85] is presented on Figure 10.

Appendix: Basic results for birth and death processes

For completeness we recall an explicit expression for the mean and an upper bound
for the variance of the local times at a certain stopping time, we can find a proof
of these elementary facts in Révész (1990, page 279).
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Figure 10 In black Sn
x,mn

− Ŝn
x , in grey the linear regression.

Lemma A.1. For all α, let k > mn

Eα
mn

[L(k, Tmn)] = αmn

βk

1

eSk−Smn
ak,mn, (A.1)

where

ak,mn =
∑k−1

i=mn+1 eSi + eSk∑k−1
i=mn+1 eSi + eSmn

,

and

Varmn[L(k, Tmn)] ≤ 2(Eα
mn

[L(k, Tmn)])2 eSMk
−Smn

βk

|k − mn|, (A.2)

where Mk is such that SMk
= maxmn+1≤j≤k−1 Sj . For Q-a.a. environment α

η0

1 − η0
≤ αmn

βk

ak,mn ≤ 1

η0
. (A.3)

A similar result is true for k < mn and Eα
mn

[L(mn,Tmn)] = 1.
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