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Abstract. For a positive integer n we write ϕ(n) for the Euler function of n. In this note,
we show that if b > 1 is a fixed positive integer, then the equation

ϕ
(

x
bn − 1

b − 1

)

= y
bm − 1

b − 1
, where x, y ∈ {1, . . . , b − 1},

has only finitely many positive integer solutions (x, y, m, n).
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1. Introduction

For a positive integer n we write ϕ(n) for the Euler function of n. In this paper,

we prove the following result.

Theorem 1.1. If b > 1 is given, then the equation

(1) ϕ
(

x
bn − 1

b − 1

)

= y
bm − 1

b − 1
,

with x, y ∈ {1, . . . , b−1} has only finitely many positive integer solutions (x, y, m, n).

Some equations of a similar flavor have been treated in [3], [4], [5] and [6].

We use the Vinogradov symbols ≪ and ≫, and the Landau symbol O with their

regular meanings. The constants implied by them may depend on our parameter b.

We use p, q and P with or without subscripts to denote prime numbers. For a positive
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real number x we use log x for the maximum between 2 and the natural logarithm

of x. Note that with this convention, the function log is sub-multiplicative; i.e.,

log(xy) 6 log x log y holds for all positive real numbers x and y. For a positive

integer n, we write P (n), p(n), ω(n), Ω(n) and τ(n) for the largest prime factor of n,

smallest prime factor of n, the number of distinct prime factors of n, the number of

prime power divisors (> 1) of n, and the total number of divisors of n, respectively.

We put un = (bn − 1)/(b − 1). Finally, we use c0, c1, . . . for positive constants

depending on b which are labeled increasingly throughout the paper.

2. The proof

Since b is fixed, and (x, y) can take only (b− 1)2 values, we may assume that both

x and y are fixed. Let N = x(bn − 1)/(b − 1). If m > n, then

ϕ(N) = y
bm − 1

b − 1
>

bn+1 − 1

b − 1
> bn − 1 > N,

which is a contradiction. If m = n, then ϕ(N)/N = y/x. Since P (N) divides

the denominator of the rational number ϕ(N)/N in reduced form, it follows that

P (N) 6 b − 1. In particular, P (un) 6 b − 1. Since for n > 6, un always has a

primitive divisor, which, in particular, is a prime congruent to 1 modulo n, we get

that n 6 max{6, b − 2} (see [1] and [2] for the existence and properties of primitive

divisors).

From now on, we assume that n > m. We will first show that n − m is bounded.

Let k = gcd(m, n). Then k divides λ = n − m, therefore

(2) bk
6 bλ ≪

N

ϕ(N)
=

∏

P |N

(

1 +
1

P − 1

)

≪
∏

P |N
P>b

(

1 +
1

P − 1

)

.

Let P | N such that P > b. Then P does not divide x and there exists a divisor

lP of n minimal with the property that P | ulP . The number lP is called the order

of apparition of P in the sequence (un)n>1 and P is certainly primitive for ulP .

Furthermore, P ≡ 1 (mod lP ). We now fix d | n and consider

(3) Sd =
∑

lP =d

1

P
and ωd = #{P : lP = d}.

Clearly,

bd ≫ ud >
∏

lP =d

P > dωd ,
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giving

(4) ωd ≪
d

log d
.

Using estimate (4), we can estimate the sum Sd defined in (3) as follows

(5) Sd 6
∑

lP =d

P<d2

1

P
+

∑

lP =d

P>d2

1

P
≪

∑

P≡1 (mod d)

P6d2

1

P
+

ωd

d2
≪

log log d

ϕ(d)
,

where in the above inequalities (5) we used the estimate (4), together with the Brun-

Titchmarsch Theorem which asserts that the estimate

∑

p≡a (mod b)
p<t

1

p
≪

log log t

p

holds for all coprime integers 1 6 a 6 b and all positive real numbers t (see, for

example, Lemma 6.3 in [7] or Theorem 1 in [8]). Let c0 be an upper bound for

the constant implied by the Vinogradov symbol appearing in (5), and assume that

c0 > 1.

Taking logarithms in the inequality (2) and using the inequality 1 + t < et which

is valid for all positive real numbers t, we get

k 6 λ 6 O(1) +
∑

P |un

P>b

1

P − 1
6

∑

d|n
d>1

Sd + O

(

1 +
∑

P>2

1

P 2

)

(6)

6 c0

∑

d|n
d>1

log log d

ϕ(d)
+ O(1).

Since the function log log(·) is sub-multiplicative, it follows that the function

c0 log log n/ϕ(n) satisfies

c0 log log(ab)

ϕ(ab)
6

c0 log log a

ϕ(a)
·
c0 log log b

ϕ(b)
, whenever gcd(a, b) = 1.

Hence, writing n = pν1

1 . . . pνs
s , with p(n) = p1 < . . . < ps = P (n), we have

∑

d|n
d>1

c0 log log d

ϕ(d)
6

s
∏

i=1

(

1 +

νi
∑

ν=1

c0 log log(pν
i )

pν−1
i (pi − 1)

)

− 1.
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Since obviously
∑

ν>1

log log(pν)

pν−1(p − 1)
≪

log log p

p
,

we get that there exists a positive constant c1 such that

(7)
∑

d|n
d>1

c0 log log d

ϕ(d)
6

∏

p|n

(

1 +
c1 log log p

p

)

− 1.

Combining (7) with the estimate (6), we get

k 6 λ ≪
∏

p|n

(

1 +
c1 log log p

p

)

,

and therefore

k 6 λ ≪
∏

p|n

(

1 +
c1 log log p

p

)

≪ exp

(

c1

∑

p|n

log log p

p

)

,

which, after taking logarithms, gives

(8) log k 6 log λ ≪ 1 +
∑

p|n

log log p

p
.

We now bound the sum

T =
∑

p|n

log log p

p
.

Assume first that p | k. Clearly, ω(k) = O(log k/ log log k), therefore, by the Prime

Number Theorem, there exists an absolute constant c2, such that

T1 =
∑

p|k

log log p

p
≪

∑

q6c2 log k

log log q

q
(9)

≪ log log(c2 log k)
∑

q6c2 log k

1

q
≪ (log log log k)2.

Assume now that p - k. Then p - m. Thus,

(10) ordp(bum) = ordp(b) + ordp(um) ≪ 1 + ordp(lp) ≪ 1 +
p

log p
.
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Here, for a positive integer n and a prime p we use ordp(n) for the exact order at

which p divides n, together with the well-known facts that p | um if and only if lp | m,

that lp | p − 1, and that if p - m, then

ordp(um) = ordp(ulp) 6 ordp(b
p−1 − 1) 6

log(bp−1)

log p
≪

p

log p
.

Now let t be any positive integer and let us count the contribution to the sum T

from primes in It = [2t, 2t+1]. Let p be a prime in It and let nt be the number of

prime factors of n in It which do not divide k. Then n has at least 2nt−1 distinct

divisors which are multiples of p. For each one of these divisors d except O(1) of them

(actually, for each one of these divisors except, possibly, the values less than or equal

to 6), ud has a primitive divisor; i.e., a prime q | ud such that q - ud′ for any d′ < d,

and q ≡ 1 (mod d). This argument shows that un has at least 2nt−1 − 6 distinct

divisors congruent to 1 modulo p, giving ordp(ϕ(N)) > 2nt−1 − 6. Combining this

argument with the estimate (10), we get

2nt−1 ≪ 1 +
p

log p
≪ 1 +

2t

t
,

giving nt ≪ t. Thus,

(11) T2 =
∑

p|n
p-k log log p

p
≪

∑

t>1

nt log log(2t+1)

2t
≪

∑

t>1

t log t

2t
≪ 1.

Inserting the estimates (9) and (11) into the estimate (8), we get

log k 6 log λ ≪ 1 + (log log log k)3,

leading to the conclusion that k (hence, also λ) is bounded. We may therefore

assume that both k and λ are fixed. Furthermore, by replacing now b by bk, x by

x(bk − 1)/(b − 1), and y by y(bk − 1)/(b − 1), we may assume that m and n are

coprime; i.e., that k = 1.

To finish, we shall show in what follows first that p1 = p(n) is bounded, then that

s = Ω(n) is bounded, and finally that n itself is bounded.

Assume that p(n) = p1 can get arbitrarily large. In particular, we may assume

that p1 > min{6, b}. Then the smallest prime factor of un is congruent to 1 modulo

pi for some i > 1, therefore it is > 2p1 + 1 > b > x. Hence, the equation (1) can be

written as

ϕ(un) =
y

ϕ(x)
um,
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therefore

(12)
ϕ(un)

un

=
yum

ϕ(x)un

6
yun−1

ϕ(x)un

6
(b − 1)(bn−1 − 1)

bn − 1
.

The limit of the expression appearing on the right hand side of the above inequality

(12) when n → ∞ is 1− 1/b. Hence, if n > c3, then the right-hand side of the above

inequality is 6 c4 = 1 − 1/(2b). Thus,

c−1
4 6

un

ϕ(un)
=

∏

P |n

(

1 +
1

P − 1

)

6 exp

(

∑

d|n
d>1

Sd + O

(

∑

p>p1

1

p2

))

,

giving

c5 6
∑

d|n

Sd + O
( 1

p1

)

,

where c5 = log(c−1
4 ) > 0. Thus, if c6 is the constant implied by the above Landau

symbol, and if p1 > c7 = 2c6c
−1
5 , then we get

1 ≪
∑

d|n
d>1

Sd,

where the constant implied in the above Vinogradov symbol is c8 = 2c−1
5 . Using the

estimates (5) and (7), we get that

(13) 1 ≪
∑

d|n
d>1

Sd 6
∑

d|n
d>1

c0 log log d

ϕ(d)
6

s
∏

i=1

(

1 +
c1 log log pi

pi

)

− 1.

The same argument employed to bound the number of prime factors of n in the inter-

val It which do not divide k, shows that n has at least 2s−1 − 6 prime factors which

are congruent to 1 modulo p1. Hence, ordp1
(ϕ(N)) > 2s−1−6, while by the inequal-

ity (10), the number ordp1
(ϕ(N)) cannot exceed ordp1

(bp1−1 − 1) = O(p1/ log p1).

This shows that s = ω(n) 6 c9 log p1. Hence,

s
∏

i=1

(

1 +
c1 log log pi

pi

)

− 1 6

(

1 +
c1 log log p1

p1

)c9 log p1

− 1(14)

6 exp
(

c10
log p1 log log p1

p1

)

− 1.
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Here, c10 = c1c9. Since the function (log p1 log log p1)/p1 is bounded, we conclude

that there exists a constant c11 such that

(15) exp
(

c10
log p1 log log p1

p1

)

− 1 6 c11
log p1 log log p1

p1
.

The combination of the inequalities (13), (14) and (15) leads to the conclusion that

p1 ≪ log p1 log log p1,

which shows that p1 is bounded. Now n has at least τ(n/p1) − 6 divisors which are

multiples of p1 and which are > 6. For each such divisor, un has a primitive divisor

which is congruent to 1 modulo p1, which shows that ordp1
(ϕ(N)) > τ(n/p1) − 6.

Since by the estimate (10) this p1-adic order is ≪ 1 + p1/ log p1 ≪ 1, we get that

τ(n/p1) ≪ 1, therefore τ(n) ≪ 1. In particular, Ω(n) is bounded.

To finish the proof, it suffices to show that for each i 6 s, pi is bounded. We

proceed by induction on i, the case i = 1 being obvious. Fix s, 1 6 i 6 s − 1, and

assume inductively that pi is bounded. Since the numbers νj for j = 1, . . . , s are also

bounded, we may assume that the first i distinct primes as well as their multiplicities

are all fixed. Write n1 =
i
∏

j=1

p
νj

j . Then pi+1 = p(n/n1). Assume that pi+1 can get

arbitrarily large. Suppose, in particular, that it is larger than min{6, bn1 − 1}. Then

writing un = (bn1 − 1)/(b − 1) · (bn − 1)/(bn1 − 1), and observing that every prime

factor of (bn − 1)/(bn1 − 1) is congruent to 1 modulo pj for some j > i + 1; hence,

larger that bn1 − 1, we get that

yum = ϕ(N) = ϕ(xun1
)ϕ

( bn − 1

bn1 − 1

)

,

so writing N1 = (bn − 1)/(bn1 − 1), we get

ϕ(N1)

N1
=

yum

ϕ(xun1
)N1

=
y(bm − 1)(bn1 − 1)

(b − 1)ϕ(xun1
)(bn − 1)

.

The left-hand side of the above-equality is < 1, while the right hand side tends to

(assuming that n → ∞)

L =
y(bn1 − 1)b−λ

(b − 1)ϕ(xun1
)
.

Note that the above number is < 1, for if it were equal to 1, we would then get the

equation

(b − 1)ϕ(xun1
) =

y(bn1 − 1)

bλ
,
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which is impossible since its left-hand side is an integer and its right-hand side is

not. Hence, L < 1. Thus, choosing c12 to be some constant in the interval (L, 1), we

get that

(16) c−1
12 6

N1

ϕ(N1)
=

∏

P |N1

(

1 +
1

P − 1

)

.

It is clear that P | N1 if and only if P | un, n1 | lP and lP > n1. Hence, using again

the fact that 1 + t < et for all t > 0, and the estimate (5), we get

∏

P |N1

(

1 +
1

P − 1

)

6 exp

(

c0

∑

n1|d
d>n1

log log d

ϕ(d)
+ O

(

∑

P>pi+1

1

P 2

))

,

which together with the estimates (16) and (7) leads to

c13 6 c0

∑

n1|d
d>n1

log log d

ϕ(d)
+ O

( 1

pi+1

)

6 c0Sn1

(

s
∏

j=i+1

(

1 +
c1 log log pj

pj

)

− 1
)

+ O
( 1

pi+1

)

,

where c13 = log(c−1
12 ) > 0. Writing c14 for an upper bound for c0Sn1

, and c15 for the

constant implied by the above Landau symbol, we get that if pi+1 > 2c15c
−1
13 , then

1 ≪

s
∏

j=i+1

(

1 +
c1 log log pj

pj

)

− 1 6

(

1 +
c1 log log pi+1

pi+1

)s

− 1,

where the constant implied in the above Vinogradov symbol is c16 = 2c14c
−1
13 . The

above inequality certainly implies that

1 ≪
s log log pi+1

pi+1
,

which leads to pi+1 ≪ 1, thus completing the induction and finishing the proof of

the theorem.
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3. Comments and remarks

If one replaces the condition that x and y belong to {1, . . . , b−1} with the weaker

condition that x and y are fixed (or bounded), then it is perhaps not true that the

equation (1) has only finitely many such solutions (m, n). For example, taking b = 2,

x = 1, y = 2, we note that the equation (1) is always satisfied when m = n − 1 and

2n − 1 is prime. Of course, we do not know that there are infinitely many Mersenne

primes ; i.e., primes of the form 2n−1, but the general belief is that this is indeed so.

Note further that when m = n = 1, then the equation (1) is trivially satisfied with

y = ϕ(x). It would be interesting to study the nontrivial solutions of the equation

(1) in all five variables (x, y, b, m, n); i.e., where the base b is also variable. We

conjecture that there exists an absolute constant n0 such that all such solutions have

n 6 n0. We leave this conjecture as an open problem for the reader.
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