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Abstract

In this paper we propose a methodology to determine the structure of the pseudo-stoichiometric

coefficient matrix ✟ in a macroscopic mass balance based model. The first step consists

in estimating the minimal number of reactions that must be taken into account to represent

the main mass transfer within the bioreactor. This provides the dimension of ✟ . Then we

discuss the identifiability of the components of ✟ and we propose a method to estimate

their values. Finally we present a method to select among a set of possible macroscopic

reaction networks those which are in agreement with the available measurements. These

methods are illustrated with 3 examples: real data of the growth and biotransformation of

the filamentous fungi Pycnoporus cinnabarinus, real data of an anaerobic digester involv-

ing a bacterial consortium degrading a mixture of organic substrates and a process of lipase

production from olive oil by Candida rugosa.

Key words: Modelling, Nonlinear systems, Biotechnology, Identification, Identifiability,

Validation.

1 Introduction and motivation

For a long time the macroscopic perspective of modelling of biotechnological pro-

cesses has proved to be effi cient for solving many bioengineering problems [1,2]. In

this perspective the total cell mass in the reactor is considered as a “black-box” (see

e.g. [3], chapter 4) for the conversion of initial substrates into fi nal products. The
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transformations are described by a small set of macroscopic (overall) reactions that

lump together the many intracellular metabolic reactions of the various involved

microbial species. Such macroscopic reaction networks represent the main mass

transfers throughout the system and directly connect initial substrates to fi nal prod-

ucts without describing the intracellular behaviour. On this basis, dynamical mass

balance models can then be established. They rely on the category of the so-called

“unstructured” models in the standard terminology reported e.g. in [4]. The goal of

macroscopic modelling is clearly to derive simple dynamical models which have

proved of great interest in bioengineering for the design of on-line algorithms for

process monitoring, control and optimisation [2,5].

This paper clearly relies on this macroscopic perspective and our goal is to de-

scribe an approach for the determination of the minimal number of macroscopic

reactions that should be involved in a mass balanced model in order to ensure con-

stant pseudo-stoichiometric coeffi cients and to represent the main mass transfers

within the system.

To motivate our objectives, let us consider a simple biotechnological process which

could be represented by the simplest reaction network made of a single overall

reaction :�✂✁✄☎ ✆✞✝✠✟
☎☛✡✞☎✌☞✎✍ ✏ ✑ �✂✒✄☎ ✆✞✝✔✓

☎☛✕✖☎

where

✡✗☎ ✘ ✕✞✙ denote the substrates and products,

✏
is the total biomass (possibly

made of multiple microbial species) and ✟
☎
, ✓
☎

are the pseudo stoichiometric coef-

fi cients. In this case, as explained in [3], the pseudo-stoichiometric coeffi cients ✟
☎

and ✓
☎

are exactly the yield coeffi cients that can be directly computed from experi-

mental data.

The main problem with a single overall reaction is obviously that it is often not

able to describe accurately the process all along a transient operation with the same

constant yield coeffi cients. A classical and effi cient way to overcome this diffi culty,

without relying on complicated intracellular metabolic descriptions is to consider

a network of some macroscopic reactions which involve only the initial substrates

and the fi nal products (without the intracellular species) but which are able to de-

scribe the process accurately with constant stoichiometric coeffi cients.

Whenever more than one macroscopic reaction are considered it should be empha-

sised that there is no longer an equivalence between the yield coeffi cients and the

pseudo-stoichiometric coeffi cients.

We are thus interested in macroscopic reaction networks achieving a tradeoff be-

tween simplicity for process monitoring and control applications, and accuracy in

order to match available experimental data.
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In many applications, especially for cultures involving only a single or a few micro-

bial species, it is clear that a detailed description of the metabolic and biosynthetic

pathways may be available. In such a case, a macroscopic reaction network may

be simply obtained by network reduction, i.e. by lumping or aggregating elemen-

tary metabolic reactions together (for instance by using the technique of ”elemen-

tary flux modes” as described in [6]). It must however be noticed that the lumping

of reactions corresponding to competing pathways may induce the appearance of

pseudo-stoichiometric coeffi cients that are a-priori unspecifi ed and have to be cal-

ibrated from the experimental data. Hence the issue of the pseudo-stoichiometric

parameter estimation that we address in this paper may be a relevant issue even in

the case where the metabolism is perfectly known.

The following simple illustration clarifi es this point. Consider a culture of E. coli

with anaerobic production of both lactate ( � ) and acetate ( ✁ ) from glucose ( ✂ ). It

is obvious that there are two metabolic pathways that can be summarised by the

two following reactions (stoichiometry in moles) :

✂
☞✞✍

✄ �

✂
☞✞✍

☎ ✁

These two reactions have perfectly known stoichiometric coeffi cients (2 and 3).

Suppose now that these two reactions are aggregated into a single reaction. It is

clear that any lumped reaction of the form:

✂
☞✞✍

✄✝✆ �
✑
☎✟✞✡✠

☞
✆☞☛ ✁

is valid for any value ✌✎✍ ✆ ✍ ✠
. In fact

✆
represents the fraction of glucose

going through the fi rst pathway and
✞✡✠
☞
✆☞☛

the fraction going through the second

pathway. The parameter
✆

can be interpreted as a pseudo-stoichiometric coeffi cient

which is a priori unspecifi ed but can be calibrated from the data if measurements of

the three species ( ✂ ✘ � ✘ ✁ ) in the culture medium are available. For instance, from

the data reported in [7] with strain TC4 growing in anaerobic conditions we have✆✑✏ ✌✓✒✕✔ ✄ .

Depending on the assumptions made to lump the metabolic pathways, several macro-

scopic networks can be obtained. For example some pathways may or may not be

neglected leading to different macroscopic reaction networks. In the previous sim-

ple example this would correspond e.g. to choosing
✆✖✏✗✠

and thus neglecting the

acetate production. In section 4.2 we present a more complicated example where

3 possible lumped networks are a priori considered for the aerobic growth of the

fungus Pycnoporus cinnabarinus.

It is worth noting that proposing a reduced macroscopic reaction network can be

very diffi cult for some complex cases. For instance anaerobic wastewater treatment
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bioreactors involve more than 140 coexisting microbial species [8] and many dif-

ferent complex substrates whose proportion varies with time.

Once the �✂✁ macroscopic reactions have been assumed involving �☎✄ biological or

chemical species (microorganisms, substrates, metabolites, enzymes... ), the dy-

namical behaviour of the stirred tank bioreactor can be described by a general

mass-balance model of the following form (see e.g. [2]):

✆✞✝ ✄✆✠✟ ✏ ✟☛✡ ✞ ✝ ✄ ✘ ✆ ☛
✑
☞ ✞ ✝ ✄

☎ � ☞
✝ ✄ ☛

☞
Q

✞ ✝ ✄ ✘ ✆ ☛ ✘ (1)

In this model, the vector
✝ ✄ ✏ ✞ ✝ ✄ ✝ ✘ ✝ ✄✍✌ ✘ ✒ ✒ ✒ ✘ ✝ ✄ �✏✎ ☛✒✑

is made-up of the concentra-

tions of the various species inside the liquid medium. The term
✝ ✄

☎ � represents the

influent concentrations. The matrix
☞

is the dilution rate matrix representing the

hydraulics mechanisms (inflows and outflows and possible retention) associated

with the various species in the reactor. The exchange of matter in gaseous form be-

tween the surrounding and the reaction medium is represented by the gaseous flow

rate Q
✞ ✝ ✄ ✘ ✆ ☛

.

The term ✟✓✡ ✞ ✝ ✄ ✘ ✆ ☛
represents the biological and biochemical conversions in the re-

actor (per unit of time) according to the underlying macroscopic reaction network.

The
✞ �✔✄✖✕✗�✂✁ ☛

matrix ✟ is a constant pseudo stoichiometric coeffi cient matrix. The

term ✡ ✞ ✝ ✄ ✘ ✆ ☛ ✏ ✞ ✡ ✝ ✞ ✝ ✄ ✘ ✆ ☛ ✘ ✡ ✌ ✞ ✝ ✄ ✘ ✆ ☛ ✘ ✒ ✒ ✒ ✘ ✡ �✍✘ ✞ ✝ ✄ ✘ ✆ ☛ ☛✒✑
is a vector of reaction rates

(or conversion rates). Q
✞ ✝ ✄ ✘ ✆ ☛

and ✡ ✞ ✝ ✄ ✘ ✆ ☛
are supposed to depend on the state

✝ ✄
and on external environmental factors (represented by

✆
) such as temperature, light,

aeration rate, etc.

Matrix ✟ is associated with the assumed macroscopic reaction network and plays

a key role in the mass balance modelling. Each line of the matrix corresponds to

one (bio)chemical species involved in the process. Each column of the matrix cor-

responds to a (bio) chemical reaction between some of the species. A positive entry✙
☎ ✙

means that the ✚ th species is a product of the ✛ th reaction while a negative entry✙
☎ ✙

means that it is a reactant or a substrate of the reaction. If
✙

☎ ✙
✏ ✌ , the ✚ th species

is not involved in the ✛ th reaction.

The objective of this paper is to propose a method to guide the user in the identifi -

cation of the entries of pseudo-stoichiometric matrix ✟ . It is worth noting that the

determination of matrix ✟ is a problem equivalent to that of determining the struc-

ture of the reaction network. The usual approach dedicated to the determination

of reaction networks relies on the linearisation of the dynamics around a reference

solution [9,10]. Here, in the spirit of [11,12], we use linear algebraic properties to

exploit the structure of the system (equation (1)) and our arguments are not based

on any linearisation. As a consequence we are not limited to steady state data and

we can exploit all the available measurements, even when associated to transient

states.
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We will show how to use a set of available data consisting of measurements of
✝ ✄ ,

Q,
☞

and
✝ ✄

☎ � at sampling instants, to determine the size of the matrix ✟ (ı.e. the

number of reactions that must be taken into account) and to address the problem of

the identifi cation and validation of its coeffi cients.

Note that it is quite rare for bioprocesses that all the involved variables are measured

(sometimes it is even unclear which variables are involved). For this reason we will

focus on the estimation of � the submatrix of ✟ associated with the available

measurements
✝✂✁

.

We stress the fact that the methodology that we discuss is the fi rst modelling stage.

The second stage in the modelling, which is not discussed here, would consist in

determining the reaction rates as functions of the state variables. This second prob-

lem is diffi cult and suffers as well from a lack of tools to assist the modeller. But

this delicate step can be avoided for a large number of applications, where the

knowledge of the mass balance (i.e matrix ✟ ) is suffi cient to design controllers or

observers [2].

The paper will address the three following problems:

✄ How many reactions (i.e. how many columns for matrix ✟ ) must be taken into

account to reproduce the available data set ?✄ Which reactions must be taken into account ? Which are the most plausible

macroscopic reaction networks ?✄ What are the values of the pseudo-stoichiometric coeffi cients ?

We will successively consider these three problems, without any a priori knowl-

edge on the reaction rates ✡ ✞ ✝ ✄ ✘ ✆ ☛
. The approaches will be illustrated with three

examples of signifi cant complexity: real data of the growth and biotransformation

of the fi lamentous fungi Pycnoporus cinnabarinus, real data of an anaerobic di-

gester involving a bacterial consortium degrading a mixture of organic substrates

and a process of lipase production from olive oil by Candida rugosa.

2 Determination of the minimum number of reactions

2.1 Statement of the problem

In this section, we address the fi rst problem, consisting in determining � ✁ the min-

imum number of reactions to explain the observed dynamics of the fermenter. We

assume that we measure a subset
✝✂✁

of � ✁
components of

✝ ✄ that are involved in

the system (i.e. which present signifi cant variations along time). Indeed the mea-

surements of the other state components (denoted
✝✆☎

) may not be available, but
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we assume however that we measure more variables than the number of reactions:

� ✁✁� �✂✁ . If these components have a gaseous phase, we assume that the associated

gaseous flow rates ✂ ✞ ✝ ✁ ✘ ✝ ☎ ✘ ✆ ☛
are measured.

The equation associated with
✝✂✁

is thus:

✆✞✝ ✁
✆✠✟ ✏ � ✡ ✞ ✝ ✁ ✘ ✝ ☎ ✘ ✆ ☛

✑
☞ ✞ ✝ ✁

☎ � ☞
✝ ✁ ☛

☞
✂ ✞ ✝ ✁ ✘ ✝ ☎ ✘ ✆ ☛ ✘ (2)

The matrices � and ✂ are submatrices of ✟ and Q, respectively, associated with✝ ✁
. Note now that � is a rectangular matrix with more rows than columns. In the

expression of the mass balance model (2), only the term � ✡ ✞ ✝ ✁ ✘ ✝ ☎ ✘ ✆ ☛
needs to be

mathematically expressed.

2.2 Theoretical determination of ✄✆☎✞✝ ✞✠✟☛✡ ✞✌☞ ☛ ☛

Let us integrate equation (2) between 2 time instants
✟

☞✎✍
and

✟
(

✍
denotes the

considered time window):

✝ ✁ ✞ ✟ ☛
☞
✝ ✁ ✞ ✟

☞✏✍
☛

☞✒✑✔✓✓✖✕
✑ ☞ ✞ ✝ ✁

☎ � ✞✘✗ ☛
☞
✝ ✁ ✞✘✗ ☛ ☛

✑
✂ ✞ ✝ ✁ ✞✙✗ ☛ ✘ ✆ ✞✘✗ ☛ ☛ ✆ ✗

✏ �
✑✔✓✓✖✕

✑ ✡ ✞ ✝ ✄ ✞✙✗ ☛ ✘ ✆ ✞✘✗ ☛ ☛ ✆ ✗ (3)

Let us denote:

✚ ✁ ✞ ✟ ☛ ✏ ✝ ✁ ✞ ✟ ☛
☞
✝ ✁ ✞ ✟

☞✛✍
☛

☞ ✓✜✓✖✕
✑
☞ ✞ ✝ ✁

☎ � ✞✘✗ ☛
☞
✝ ✁ ✞✘✗ ☛ ☛

✑
✂ ✞ ✝ ✁ ✞✘✗ ☛ ✘ ✆ ✞✘✗ ☛ ☛ ✆ ✗

(4)

and

✢ ✁ ✞ ✟ ☛ ✏
✓✜✓✖✕
✑
✡ ✞ ✝ ✄ ✞✘✗ ☛ ✘ ✆ ✞✘✗ ☛ ☛ ✆ ✗

Equation (3) can then be rewritten:

✚ ✁ ✞ ✟ ☛ ✏ � ✢ ✁ ✞ ✟ ☛
(5)

The vector ✚ ✁ ✞ ✟ ☛
can be estimated along time from the available measurements.

The value of the integral in (4) can be computed e.g. with a trapeze approximation.
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In order to improve the cleaning of the data (noise reduction and diminution of

autocorrelation) it may be useful to apply any linear scalar fi lter (i.e. any combina-

tion of integration, differentiation and delay � ) to Equation (2) leading to a linear

relationship of the same type as (5):

✚ ✞ ✟ ☛ ✏ � ✢ ✞ ✟ ☛
(6)

where ✚ ✞ ✟ ☛
and ✢ ✞ ✟ ☛

denote respectively the signal derived from ✚ ✁ ✞ ✟ ☛
and ✢ ✁ ✞ ✟ ☛

after fi ltering. The moving average (3) that we have presented for sake of simplicity

is of course only one example of such a fi ltering.

Now the question of the dimension of matrix � can be formulated as the determi-

nation of the dimension of the image of � or in other words, of the dimension of the

space where ✚ ✞ ✟ ☛
lives. Note that we assume � to be a full rank matrix. Otherwise,

it would mean that the same dynamical behaviour for ✚ ✞ ✟ ☛
could be obtained with

a matrix � of lower dimension.

Determining the dimension of the ✚ ✞ ✟ ☛
space is a classical problem in statistical

analysis. It can be solved by a principal component analysis (see e.g. [13]) that

determines the dimension of the vector space spanned by the vectors
✙

☎
, rows of � .

In order to reach this objective, we consider ✁ time instants
✟ ✝ ✘ ✒ ✒ ✒ ✘ ✟✄✂ (we choose

✁ � � ✁
). The way to select these time instants will be discussed in the sequel. We

build then the � ✁ ✕☎✁ matrix ✆ made of ✁ vectors ✚ ✞ ✟ ☛
at these time instants:

✆ ✏ ✞ ✚ ✞ ✟ ✝ ☛ ✘ ✒ ✒ ✒ ✘ ✚ ✞ ✟✄✂ ☛ ☛

We will also consider the associated matrix of reaction rates, which is unknown:

✝ ✏ ✞ ✢ ✞ ✟ ✝ ☛ ✘ ✒ ✒ ✒ ✘ ✢ ✞ ✟✄✂ ☛ ☛

We assume that matrix
✝

has full rank. It means that the reactions are independent

(none of the reaction rates can be written as a linear combination of the others).

Property 1 For a matrix � of rank �✔✁ , if
✝

has full rank, then the � ✁ ✕ � ✁
matrix✞ ✏ ✆✟✆ ✑ ✏ � ✝✠✝ ✑ � ✑

has rank �✂✁ . Since it is a symmetric matrix, it can be

written:

✞ ✏
✕
✑☛✡

✕
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where

✕
is an orthogonal matrix (

✕
✑

✕
✏✁�

) and

✡ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

✆ ✝ ✌ ✒ ✒ ✒ ✌
✌ ✆ ✌ ✌ ✌
...

. . . ✆ � ✘
✌

. . .
...

✌ ✒ ✒ ✒ ✌

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

with ✆
☎ ✕ ✝☛✡ ✆ ☎ � ✌ for ✚✌☞✎✍ ✄ ✘ ✒ ✒ ✒ ✘ �✂✁✑✏ .

This property is a direct application of the singular decomposition theorem [14].

Since ✒✔✓✖✕✘✗ ✞ ✞ ☛ ✏ ✒✙✓✚✕✘✗ ✞ � ✝ ☛ ✏ ✒✔✓✚✕✛✗ ✞ � ☛ ✏ ✒✙✓✚✕✘✗ ✞ ✡ ☛ ✏ �✂✁ , it provides the

result.

Now from a theoretical point of view it is possible to determine the number of

reactions in the macroscopic reaction network: it corresponds to the number of non

zero singular values of ✆ ✆ ✑
. This theoretical approach must however be adapted

in the real case where the available measurements are discrete data points perturbed

by a noise.

2.3 Practical determination of the number of reactions

In the reality, the ideal case presented in the previous paragraph is perturbed for

four main reasons:

✄ The macroscopic reaction network that we are looking for results from lumping

of chemical or biochemical reactions which can be very complex. The “true”

matrix � is probably a very large matrix. The reactions which are fast or of low

magnitude can be considered as perturbations of a dominant reaction network. It

is this central (perturbed) macroscopic reaction network that we want to estimate.✄ The measurements are corrupted by noise. This noise can be very important,

especially for the measurement of biological quantities for which reliable sensors

are rarely available.✄ The measurements are performed on a discrete basis. Moreover they are rarely

all available exactly at the same time instant
✟

☎
, and therefore they must be inter-

polated if we need a state estimate
✝✂✁ ✞ ✟

☎
☛

at ✁ time instants
✟

☎
in order to build

vector ✆ .
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✄ In order to estimate ✚ ✞ ✟ ☛
in equation (4) we need to compute the approximate

value of an integral. This may generate additional perturbations.

2.3.1 Data processing: interpolation and smoothing

The data collected on a biotechnological process often result from various sampling

strategies carried out with various devices. As a consequence the data are seldom

sampled simultaneously. In order to apply the proposed transformations vector ✆
has to be computed with values of the state variables at the same time instants

✟
☎
.

A large number of tools are available in the literature to interpolate and smooth

the data. We suggest here to use spline functions [15] which will at the same time

interpolate and smooth a signal. The trade-off between interpolation and smoothing

can be chosen by the user.

In the sequel we assume therefore that the set of measurements is available at the

(irregular) time instants
✗ ✙

(depending on the variable), and that after a smoothing

and interpolation process all the variable estimates are available at the time instants✟
☎
.

We hypothesise that the estimates
✝✂✁ ✞ ✟

☎
☛

are of reasonably good quality and in

particular that the sampling frequency is in adequation with the time constants of

the process.

2.3.2 Data normalisation

To avoid conditioning problems and to give the same weighting to all the state

variables, we normalise each component ✚ ☎
of the vector ✚ as follows:

�✚ ☎
✞ ✟

✙
☛ ✏ ✚ ☎

✞ ✟
✙

☛
☞

✟ ✞ ✚ ☎
☛

✁ ✁✄✂ ✞ ✚ ☎
☛

where ✟ ✞ ✚ ☎
☛

is the average value of the ✚ ☎
✞ ✟✆☎ ☛

for
✙ ☞ ✍ ✠ ✒ ✒ ✁ ✏ , and ✂ ✞ ✚ ☎

☛
their

standard deviation.

2.3.3 Conclusion for the determination of the minimal number of reactions

In the reality, the noises due to model approximations, measurement errors or in-

terpolation perturb the analysis. Therefore in practice there are no zero eigenvalues

for the matrix
✞ ✏ ✆ ✆ ✑

.

The question is then to determine the number of eigenvectors that must be taken

into account in order to represent a reasonable approximation of the data ✚ ✞ ✟ ☛
. To
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solve this problem, let us remark that the eigenvalues ✆ ☎
of

✞
correspond to the

variance associated with the corresponding eigenvector (inertia axis) [13].

The method will then consist in selecting the � ✁ fi rst principal axis which represent

a total variance larger than a fi xed threshold.

For instance, in the next example, we have fi xed a threshold (depending on the

information available on noise measurements) at 95% of the variance. This led to

the selection of 6 axes, and therefore � ✁ ✏✁�
.

Remark: if ✒✙✓✚✕✘✗ ✞ ✞ ☛ ✏ � ✁
it means that ✒✔✓✚✕✛✗ ✞ � ☛ ✡ � ✁

. In such a case we

cannot estimate �✂✁ and measurements of additional variables are requested to apply

the proposed method.

Finally, Figure 1 summarises the full procedure to compute the minimal number of

reactions that are to be considered in order to reproduce an experimental data set.

2.4 Example 1: vanillin production by the filamentous fungi Pycnoporus cinnabar-

inus

We consider here the production of vanillin from vanillic acid by the fi lamentous

fungus Pycnoporus cinnabarinus [16]. The species involved in this biotransfor-

mation process are the carbon sources (maltose and glucose), the nitrogen source

(ammonium), oxygen, carbon dioxide, fungal biomass and phenolic compounds

(vanillic acid, vanillin, vanillic alcohol and methoxyhydroquinone). This results

from a complicated set of reactions [17], most of them being ill known.

The process generally proceeds in two steps. In a fi rst step (which generally lasts

the fi rst 3 days), the fungus uses the available substrates (nitrogen, maltose and

glucose) to grow. The growth is aerobic, and therefore oxygen is consumed and

CO ✌ produced.

In a second step, the biosynthesis is triggered with addition of cellobiose 2 hours

before continuous addition of vanillic acid. Then the fungus transforms the vanillic

acid either in methoxyhydroquinone, or in vanillin. In this last case, vanillin can

also be degraded into vanillic alcohol.

For illustration purpose, Figure 2 presents the typical evolution of some of the

key variables during the fermentation. The fi gure presents also the splines used

to smooth and interpolate the data in order to build the vector ✚ ✞ ✟ ☛
made of the 10

measured species. The data set consists in 9 experiments which have been resam-

pled to get 4 time instant
✟

☎
per day. Finally, 619 data points ✚ ✞ ✟

☎
☛

were considered.

Figure 3 represents the cumulated variance associated with the number of reactions.

10



Four reactions are suffi cient to explain 80% of the observed variance. Five reactions

explain 95% of the total variance. This analysis motivated the structure of the model

presented in [18].

2.5 Example 2: an anaerobic digestion process for wastewater treatment

In this second example we study a more complicated case where the biotechnolog-

ical process is an anaerobic digester used for wastewater treatment [1]. The anaero-

bic process involves a complex consortium of bacteria degrading a mixture of sub-

strates. Figure 4 presents a schematic overview of the degradation pathway from

the set of macromolecules (proteins, carbohydrates, lipids, etc...) up to methane,

carbon dioxide and hydrogen. Obviously this general overview lumps together a

large number of simpler reactions involving single substrates. It turns out that more

than 140 bacterial species can be found in the considered anaerobic digester [8].

The considered process for experimental data generation is a pilot-scale up-flow

anaerobic fi xed bed reactor processing raw industrial distillery wastewater [19].

The experimental results [20] were obtained for a period of 70 days over a wide

range of experimental conditions (see Figure 7). The available daily measurements

consist in organic carbon measured by the so-called soluble chemical oxygen de-

mand (COD), the total volatile fatty acids (VFA) the volatile suspended solids

(VSS), the total alkalinity and the dissolved inorganic carbon. The data set also

contains a series of measurements of CH � and CO ✌ flow rates.

The proposed method was applied to the available data set, including periods of

biomass inhibition by an excess of VFA [20]. The obtained variance distribution is

represented in Figure 5. It is worth noting that despite the apparent complexity of

the process, a reaction network involving only 1 reaction (and thus one biomass)

represents 83.2% of the variability. With 2 reactions, 97.8% of the variability are

represented, which justifi ed the choice of the very simple model presented in [20].

3 Validation of a macroscopic reaction network

3.1 Statement of the problem

In the previous section we have shown how to determine the number of reactions

which must be considered in order to explain the available data. Let us now assume

that a plausible reaction network, with this number of reactions, is postulated with

the aim of describing the process. In this section, we shall now show how such a

candidate reaction network can be validated from the data.

11



One additional diffi culty in comparing a reaction network, via its stoichiometric

matrix � , with a set of data is that some pseudo-stoichiometric coeffi cients may be

a priori unknown. We shall propose a method which will allow at the same time

to test the validity of the macroscopic reaction network and to identify the missing

pseudo-stoichiometric coeffi cients.

3.2 Finding the left kernel of the pseudo-stoichiometric matrix

Let us consider a vector
� ☞✂✁☎✄✝✆✞✁✠✟ :

� ✑ � ✏ ✌

Assume moreover that
�

is normalised such that one of its components
�

☎
is 1:�

☎
✡ ✏ ✠

Now let us consider the scalar quantity
� ✑ ✚ ✞ ✟ ☛

. From equation (5), it satisfi es at

any time
✟
:

� ✑ ✚ ✞ ✟ ☛ ✏ ✌

In other words, we have:

✚ ☎
✡ ✞ ✟ ☛ ✏

☞ ✄✙
☛✆ ☎
✡
�

✙ ✚ ✙
✞ ✟ ☛

(7)

This means that the ✚ ✙
are linked by a linear relation. The immediate idea that one

can have is to check whether relationship (7) is in adequation with the data. This

can be done by performing a linear regression between ✚ ☎
✡ and the ✚ ✙

.

Nevertheless, we have to keep in mind that the ✚ ✙
are a priori not independent,

since they may be related by other relationships associated with other left kernel

vectors of � . In particular, we have seen that ✒✔✓✚✕✘✗ ✞ ✆ ☛ ✏ � ✁ , and thus a regression

(7) cannot involve more than � ✁
✑

✠
independent terms ✚ ✙

.

We will therefore select the vectors
�

of the left kernel that imply only independent✚ ✙
in (7).

It is worth noting that the vector
�

involves three kinds of components:

(1) entries which are structurally zero

(2) entries that have an a priori known non-zero value (either 1 for the normal-

ising component, see above, or a known value related to the stoichiometry of

the reaction network).
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(3) entries which are unknown because they depend on unknown coeffi cients of

the pseudo-stoichiometric matrix. These entries have to be estimated from the

data.

Remark that Equation (7) states a conservation between the variables ✚ ☎ . This con-

servation is directly connected to the notion of reaction invariants [21,22].

Definition 1 We say that a set ✍ ✚
☎
� ✒ ✒ ✒ ✚

☎
✁ ✏ is associated with a left kernel vector�

if
�
✙

✏ ✌ for all the indices ✛ ✂☞ ✍ ✚ ✝ ✒ ✒ ✒ ✚ ☎ ✏ . We say that
�

is associated with the✙ ✕ � ✁ submatrix
�� which is the submatrix made of the rows ✚ ✝ ✒ ✒ ✒ ✚ ☎

of � . Finally

we call
��

the vector obtained by removing all the zeros entries in
�

. The dimension

of
��

(namely
✙

) is called the regression dimension associated with
�

and denoted✆ ✞ � ☛
, the number of unknown components of

�
is denoted

✆ ☎ ✞ � ☛
.

We have therefore
�� ✑ �� ✏ ✌ , and

��
has no zero component. Then, ✄

☎
✁ �
☎
✁ ✚
☎
✁ ✞ ✟ ☛ ✏

✌ .

Note that, due to the normalisation of
�

, we have
✆ ☎ ✞ � ☛ ✍ ✆ ✞ � ☛

☞
✠
.

Definition 2 We say that a left kernel vector
�

is sound if its associated
✆ ✞ � ☛ ✕ � ✁

matrix
�� does not contain itself any

✙ ✕✓�✔✁ submatrix (
✙✆☎ ✆ ✞ � ☛

) whose rank is

not full or — equivalently — if ✄✆☎✞✝ ✞ ✁☎✄✝✆✞✝✁ ✟ ☛ ✏✠✟
.

Remark: For a sound vector
�

we have
✆ ✞ � ☛ ✍ �✔✁

✑
✠

Indeed, if it has
✙ ✡ �✔✁

✑
✄

non zero entries, then its associated submatrix
�� is a✙ ✕ �✂✁ submatrix whose left kernel is at least of dimension 2.

3.3 Example 3: a process of lipase production from olive oil by Candida rugosa

Let us consider the example of the competitive growth on two substrates [23] which

could represent the production of lipase from olive oil by Candida rugosa. Here

the microorganism is supposed to grow on two substrates that are produced by

the hydrolysis of the primary organic substrate made of several molecules (mainly

triglycerides). We assume the following 3-step reaction network:

✄ Hydrolysis:

✙ ✝ ✡ ✝ ✑☛✡ ☞✞✍ ✡
✌
✑
✙ ✌
✡
☞
✑✌✡

✄ Growth on

✡
✌ :

✙ ☞
✡
✌
✑
✙

�✎✍
☞✞✍ ✏ ✑

✙✑✏ ✕
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✄ Growth on

✡
☞ :

✙✁� ✡ ☞ ✑
✙✁✂ ✍ ☞✞✍ ✏ ✑

✙☎✄ ✡ ✑
✙✁✆ ✕

where

✡ ✝ is the primary substrate (olive oil, made of various compounds),

✡
✌ (glyc-

erol) and

✡
☞ (fatty acids) are the secondary substrates,

✡
is the enzyme (lipase),

✏
the biomass (Candida rugosa), ✍ the dissolved oxygen and

✕
the dissolved CO ✌ .

We assume that all the biochemical species are measured, except

✡ ✝ .
The associated pseudo-stoichiometric matrix ✟ and the state vector

✝ ✄ are therefore:

✟ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

☞
✙ ✝ ✌ ✌

✠
☞

✙ ☞ ✌
✙ ✌ ✌

☞
✙✁�

✌ ✌ ✙✝✄
✌ ✠ ✠

✌
☞

✙
�

☞
✙✁✂

✌ ✙✑✏ ✙✁✆

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

✘ ✝ ✄ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

✡ ✝✡
✌✡
☞✡
✏
✍✕

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

Since

✡ ✝ is not measured, we will focus on the state
✝ ✁

associated with the subma-

trix � :

� ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

✠
☞

✙ ☞ ✌
✙ ✌ ✌

☞
✙✁�

✌ ✌ ✙✝✄
✌ ✠ ✠

✌
☞

✙
�

☞
✙✁✂

✌ ✙ ✏ ✙✁✆

✝ ✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠
✘ ✝ ✁ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

✡
✌✡
☞✡
✏
✍✕

✝ ✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠
✘ ✝ ☎ ✏✟✞ ✡ ✝✡✠

14



Now the following vector belongs to the kernel of matrix � ✑
:

� ✝ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

✌
✌☎✁� ✕ ☎ ✂☎ ✄☞

✙ ✏
✌

✠

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

We have
✆ ✞ � ✝ ☛ ✏ ☎

and
✆ ☎ ✞ � ✝ ☛ ✏ ✄

. It is associated with the rank-2 submatrix
�� ✝

and to the vector
�� ✝

:

�� ✝ ✏

✂✄✄✄✄✄
☎

✌ ✌ ✙✝✄
✌ ✠ ✠

✌ ✙ ✏ ✙✁✆
✝ ✞✞✞✞✞
✠ ✘ �� ✝ ✏

✂✄✄✄✄✄
☎

☎☎� ✕ ☎ ✂☎ ✄☞
✙ ✏

✠

✝ ✞✞✞✞✞
✠

which is sound since the 3 possible
✄ ✕ ☎

submatrices are of full rank.

Thus ✚
� ✘ ✚ ✏ and ✚ ✄ are associated with

� ✝
, and related by the following relation:

✚ ✄ ✞ ✟ ☛ ✏ ✙ ✏ ✚ ✏ ✞ ✟ ☛
✑ ✙✁✆ ☞

✙✑✏
✙✝✄ ✚

�
✞ ✟ ☛

(8)

Now the kernel of matrix � ✑
is spanned by the 2 other sound vectors:

� ✌ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

✌
✌☎ ✆
✕ ☎ ✝☎ ✄

✙
�

✠

✌

✝ ✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

✘ � ☞ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

☞
✙ ✌

✠
☎ ✞ ☎ ✟✡✠ ☎ ☛☎ ✄☞

✙ ☞ ✙ ✌
✌
✌

✝ ✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

Obviously, we have
✆ ✞ � ✌ ☛ ✏ ☎

,
✆ ☎ ✞ � ✌ ☛ ✏ ✄

,
✆ ✞ � ☞ ☛ ✏✌☞

,
✆ ☎ ✞ � ☞ ☛ ✏ ☎

,
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3.4 Regressions associated with a set of ✚ ☎

Property 2 A vector
�

associated with a set ✍ ✚ ☎
� ✒ ✒ ✒ ✚ ☎

✁ ✏ is sound if and only if the✚ ☎
are not related by any other linear relation.

Proof: Indeed, it is clear that it is not possible to have another relation between

�✂✁
✑
✠

different ✚ ☎
, otherwise this relation would be associated with a second kernel

vector
�✁�

, meaning then that the kernel of
�� ✑

is at least of dimension 2, and thus
�

would not be sound.

Property 3 Let us consider a sound kernel vector
�

of � ✑
, associated with

��
and

to a set ✍ ✚ ☎
✂ ✘ ✚ ✙

☞✎✍ ✚ ✝ ✒ ✒ ✚☎✄✝✆✟✞✡✠ ✏ ✏ . Moreover, let us denote by S the set of indices ✛ such

that
��

✙
is known. Then the following cost criterion:

☛ ✞ ✆☞☛ ✏
✓
☞✄✓ ✆ ✓ �
✞ ✄✙
✌ S

��
✙ ✚ ☎

✂ ✞ ✟ ☛
☞ ✄✙

✍✌ S

✆
✙ ✚ ☎

✂ ✞ ✟ ☛ ☛ ✌ (9)

admits a unique minimum, of zero value, obtained for
✆

✙
✏ ��

✙
(for any ✛ ✂☞ S).

It is worth noting that minimising
☛ ✞ ✆☞☛

is exactly a linear regression problem.

3.5 Validation of the kernel of � ✑
with the available data

Now the validation will consist in verifying that
☛ ✞ ✆☞☛

(Equation 9) can be correctly

minimised, or in other words, that the regression between ✎
✏ ✄

✙
✌ S

��
✙ ✚ ☎

✂ and the✚ ☎
✂ (✛ ✂☞ S) is signifi cant.

This analysis must be performed on all the sound kernel vectors
�

☎
of � ✑

. In order

to maximise the quality of the regression, the ✚ ☎
✂ associated with

�
☎

(✛ ✂☞ S) and

✎ should in practice span a space of dimension
✆ ☎ ✞ �

☎
☛
. So we perform a principal

component analysis for the matrix

✆
☎
✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

✎
✞ ✟ ✝ ☛ ✒ ✒ ✒ ✎

✞ ✟✄✂ ☛
✚ ✙

� ✞ ✟ ✝ ☛ ✒ ✒ ✒ ✚ ✙
� ✞ ✟✄✂ ☛

...

✚ ✙
✏☎✑✓✒✕✔✗✖✙✘

✞ ✟ ✝ ☛ ✒ ✒ ✒ ✚ ✙
✏✚✑✓✒✛✔✜✖✢✘

✞ ✟✄✂ ☛

✝ ✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠
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where the index ✛
☎

correspond to the unknown elements of
��

☎
. The eigenvalues of

✆
☎

✆ ✑
☎

represent the total variance ✆ ☎ ✙
associated with the ✛ ✟✁� principal axis. We

then sort the singular values so that ✆ ✝ ✡ ✒ ✒ ✒ ✡ ✆ ✄ ✑ ✆✙✞ ✖ ✠ ✡ ✆ ✄ ✑ ✆✟✞ ✖ ✠ ✠ ✝ . Let us recall

that, in principle, ✆ ✄ ✑ ✆✟✞ ✖ ✠
� ✌ and ✆ ✄ ✑ ✆✙✞ ✖ ✠ ✠ ✝ ✏ ✌ .

We consider the following criterion (reminiscent to the conditioning number) which

assesses the balance of the variance along the axis:

B
✞ �

☎
☛ ✏ ✆ ✝ ✞ �

☎
☛✆ ✄ ✑

✞ �
☎

☛

With this criterion, we can now order the kernel vectors as follows:

✄ We fi rst sort the kernel vectors
�

☎
by sets of constant regression dimension✆ ☎ ✞ �

☎
☛
.✄ Within the sets of constant regression dimension

✆ ☎ ✞ �
☎

☛
, we sort the

�
☎

by in-

creasing index of associated variance balance B
✞ �

☎
☛
.

Definition 3 The basis made of the first � ✁
☞
�✂✁ independent vectors

�
☎

is called

the sound kernel basis.

3.6 Identifiability of the pseudo-stoichiometric coefficients

The question that we want to discuss in this section is to determine whether it

is possible to determine the set of pseudo-stoichiometric coeffi cients
✙

☎
from the

values of
�

☎
identifi ed from the set of regressions given by equations (7). This

identifi ability property when the reaction rates ✡ ✞ ✝ ✄ ✘ ✆ ☛
are unknown is referred to

as C-identifi ability in [11].

The answer to the C-identifi ability question can be found in [11]. A version of this

Theorem is recalled here in the considered framework of full rank matrices � :

Theorem 1 (Chen & Bastin 1995) Let � be an � ✁ ✕ �✂✁ full rank matrix with

� ✁ � � ✁ . The unknown elements of the ✛✄✂✆☎ column of � are C-identifiable if and

only if there exists a nonsingular partition
✞ � ✄ ✘ �✞✝

☛
, where � ✄ is a full rank sub-

matrix �✂✁ ✕ � ✁ which does not contain any unknown element in its ✛ ✂✆☎ column.

We propose here a broader suffi cient condition for the C-identifi ability:

Theorem 2 Let � be an � ✁ ✕ � ✁ full rank matrix with � ✁ � � ✁ . The unknown

element
✙

☎ ✙
of � is identifiable if there exists a

✙ ✕ �✔✁ full rank submatrix � ✄ , with✙ ✍ �✂✁ , which does not contain any unknown element on its ✛ ✂✟☎ column such that
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the
✞ ✙

✑
✠ ☛ ✕ �✂✁ submatrix of � :

� ✏
✂✄
☎ � ✄

�✞✝
☎ ✝✟✞✠

is not full rank, i.e. ✒✙✓✚✕✘✗ ✞ � ☛ ☎ ✙
✑

✠
, where � ✝

☎
is the ✚ ✂✟☎ line of � .

Proof: see Appendix A.

Remark: This criterion, although it is more complicated than the one proposed in

[11], allows to check the C-identifi ability for each element of � separately and not

only for the columns.

Let us consider the following matrix � :

� ✏

✂✄✄✄✄✄
☎
✙ ✝ ✝ ✠

✠ ✌
✙ ☞ ✝ ✌

✝✟✞✞✞✞✞
✠ (10)

Theorem 1 states that the fi rst column of � is not C-identifi able, since it is not

possible to fi nd a
✄ ✕ ✄

submatrix � ✄ which do not contain any unknown element in

its fi rst column. Now if we apply Theorem 2, we can use the following submatrices:

� ✄ ✏✟✞ ✠ ✌ ✠ ✘ �✞✝ ✏ ✞ ✙ ☞ ✝ ✌ ✠
Then

�
is of rank 1, and verifi es the condition

✙
✑

✠ ✏ ✄ � ✒✔✓✚✕✘✗ ✞ � ☛
, it follows

that
✙ ☞ ✝ is C-identifi able. It is now clear that

✙ ✝ ✝ is not C-identifi able, otherwise the

fi rst column of � would be C-identifi able.

Remark that the analysis of the kernel of matrix � ✑
also provides a criterion to

test the identifi ability of the
✙

☎ ✙
. Even if this criterion is less convenient, it will give

some hints on the practical identifi ability, as we will see in the next Property.

Property 4 The pseudo-stoichiometric coefficient
✙

☎ ✙
is C-identifiable if and only

if it can be computed from a combination of sound kernel vectors.

In the previous example of equation (10), the sound kernel basis of � ✑
was

�� ✏ ✞ ✌ ✘ ☞
✙ ☞ ✝ ✘ ✠ ☛ ✑

It follows that
✙ ☞ ✝ is C-identifi able and that

✙ ✝ ✝ is not C-identifi able.
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3.7 Identification of the pseudo-stoichiometric coefficients and final validation

Now, once we know that the pseudo-stoichiometric coeffi cients are identifi able, we

can estimate their value from experimental data using Property 4. For this, we will

use the regression associated with the sound kernel basis of � ✑
given by equation

(7). The statistical signifi cance of the correlation will allow to test from the data

whether the vectors
��

☎
are in the kernel of � ✑

or not.

The fi nal validation will consist in checking that the pseudo-stoichiometric coeffi -

cients are all positive. This test must be performed with regards to the uncertainty

obtained from the linear regression (7). Indeed, because of the uncertainty obtained

on the estimates for the
�

☎
, the

✙
☎

may have a negative value, but with a confi dence

interval intersecting the positive domain.

The overall approach leading to the validation of an assumed macroscopic reaction

network is summarised in Figure 6.

3.8 Improving the method

A fermentation is often composed of several phases. In each phase, some reactions

are not triggered. Therefore it is generally possible to fi nd time intervals �
✍

☎ ✘ ✍
☎ ✠ ✝✂✁

for which ✡
✙

✏ ✌ for some ✛ . In the same way, the concentration of some compo-

nents may remain constant during certain periods of time.

This is for example the case in a reaction where the primary (associated with

growth) and the secondary metabolisms are successively activated. During the fi rst

stage only growth takes place: no biotransformation appears since no precursor is

added. During the secondary metabolism phase, the growth is inhibited and the

microorganism concentrates on the bioproduction of a metabolite.

During these periods of time �
✍

☎ ✘ ✍
☎ ✠ ✝✂✁ , the system is then characterised by an index

✛☎✄ such that ✡
✙

✡ ✏ ✌ . System (1) is then equivalent to the following system:

✆✞✝ ✁
✆✠✟ ✏ ✆� ✆✡ ✞ ✝ ✁ ✘ ✆ ☛

✑
☞ ✞ ✝ ✁ ☎ � ☞

✝ ✁ ☛
☞

✂ ✞ ✝ ✁ ✘ ✆ ☛ ✘ (11)

where the matrix
✆� is extracted from � by removing the columns of � corre-

sponding to the index ✛✝✄ .

Finally on these time intervals, the study of system (1) can be simplifi ed by studying

(11).
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3.9 Application to the process of lipase production

Let us consider the example of the competitive growth on 2 substrates. Let us as-

sume that substrates

✡
✌ and

✡
☞ can directly be obtained from another bioreactor

where the enzyme has been purifi ed and directly added to

✡ ✝ without the biomass.

We will then consider such an experiment where the secondary substrates

✡
✌ and

✡
☞ are directly added. Therefore, for all these experiments we will have ✡ ✝ ✏ ✌ . The

problem reduces thus to fi nd the kernel of the submatrix
✆� obtained after removing

the fi rst column of � :

✆� ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

☞
✙ ☞ ✌

✌
☞

✙✁�
✌ ✙✝✄

✠ ✠☞
✙

�

☞
✙✁✂

✙ ✏ ✙✁✆

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

The kernel of
✆� ✑

is spanned by the following sound vectors:

✆� ✝ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

✌☎ ✄☎ ☛
✠

✌
✌
✌

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

✘ ✆� ✌ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

☎ ✆
✕ ☎ ✝☎ ✞

✌
✌

✙✝✂
✠

✌

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

✘ ✆� ☞ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

☞ ☎ ✄☎ ✞

✌
✠☞

✙☎✄
✌
✌

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

✘ ✆� � ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

☎ � ✕ ☎ ✂☎ ✞

✌
✌☞

✙✁✆
✌

✠

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

The regression dimension are
✆ ✞ ✆� ✝ ☛ ✏ ✄ ✘ ✆ ☎ ✞ ✆� ✝ ☛ ✏ ✠

and
✆ ✞ ✆�

☎
☛ ✏ ☎ ✘ ✆ ☎ ✞ ✆�

☎
☛ ✏ ✄

for ✚ � ✠
. Note that

✆� is associated with regressions of lower dimension than

� implying less unknown coeffi cients
�

✙ ☎
. It will therefore provide more reliable

results (with the same amount of data), which will be easier to validate.

3.10 Application to the anaerobic digestion process

Based on the results presented in paragraph 2.5, a reaction network relying on 2

main steps was assumed to summarise the main mass transfer within the digester.

In the fi rst reaction (acidifi cation) the organic matter

✡ ✝ is degraded into VFA (

✡
✌ )
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and CO ✌ by a consortium of acidogenic bacteria (

✏ ✝ ). Then the VFA are degraded

into CH � and CO ✌ by methanogenic bacteria (

✏
✌ ). The reaction network is thus the

following:

✄ Acidogenesis (with reaction rate ✡ ✝ ):
✙ ✝ ✡ ✝ ☞✗✍ ✏ ✝ ✑ ✙ ✌

✡
✌
✑

✙
�✁�✄✂ ✌ (12)

✄ Methanogenesis (with reaction rate ✡ ✌ ):

✙ ☞
✡

✌
☞✗✍ ✏

✌
✑

✙ ✏ �✄✂ ✌
✑

✙✝� �✆☎ � (13)

Let us denote by ✝ the total dissolved inorganic compounds (mainly CO ✌ and bi-

carbonate). The associated pseudo-stoichiometric matrix ✟ and the state vector
✝ ✄

are therefore:

✟ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

✠ ✌
✌ ✠☞

✙ ✝ ✌
✙ ✌

☞
✙ ☞

✙
�

✙✑✏
✌ ✙✝�

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠
✘ ✝ ✄ ✏

✂✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄
☎

✏ ✝✏
✌✡ ✝✡

✌
✝

✝✟✞ �

✝✟✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞
✠

Since

✏ ✝ and

✏
✌ (which represent a broad variety of species) are not measured, we

will focus on the state
✝ ✁

associated with the submatrix � :

� ✏

✂✄✄✄✄✄✄✄✄
☎

☞
✙ ✝ ✌

✙ ✌
☞

✙ ☞
✙

�
✙ ✏

✌ ✙✁�

✝✟✞✞✞✞✞✞✞✞
✠
✘ ✝ ✁ ✏

✂✄✄✄✄✄✄✄✄
☎

✡ ✝✡
✌
✝

✝✟✞ �

✝✟✞✞✞✞✞✞✞✞
✠
✘ ✝ ☎ ✏

✂✄
☎
✏ ✝✏

✌

✝✟✞
✠

Theorem 1 shows that matrix � is clearly not C-identifi able from the available

data. Thus we normalised it, so that the rate of

✡ ✝ consumption and the rate of CH �

production are now unitary, leading to matrix
✆� :

✆� ✏

✂✄✄✄✄✄✄✄✄
☎

☞
✠ ✌☎ ✟☎ �
☞ ☎ ✞☎ ☛☎ ✝☎ �

☎✁�
☎ ☛

✌ ✠

✝ ✞✞✞✞✞✞✞✞
✠
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Theorem 1 proves then that
✆� is C-identifi able, choosing � ✄ ✏

✂✄
☎

☞
✠ ✌

✌ ✠

✝✟✞
✠ . Thus the

fractions

☎ ✟☎ � ✘ ☎ ✞☎ ☛ ✘ ☎ ✝☎ � and

☎✁�
☎ ☛ can be identifi ed. To estimate the pseudo-stoichiometric

coeffi cients
✙ ✝ to

✙✁�
biomass measurements are required.

This mass balance modelling was used in [20]. The methane whose solubility is

low was assumed to stay at low constant concentration, and the methane gaseous

flow rate was assumed to be directly related to the methane bacterial production

rate.

Finally, in [20] the kinetic rate modelling for ✡ ✝ and ✡ ✌ was performed by using

a Monod type kinetics for the growth of acidogenic bacteria and Haldane kinetics

for the methanogenesis. Then the kinetic parameter were estimated, leading to the

results presented in Figure 7 for more than 70 days of experiments with various

influent concentrations and various dilution rates. For more details see [20].

4 Comparison between several macroscopic reaction networks

4.1 Statement of the problem

Once the number of reactions �✔✁ to be taken into account has been identifi ed, the

next step consists in selecting the set of reactions which are supposed to represent

the main mass transfer in the fermenter. In general, several hypotheses can be stated

with respect to the available knowledge.

We assume therefore that a set of � plausible macroscopic reaction networks with �
associated pseudo-stoichiometric matrices �

☎
are postulated by the user. It may e.g.

be the result of automatic determination procedures, like those presented in [24,25].

The aim of this section is to determine how to select among these � hypotheses

those who provide a pseudo-stoichiometric matrix in agreement with the available

data. Remark however that, in most cases, � is a small number since there are only

a few possible macroscopic reaction networks.

The method consists therefore in testing each matrix �
☎

by using the methodology

exposed in Section (3.7) and then to select the models which pass the validation

tests.

The proposed methodology will be presented through a real life case study: the

modelling of the growth of the fi lamentous fungus Pycnoporus cinnabarinus
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4.2 A real case study

We focus here on experimental phases were only aerobic growth of the fungus

Pycnoporus cinnabarinus takes place. From a preliminary analysis of the available

measurements, it turns out that 2 reactions are necessary to explain the observed

data (representing 97% of the variance).

The aerobic growth of the fungal biomass (

✏
) from a carbon source (glucose ✂

and maltose
✞

) and a nitrogen source ( ✁ ) can a priori be reasonably represented

by the 3 following reactions networks:

✄ Network 1:

The fungus is growing on maltose, glucose and nitrogen, and it can transform

maltose into glucose in a fi rst step:

✞ ✁ � ✆✁� ✠
☞✞✍

✄ ✂
✙ ✝ ✁ ✑

✙ ✌ ✂
✑

✙ ☞ ✞ ✁ ✟ ✆✂� ✠
☞✎✍ ✏

(14)

✄ Network 2:

The fungus is growing only on glucose and nitrogen, and it transforms maltose

into glucose in a fi rst step:

✞ ✁ � ✆✁� ✠
☞✞✍

✄ ✂
✙ ✝ ✁ ✑

✙ ✌ ✂ ✁ ✟ ✆✁� ✠
☞✗✍ ✏

(15)

✄ Network 3:

The fungus can grow either on glucose and nitrogen or on maltose and nitro-

gen. In this second case glucose is produced.

✙
�☛✁

✑
✙ ✏ ✂ ✁ � ✆✁� ✠

☞✗✍ ✏
✙ ✝ ✁ ✑

✙ ✌ ✞ ✁ ✟ ✆✂� ✠
☞✞✍ ✏ ✑

✙ ☞ ✂
(16)

The pseudo-stoichiometric matrices associated with (14), (15) and (16) are then

respectively:

� ✝ ✏

✂✄✄✄✄✄✄✄✄
☎

✌
☞

✙ ✝☞
✠
☞

✙ ☞
✄

☞
✙ ✌

✌ ✠

✝ ✞✞✞✞✞✞✞✞
✠

(17)
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� ✌ ✏

✂✄✄✄✄✄✄✄✄
☎

✌
☞

✙ ✝☞
✠ ✌

✄
☞

✙ ✌
✌ ✠

✝✟✞✞✞✞✞✞✞✞
✠

(18)

� ☞ ✏

✂✄✄✄✄✄✄✄✄
☎

☞
✙ ✝ ☞

✙
�☞

✙ ✌ ✌
✙ ☞

☞
✙✑✏

✠ ✠

✝ ✞✞✞✞✞✞✞✞
✠

(19)

Using the method presented in section (3.7) we give in Table 1 the sound kernel

vectors and the corresponding regressions which are associated with these three

pseudo-stoichiometric matrices.

PS

Matrix
Sound kernel basis of

� ✑
Regressions B ✁✄✂

☎ ☎

� ✝ ✂ ✝✝✝✆
✞✟✟✟✟✟✟
✠

✡☛☛☞ ✝

✌✎✍✍✍✍✍✍
✏✒✑ ✂

✝✌ ✆
✞✟✟✟✟✟✟
✠

☛ ✓
✡✓ ☞ ☞✕✔ ☞ ✌

✌✎✍✍✍✍✍✍
✏

✖ ✝ ✆✒✗✙✘ ✝ ✠✝ ✖
�

✓
✖ ✌ ✔ ✖ ☞ ✆✚✗✙✘ ✝ ✠☞ ✖

�

B ✁✄✂ ✝✝ ☎ ✆ ✡
B ✁✄✂ ✝✌ ☎ ✆ ✡

� ✌ ✂ ✌ ✝✛✆
✞✟✟✟✟✟✟
✠

✡☛☛☞ ✝

✌✎✍✍✍✍✍✍
✏✒✑ ✂

✌✌ ✆
✞✟✟✟✟✟✟
✠

☛ ✓
✡☞ ✌

✌✎✍✍✍✍✍✍
✏

✖ ✝ ✆✒✗✙✘ ✌ ✠✝ ✖
�

✓
✖ ✌ ✔ ✖ ☞ ✆✚✗✙✘ ✌ ✠☞ ✖

�

B ✁✄✂ ✌ ✝ ☎ ✆ ✡
B ✁✄✂ ✌✌ ☎ ✆ ✡

� ☞ ✂ ☞ ✝ ✆
✞✟✟✟✟✟✟
✠

☛
☎☎� ✠ ☎ ✞☎ ✟✡☞ ✏

✌✎✍✍✍✍✍✍
✏ ✑ ✂

☞ ✌ ✆
✞✟✟✟✟✟✟
✠

✡
☎ ✝

✕ ☎ �☎ ✟☛☞
�

✌✎✍✍✍✍✍✍
✏

✖ ☞ ✆✒✗✙✘ ☞ ✠✝ ✖ ✌ ✗✜✘ ☞ ✠✌ ✖
�✖ ✝ ✆✢✘ ☞☞ ✖ ✌ ✗✜✘ ☞ ✠�

✖
�

B ✁✄✂ ☞ ✝ ☎ ✆✤✣✦✥✧✣✩★
B ✁✄✂ ☞ ✌ ☎ ✆✫✪✬✥

✓✮✭

Table 1

Kernel vectors and regressions associated with the pseudo-stoichiometric matrices for each

of the considered reaction network for the growth of Pycnoporus cinnabarinus on ammo-

nium, maltose and glucose. The real ✘
✙
✠

☎
are positive, the ✘

✙ ☎
can be of any sign.

The regression coeffi cients computed from 70 data points coming from 9 different

experiments are presented in Table 2. The confi dence intervals for the parameters
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have been estimated using a Student distribution with a 5% threshold and the sig-

nifi cance of the regression has been tested.

RN Parameter min max Positivity Signifi cance Conclusion

1 ✘ ✝ ✠✝ 0.41 0.79 YES YES
☞ ✝✁�✄✂ ☛ ✥✧✣ ✡

✑
☛ ✥✆☎

✭
✝

✘ ✝ ✠☞ 1.4 1.77 YES YES
☞ ✌ ✔

✓ ☞ ☞ �✄✂ ✡ ✥✧✣ ✑
✡ ✥✆☎✞☎ ✝

2 ✘ ✌ ✠✝ 0.41 0.79 YES YES
☞ ✝ �✄✂ ☛ ✥✧✣ ✡

✑
☛ ✥✆☎

✭
✝

✘ ✌ ✠☞ 1.4 1.78 YES YES
☞ ✌ �✄✂ ✡ ✥✧✣ ✑

✡ ✥✆☎✮★ ✝✘ ☞ ✠✝ 0.72 1.1 YES YES

☎ � ✠ ☎ ✞☎ ✟ �✟✂ ☛ ✥✆☎
✓
✑

✡ ✥ ✡ ✝
3 ✘ ☞ ✠✌ 1.40 1.78 YES YES

☞ ✏ �✄✂ ✡ ✥✧✣ ☛ ✑
✡ ✥✆☎✮★ ✝✘ ☞☞ 0.93 1.28 / NO

☎ ✝
✕ ☎ �☎ ✟ �✠✂ ☛ ✥

✭
✡

✑
✡ ✥

✓
★ ✝✘ ☞ ✠

� -0.45 -0.11 NO NO
☞

� �✄✂ ✗ ☛ ✥✧✣☞☛ ✑ ✗ ☛ ✥ ✡ ✡ ✝
Table 2

Estimation of intervals for parameter values and significance of the regressions (threshold

5%) associated with each of the reaction networks (RN).

From Table 2 we conclude immediately that network 3 is invalidated by the data.

The coeffi cients associated with networks 1 and 2 have the correct signs, and there-

fore only these two networks are in agreement with the data and will be kept. Note

that it is not possible to distinguish between network 1 and network 2. However the

parameters
✙ ✌ and

✙ ☞ in network 1 are not identifi able, and thus network 2 would

be preferred. Nevertheless, if network 1 should be kept for some reasons, the value

(of at least one) of the (unidentifi able) parameters
✙ ✌ and

✙ ☞ should be selected, in

such a way that
✙ ✌

✑
✄ ✙ ☞ belongs to the confi dence interval from Table 2.

5 Conclusion

Modelling of bioprocesses is known to be a diffi cult issue since there does not

exist universal validated laws on which the model can rely as in other fi elds like

mechanics (fundamental equations of mechanics), electronics (ohm law), etc.

We have presented here only the fi rst stage of the macroscopic modelling, i.e. the

mass balance modelling involving the reaction network through matrix ✟ . The sec-

ond stage would now consist in estimating the reaction rates ✡ ✞ ✝ ✁ ☛
with respect to

the biochemical species in the system. This step is far from being trivial since the

kinetics can be very sensitive to many factors, leading to high parametric uncer-

tainties in the mathematical expressions. The reader can refer to [18,20] for details

on this second step of kinetic determination, with example of model simulation and

validation both for the vanillin production process (example 1) and for the anaero-

bic treatment plant (example 2).
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The key point in the mass balance approach is to use linear algebra to uncouple

the linear part of the model driven by matrix ✟ from the nonlinear and unknown

part of the model related to the microbial kinetics ( ✡ ✞ ✝ ✁ ☛
). It is worth noting that

some algorithms aiming at e.g. process monitoring or controlling can be based only

on the mass balance part [2]. After algebraic operation the effect of the unknown

✡ ✞ ✝ ✁ ☛
is eliminated, limiting the uncertainty associated with variability of the bio-

logical processes. However the resulting algorithms turn out to be very sensitive to

the pseudo-stoichiometric matrix. Validation of this matrix and improvement of its

identifi cation is therefore a key issue for biotechnological processes.
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Appendix A: proof of Theorem 2

We first demonstrate the following Property.

Property 5 Let us consider a set � ✖ ☎ � ✥✎✥✎✥ ✖ ☎ ✁✂✁ associated with a left kernel vector ✂ , and

with a matrix ✄� : ☎ ☎✙ ✆✞✝ ✂ ☎ ✂ ✖ ☎ ✂ ✁✝✆ ☎ ✆ ☛
. If ✂ is not sound, then any submatrix ✄� �

obtained

from ✄� by removing the ✞
✓✠✟

raw is associated with a subset of � ✖ ☎ � ✥✎✥✎✥ ✖ ☎ ✁ ✑
✡ ✙☞☛✆ ✞ ✁ , i.e.:☎ ☎

✂✍✌ �✙
☛✆✏✎ ✂ �

☎
✂ ✖ ☎ ✂ ✁✝✆ ☎ ✆ ☛

(for ✞ � � ✡ ✝ ✑ ✥✎✥✎✥ ✑
✡ ☎ ✁ ).

Proof: if ✂ is not sound, it means that ✑✓✒✕✔ ✁✗✖✙✘✛✚✢✜✖ ✟
☎✤✣✦✥

. Therefore there exists at least

2 different vectors ✂ ✝ and ✂ ✌
such that ☎ ☎✙ ✆✞✝ ✂★✧☎ ✂ ✖ ☎ ✂ ✁✝✆ ☎ ✆ ☛

for ✩ � � ✡ ✑
✓
✁ . If the ✞

✓✠✟
component of ✂ ✝ or ✂ ✌

contains a zero, then we have the result. Otherwise, for ✂ ✝✎ ✂ ✌✎
☛✆ ☛

,

we have
☎✪✙ ✆✞✝ ✂ ✝

☎
✂ ✖ ☎ ✂ ✁✝✆ ☎ ✗ ✂ ☎ ✫✂ ☎ ✟

☎✪✙ ✆✞✝ ✂ ✌
☎

✂ ✖ ☎ ✂ ✁✝✆ ☎ ✆ ☛

showing that the vector ✄✂ �
whose components are ✂ ✝☎ ✂ ✗ ✞ ✖ ✫

✞ ✖ ✟ ✂ ✌
☎

✂ for
✡ ✙ � � ✡ ✝ ✑ ✥✎✥✎✥ ✑

✡ ☎ ✡ ✙✬☛✆ ✞ ✁
is associated with the matrix ✄� �

obtained from ✄� by removing the ✞
✓✠✟

raw.

Now we can prove Theorem 2.

Proof of Theorem 2:

If
☞ ✔ ✡ ✣✮✭✰✯✲✱★✳ ✁✵✴ ☎

, then ✑✓✒✕✔ ✁✗✖✙✘✛✚✷✶ ✟
☎✸✣✦✹

, there exists a kernel vector ✂ ✆
✞✠ ✂ ✄✂ ✝

☎ ✌✏
such that ✂ ✑ ✴ ✆ ☛

.

We have therefore ✂ ✑ ✄ � ✄ ✔ ✂ ✝

☎ � ✝

☎ ✆ ☛
.

Since
� ✄ is a

☞✻✺✽✼ ✁ full rank matrix with
☞✿✾❀✼ ✁ , then ✑✓✒✕✔❁✖✙✘✛✚✷✖ ✟❂ ✆ ✹

, and thus ✂ ✝

☎
cannot be zero.

If ✂ is not sound i.e. ✑★✒✕✔❃✖✙✘✛✚❄✶ ✟
✣❅✥

. We must then consider the sound vector ✄✂ asso-

ciated with the submatrix

✞✠ ✄� ✄� ✝

☎ ✌✏ , where ✄� ✄ is extracted from
� ✄ according to Property

5.
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The sound vector ✄✂ , verifies: ✄✂ ✑ ✄ ✄� ✄ ✔ ✂ ✝ ☎ � ✝

☎ ✆ ☛
Let us remark that it is a matrix equality, and let us consider the � ✂✆☎ column of this matrix

equation:

✄✂ ✑ ✄ ✄� ✄
☎ ✔ ✂ ✝ ☎ ☞ ☎ ✙ ✆ ☛

where ✄� ✄
☎

is the
✡
✂✟☎ column of ✄� ✄ .

As we saw in Section 3.5, the coefficients of the sound kernel vector ✄✂ can be identified

from a linear regression. Therefore,
☞ ☎ ✙

can be computed as follows:

☞ ☎ ✙ ✆✒✗ ✄✂ ✑ ✄ ✄� ✄
☎

✂ ✝ ☎
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Nomenclature

�

☎
yield coefficients for substrate

✁

☎
yield coefficients for product

✂ ✄ vector of all the state variables

✂ ✄
☎ � vector of influent concentrations

✂ ✁
vector of measured variables

✂ ✁ ☎ � vector of influent concentrations

✂ ☎
vector of unmeasured variables

✄ ✁✄✂ ☎
number of components in ✂

✄ ☎ ✁✄✂ ☎
number of unknown components in ✂

✄
vector of external environmental factors

☎
dilution rate

✆
enzyme�
pseudo-stoichiometric matrix☞ ☎ ✙
entries of matrix

�
✼ ✁ number of reactions in the reaction network✼ ✁

number of measured variables✼ ✄ number of state variables

✝
product

✞
vector of gaseous flow rates

✟ ✁ ✂ ✄ ✑
✄ ☎

vector of reaction rates

✠
substrate

✡
biomass✂ left kernel vector of

�
Q vector of gaseous flow rates

✟ pseudo-stoichiometric matrix
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Fig. 1. Scheme of the procedure to compute the minimal number of reactions that are to be

considered in order to reproduce an experimental data set.
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Fig. 2. Measurements of biomass (
✡

), vanillin ( � ), maltose and glucose ( ✁ and ✂ ) and

oxygen ( ✄ ) for two experiments of vanillin bioproduction by P. cinnabarinus. The contin-

uous lines are the smoothing splines [18].
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Fig. 3. Total variance explained with respect to the number of reactions for the process of

vanillin bioproduction by the filamentous fungi Pycnoporus cinnabarinus.

Fig. 4. Schematic overview of the anaerobic digestion reaction network.
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Fig. 5. Cumulated variance with respect to the number of reactions for 70 days of experi-

ments (see [20]) on an anaerobic digester.
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Fig. 7. Comparison between simulation results and measurements in a fixed bed anaerobic

digester for the methane and CO ✌ gaseous flow rates, pH, COD, VFA and total inorganic

carbon (from [20]).
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