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1. Introduction.

One of the most  crucial steps in many decision-making methods is the accurate estimation of

the pertinent data. Very often these data cannot be known in terms of absolute values. For instance,

what is the worth of the i-th alternative in terms of a political impact criterion?   Although information

about questions like the previous one is vital in making the correct decision, it is very difficult, if not

impossible, to quantify it correctly.  Therefore, many decision-making methods attempt to determine

the relative importance, or weight, of the alternatives in terms of each criterion involved in a given

decision-making problem.  

Consider the case of having a single decision criterion and a set of N alternatives, denoted as

Ai (i=1,2,3,...N).   The decision maker wants to determine the relative performance of the alternatives

in terms of the single criterion.  In a case like this, one may consider the N alternatives as the members

of a fuzzy set.   Then, the degree of membership of element (i.e., alternative) Ai expresses the degree

that alternative Ai meets this criterion.   That is, in the previous context the membership degrees can

be viewed as the degree the members of a set of objects meet a single criterion.   This is also the

approach considered by Federov et al (1982), Saaty (1974) and (1978), and was also discussed by

Chen and Hwang (1992). 

An approach based on pairwise comparisons which was proposed by Saaty (1977),  and (1980)

has long attracted the interest of many researchers, because both of its easy applicability and

interesting mathematical properties.   Pairwise comparisons are used to determine the relative

importance of each alternative in terms of each criterion.   In this approach the decision maker(s) has

to express his opinion about the value of one single pairwise comparison at a time.   Usually, the

decision-maker has to choose his answer among 10-17 discrete choices.   Each choice is a linguistic

phrase. Some examples of such linguistic phrases are: "A is more important than B", or "A is of the

same importance as B", or "A is a little more important than B", and so on.   When one focuses directly

on the membership issue one may use linguistic statements such as  "How much more does alternative

A belong to the set S than alternative B?".   The main focus in this paper is not the wording of these
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linguistic statements,  but, instead, the numerical values which should be associated with such

statements.   The importance of evaluating the membership values in applications of fuzzy set theory

in engineering and scientific fields is best illustrated in the 1,800 references given by Gupta et al

(1979).

The main problem with the pairwise comparisons is how to quantify the linguistic choices

selected by the decision maker during the evaluation of the pairwise comparisons.   All the methods

which use the pairwise comparisons approach eventually express the qualitative answers of a decision

maker into some numbers.   The present paper examines the issue of quantifying pairwise comparisons.

 Since pairwise comparisons are the keystone of these decision-making processes,  correctly quantifying

them is the most crucial step in multi-criteria decision-making methods which use fuzzy data.

Pairwise comparisons are quantified by using a scale.   Such a scale is nothing but an

one-to-one mapping between the set of discrete linguistic choices available to the decision maker and

a discrete set of numbers which represent the importance, or weight, of the previous linguistic choices.

There are two major approaches in developing such scales.   The first approach is based on the linear

scale proposed by Saaty (1980) as part of the Analytic Hierarchy Process (AHP).   The second approach

attempts was proposed by Lootsma  (1988), (1990), and (1991) and determines exponential scales.

 Both approaches depart from some psychological theories and develop the numbers to be used based

on these psychological theories. 

The present paper is organized as follows.   The second section illustrates the principals of the

two classes of scales.   The second section also presents some ways for generating even more scales

based on Saaty's linear scale and on the exponential scales proposed by Lootsma.   The third section

discusses ways for evaluating the performance of various scales.   This is achieved in terms of two

evaluative criteria.   The next section (section 4) describes the problem of selecting the appropriate

scale (or scales) as a multi-criterion decision-making problem.   Computational results presented in the

fifth section reveal that under different conditions some scales are more efficient than others.   These

findings are presented in depth in the final section which is the conclusion section.
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2.    Background Information. 

As it was mentioned in the previous section, two classes  of scales are considered in this paper.

 The first class of scales is defined on the interval  [9, 1/9] and  is based on the original Saaty scale.

 The second class of scales is based on the exponential scales introduced by Lootsma (1988) and

(1991). 

  Once the pairwise comparisons are determined by using a scale,  they are processed in order

to derive the final values.   These values are estimates of the relative magnitudes of the membership

values.   Saaty (1980) proposes the use of a method which is based on eigenvalues.   Another method,

which is based on a logarithmic regression model, is proposed by Lootsma (1988) and (1991).  For a

critical discussion of the eigenvalue approach, along with some other approaches,  see (Triantaphyllou,

Pardalos and Mann,  1990a) and (Triantaphyllou and Mann, 1993).  

  Also, an approach which uses differences instead of ratios is presented in (Triantaphyllou,

(1993)).  That approach describes how similarity relations among a group of entities can be estimated

by using an efficient quadratic programming formulation.   All these approaches are capable of

estimating relative magnitudes.   Therefore, final values could only be derived, if at least one of them

were known apriori.   However, this is not possible in real applications, thus only relative magnitudes

are derivable by using pairwise comparisons.

   It should be stated here that when pairwise comparisons are used the entire process may

become impractical when the number of elements becomes large.   If N is the number of elements,

then the number of comparisons is N(N-1)/2.   For instance, for N = 100 the decision maker would

have to make 4,950 pairwise comparisons.   Nor is the approach applicable to the elicitation of

membership functions on real intervals unless the domain is discretized.

2.1.  Scales Defined on the Interval [9, 1/9].

In 1846 Weber stated his law regarding a stimulus of measurable magnitude.   According to

his law a change in sensation is noticed if the stimulus is increased by a constant percentage of the
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stimulus itself (Saaty, (1980)).  That is, people are unable to make choices from an infinite set.  For

example, people cannot distinguish between two very close values of importance, say 3.00 and 3.02.

Psychological experiments have also shown that individuals cannot simultaneously compare more than

seven objects (plus or minus two) (Miller, (1956)).  This is the main reasoning used by Saaty to

establish 9 as the upper limit of his scale, 1  as the lower limit and  a unit difference between

successive scale values.

The values of the pairwise comparisons are determined according to the instructions depicted

in Table 1 (Saaty, (1980)).  According to this scale (which we call Scale1), the available values for  the

pairwise comparisons are members of the set: {9, 8, 7, 6, 5, 4, 3, 2, 1,    1/2, 1/3, 1/4, 1/5, 1/6, 1/7,

1/8, 1/9}.   The above numbers illustrate  that the values for the pairwise comparisons can be grouped

into the two intervals [9, 1] and [1, 1/9].   As it was stated above, the values in the interval [9, 1] are

evenly distributed, while the values in the interval [1, 1/9] are skewed to the right end of this interval.

There is no good reason why for a scale defined on the interval [9, 1/9] the values on the sub-

interval [9, 1] should be evenly distributed.   An alternative scale could have the values evenly

distributed in the interval [1, 1/9], while the values in the interval [9, 1] could be simply the reciprocals

of the values in the interval [1, 1/9].   This consideration leads to the scale (which we call Scale2) with

the following values: {9, 9/2, 9/3, 9/4, 9/5, 9/6, 9/7, 9/8, 1,    8/9, 7/9, 6/9, 5/9, 4/9, 3/9, 2/9, 1/9}.

This scale was originally presented by Ma and Zheng (1991).   In the second scale each successive

value on the interval [1, 1/9] is (1 - 1/9) / 8 = 1/9  units apart.  In this way, the values in the interval

[1, 1/9] are evenly distributed, while the values in [9, 1] are simply the reciprocals of the values in [1,

1/9].   It should be stated here that the notion of having in a scale a group of values evenly distributed,

is followed in order to be in agreement with the same characteristic of the original Saaty scale.   As it

will be seen in the next section, other scales can be defined without having evenly distributed values.

Besides the second scale, many other scales can be generated.   One way to generate new

scales is to consider weighted versions between the previous two scales.  That is, for the interval [1,

1/9] the values can be calculated using the formula:
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Table 1.
 

Scale of Relative Importances (according to Saaty (1980))

Intensity of
Importance Definition Explanation

              1 Equal importance Two activities contribute
equally to the objective

              3 Weak importance of one
over another

Experience and judgment 
slightly favor one
activity over another

              5 Essential or strong
importance

Experience and judgment
strongly favor one
activity over another

              7 Demonstrated
importance

An activity is strongly
favored and its dominance
demonstrated in practice

              9 Absolute importance The evidence favoring one
activity over another is
of the highest possible
order of affirmation

          2,4,6,8 Intermediate values
between the two
adjacent judgments

When compromise is needed

     Reciprocals of
     above nonzero

If activity i has one
of the above nonzero 
numbers assigned to it
when compared with
activity j, then j has
the reciprocal value
when compared with i.

NewValue = Value(Scale1) +(Value(Scale2) -  Value(Scale1) )*("/100).

where " can range from 0 to 100. Then, the values in the interval [9, 1] are the reciprocals of the

above values. For " =  0 Scale1 is derived, while for " = 100  Scale2 is derived.

2.2.   Exponential Scales.

A class of exponential scales has been introduced by Lootsma (1988) and (1991).  The

development of these scales is based on an observation in psychology about stimulus perception
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(denoted as ei).  According to that observation, due to Roberts  (1979),  the difference  en+1 - en  must

be greater than or equal to the smallest perceptible difference, which is proportional to en.   The

permitable choices by the decision maker are summarized in Table 2.  As a result of Robert's

observation the numerical equivalents of these linguistics choices need to satisfy the following relations:

           en+1 - en = , en,   (where  , > 0)   or:

           en+1 = (1 + ,) en = (1 + ,)2 en-1 = ...

           ... = (1 + ,)n+1 eo,  (where:  eo = 1)     or:   en = e( * n

In the previous expressions the parameter ( is unknown (or, equivalently, , is unknown),  since

( = ln(1 + ,),  and e is the basis of the natural logarithms (please note that ei is just the notation of

a variable).   Table 3 presents the values of two exponential scales that correspond to two different

values of the ( parameter.   Apparently, different exponential scales can be generated by assigning

different values to the ( parameter.  

Another difference between exponential scales and the Saaty scale is on the number of

categories allowed by the exponential scales.   There are only four major linguistically distinct

categories,  plus three so-called threshold categories between them.   The threshold categories can be

used if the decision maker hesitates between the main categories.   In the following section we present

some evidence that human beings follow exponential scales when they categorize an interval.   More

on these examples can be found in Lootsma (1990) and (1991).
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 Table 2.
Scale of Relative Importances (According to Lootsma (1988))

  Intensity of
  Importance Definition

         e0  Indifference between Ai and Aj

         e1  Indifference threshold towards Ai

         e2  Weak preference for Ai

         e3  Commitment threshold towards Ai

         e4  Strong preference for Ai

         e5  Dominance threshold towards Ai

         e6  Very strong preference for Ai

  Reciprocals of
  above nonzero

 If member i has one of the above nonzero
 numbers assigned to it when compared
 with member j, then j has the reciprocal
 value when compared with i.

Table 3.
Two Exponential Scales

 NORMAL ((=1/2)  STRETCHED ((=1) Definition

         e(*0 =  1.00        =   1.00           e0

         e(*1 =  1.65        =   2.72           e1

         e(*2 =  2.72        =   7.39           e2

         e(*3 =  4.48        =  20.09           e3

         e(*4 =  7.39        =  54.60           e4

         e(*5 = 12.18        = 148.41           e5

         e(*6 = 20.09        = 403.43           e6
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2.3.   Examples of the Use of Exponential Scales.

It is surprising to see how consistently humans categorize certain intervals of interest in totally

unrelated areas.  In this section we present some examples to show, for instance, how human subjects

partition certain ranges on the time, sound, and light intensities. 

a) Historical periods.  The written history of Europe, from 3000 BC until today, is subdivided into a

small number of major periods.  Looking backwards from 1989, the year when the Berlin Wall was

opened, we distinguish the following turning points marking off the start of a characteristic

development:

1947 42 years before 1989 beginning of cold war and decolonization,

1815 170 years before 1989 beginning of industrial and colonial dominance,

1500  500 years before 1989 beginning of world-wide trade and modern

science,

450 1550 years before 1989 beginning of middle ages,

-3000 5000 years before 1989 beginning of ancient history.

These major echelons, measured by the number of years before 1989, constitute a geometric sequence

with the progression factor 3.3.  We obtain a more refined subdivision when we introduce the years:

1914 75 years before 1989 beginning of world wars,

1700 300 years before 1989 modern science established,

1100 900 years before 1989 beginning of high middle ages,

-800 2800 years before 1989 beginning of Greek/Roman history.

With these turning points interpolated between the major ones, we find a geometric sequence of

echelons with progression factor 1.8.

b) Planning horizons.  In industrial planning activities, we usually observe a hierarchy of planning cycles

where decisions under higher degrees of uncertainty and with more important consequences for the
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company are prepared at increasingly higher management levels.  The planning horizons constitute a

geometric sequence, as it shown in the following list:

1 week    weekly production scheduling,

1 month 4 weeks monthly production scheduling,

4 months 16 weeks ABC planning of tools and labor,

1 year 52 weeks capacity adjustment,

4 years 200 weeks production planning,

10 years 500 weeks strategic planning of company structure.

The progression factor of these major horizons is 3.5.  In practice there are no planning horizons

between these major ones.

c) Size of nations.   The above categorization is not only found on the time axis, but also in spatial

dimensions when we categorize the nations on the basis of the size of their population.  Omitting the

very small nations with less than one million inhabitants, we have:

small nations  4 million DK, N,

medium-size nations 15 million NL, DDR,

large nations 60 million D, F, GB, I

very large nations 200 million USA, RUSSIA,

giant nations 1000 million China, India.

We find again a geometric sequence, with progression factor 4.0.  Furthermore, it seems reasonable

to interpolate the following threshold echelons:

small/medium size 8 million A, B, GR,

medium size/large 30 million E, PL,

large/very large 110 million Japan,

because the respective nations fall typically between the major echelons.  The refined sequence of

echelons has the progression factor 2.0.
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d) Loudness of sounds.  The range of audible sounds can roughly be categorized as follows:

40 dB very quiet; whispering,

60 dB quiet; conversation,

80 dB moderately loud; electric mower and food blenders,

100 dB very loud; farm tractors and motorcycles,

120 dB uncomfortable loud; jets during take-off.

Although the precision should be taken with a grain of salt because we have a mixture of sound

frequencies at each of these major echelons, we obviously find here a geometric sequence of subjective

sound intensities with the progression factor 4.

e) Brightness of light.  Physically, the perception of light and sound proceed in different ways, but these

sensory systems follow a similar pattern.  The range of visible light intensities can roughly be

categorized as follows:

30 dB star light,

50 dB full moon,

70 dB street lighting,

90 dB office space lighting,

110 dB sunlight in summer.

Under the precaution that the precision should not be taken too seriously because we have at

each of these major echelons a mixture of wave lengths, we observe that the subjective light intensities

also constitute a geometric sequence with the progression factor 4.

   In the previous paragraphs we have used 5 examples to demonstrate that exponential scales

are common in human comparative judgment when dealing with historical periods, planning horizons,

size of nations, perception of light and sound intensities.   Therefore, these examples make exponential

scales only plausible.   Lootsma (1991) has studied the scale sensitivity of the resulting scores when

exponential scales are used.   He observed that the rank order of the scores is not affected by variations
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of the scale parameter; the numerical values of the calculated scores are weakly dependent on that

parameter.   

For a more detailed documentation on psychophysics we refer the reader to Marks (1974),

Michon et al (1976),  Roberts (1979),  Zwicker (1982),  and Stevens and Hallowell Davis  (1983).  The

reader will find that the sensory systems for the perception of tastes, smells, and touches follow the

power law with exponents in the vicinity of 1. 

3.   Evaluating Different Scales.

In order different scales to be evaluated, two evaluative criteria are developed.  Furthermore,

a special class of pairwise matrices is developed in the next section.  These special matrices are then

used in conjunction with the two evaluative criteria in order to investigate some stability properties of

different scales. 

3.1.  The Concepts of the RCP  and CDP  Matrices.

As it was mentioned earlier,  reciprocal matrices with pairwise comparisons were  introduced

by Saaty (1977) as a tool for extracting all the pertinent information from a decision maker. The same

author also proposed a scale which results in matrices with entries from the set 1, where 1 is the set

of integers 1,2,3,...,9 and their reciprocals (see also Table 1).  If a different scale is to be used, then

1 will be the finite set of discrete values which represent that scale.  Each entry in these matrices

represents numerically the value of a pairwise comparison between two alternatives with respect to a

single criterion.  These matrices are constructed as to be an effective way of capturing the necessary

information (Saaty, (1980)). 

The Saaty matrices have received wide acceptance as being an effective way of evaluating

membership values in real-world problems  (see, for example, Chu et al (1979),  Federov et al (1982),

Hihn and Johnson  (1988),   Khurgin and Polyakov (1986),  Lootsma et al (1990),  and Vargas (1982)).

The analyses in Triantaphyllou et al (1990b) were based on the assumption that in the real
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world the membership values in a fuzzy  set  take  on  continuous values.  Let T1, T2, T3,...,  Tn be the

real (and thus unknown) membership values of a fuzzy set with n members.  Each of the Ti values is

assumed to be in the interval [1,0]. If the decision maker knew the above real values then,  he would

be able  to  have  constructed  a  matrix  with  the  real  pairwise comparisons.  In this matrix, say

matrix  A, the  entry "ij = Ti/Tj.  

That is, the entry "ij represents the real (and thus unknown) value of the comparison when the

i-th member is compared with the j-th member.  We call this matrix the Real Continuous Pairwise

matrix, or the RCP matrix. Since in the real world the Ti's are unknown, so  are  the entries "ij of the

previous  matrix. However,  we will assume here that the decision maker, instead of an unknown entry

"ij is able to  determine  the  closest value taken from the set 1 of the numerical values provided by a

scale.  In other words, instead  of the real (and thus unknown)  value "ij one is  able to determine the

value aij such that:

the difference * "ij - aij * is minimum and aij , 1. 

Therefore, judgments about the values  of  the pairwise comparison of the i-th element when

it is compared with the j-th element are assumed to be so accurate that they are closest (in absolute

value terms) to the true or real values one is supposed to estimate when a scale with the discrete

values 1 is used.  

It should be stated at this point that other norms, alternative to the previous one, are also

possible to be assumed as the way a decision maker best approximates real (and thus unknown)

pairwise comparisons.    For instance, such an alternative norm is the following:

the difference * "ij/(1 + "ij) - aij/(1 + aij) * is minimum and aij , 1. 

However, any norm which attempts to approximate the real (and thus unknown) ratios with ratios taken

from a finite and discrete set of values, will always allow for the possibility that some real ratios  (which

are close enough to each other) will be mapped to the same discrete value from the current scale.   The

last statement indicates that Theorem 1 (stated later in section 3.2.) will still be valid if alternative

norms are considered (however, its present proof assumes that the first norm is used).
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RCP '

1 3.24938 3.24342

0.30775 1 0.99817

0.30832 1.00183 1

The matrix with the entries aij that we assume the decision maker is able to construct has

entries from the discrete and finite set 1.  We call this matrix the Closest Discrete Pairwise matrix or

the CDP matrix. The CDP matrix may not be perfectly consistent. That is, the consistency index (CI)

values  (see the next section for an exact definition of CI)  of CDP matrices are not necessarily equal

to zero. More on this inconsistency issue will be discussed in the following section.  It is important to

observe here that the CDP matrices are the reciprocal matrices with pairwise comparisons that a

decision maker will construct if we assume that each of his pairwise comparisons is the closest possible

to its actual real value. 

Recall that the decision maker is limited by the discrete values (i.e., the values from the set 1

provided to him by a scale). He can never know the actual values of his pairwise comparisons.  He

simply attempts to approximate them.  In other words, we assume here that these approximations are

the closest possible.  Clearly this is a highly favorable assumption when one attempts to investigate the

effectiveness of various scales.  The following example illustrates further the concepts of the RCP and

CDP matrices.

An Example.   Let us assume that the real (and hence unknown) membership values, after

normalization, of a fuzzy set with three members are T1 = 0.77348, T2 = 0.23804, and T3 =

0.23848.   Then, the RCP matrix with the real values of the pairwise comparisons is:

This is true because 0.30775 = (0.23804/0.77348), 0.30832 = (0.23848/0.77348), and so on.  If,

for instance, the original Saaty scale is to be used (as it is depicted in Table 1) then, it can be verified

with a simple exhaustive enumeration that the corresponding CDP matrix is:
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CDP '

1 3 3

1

3
1 1

1

3
1 1

CI '
8max&N

N&1
,

To see this consider the (1,2) entry of the previous RCP matrix.   For this entry we have "12 =

3.24938.   Therefore, when the values in Table 1 are to be used in order to quantify the (1,2) pairwise

comparison then, the "12 entry is approximated by the value 3.   The value 3 is the closest one to the

value 3.24938 when the values in Table 1 are used.   Clearly, this is an assumption which is made here

in order to study different scales.   A similar explanation holds for the rest of the entries in the previous

CDP matrix.

3.2.   On The Consistency of CDP Matrices. 

If all the pairwise comparisons are perfectly consistent with each other then,  the following

relation should always be true among any three comparisons ai,k, ak,j, and ai,j  (Saaty  (1980)):

ai,k * ak,j = ai,j      for any 1 < i,j,k  < N.

Saaty expresses the inconsistency of a pairwise comparison matrix in terms of the consistency index

(CI).  CI is defined as follows:

where 8max is the maximum eigenvalue of the matrix with the pairwise comparisons and N is the order

of that matrix.

In the following paragraphs we will show that CDP matrices can be inconsistent regardless of

the scale used to quantify the actual pairwise comparisons.  This is stated in terms of the following
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A1

A2

' "12 '
3V1 % 1

4

A1

A3

' "13 '
V1 % 3

4

and
A3

A2

'
(A1/A2)

(A1/A3)
' "32 '

"12

"13

'
3V1 % 1

V1 % 3
.

theorem:

THEOREM 1:

Regardless of the scale that is used to quantify the pairwise comparisons of N ( N > 3) entities, the

corresponding CDP matrices may be inconsistent.

PROOF:

Without loss of generality, suppose that A1, A2, and A3 are three items of a collection of N (N

> 3) items that we need to compare in terms of some criterion.  Let the current scale be defined on

the following (2k+1) discrete values  (where:  k > 1) :

[1/Vk, 1/Vk-1, 1/Vk-2,..., 1/V2, 1/V1, 1, V1, V2,..., Vk-2, Vk-1, Vk],

where Vi > 0 for any i=1,2,3,...,k.

In this proof it will be shown that, when the previous scale is used, then it is possible for the

three comparisons a12, a13, a32 made by the decision maker not to satisfy the consistency requirement:

a12  =  a13 * a32.  

Suppose that the actual values of the pairwise comparisons that correspond to the previous

three items A1, A2, and A3 are as follows:

Using the above relations it can be easily verified (since V1 > 1)  that the following conditions (I) are

true (see also figure 1):
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V1 > "12 >
V1 % 1

2

V1 % 1

2
$ "13 > 1 (I)

V1 % 1

2
> "32 > 1.

NOTE:   M1 = (V1 + 1)/2,  is the middle point of the interval  [1.00, V1].

Figure 1.

Actual Comparison Values.

From figure 1, or conditions (I), it follows that in the corresponding CDP matrix the decision

maker will assign the following three values a12, a13, a32 (taken from the current scale) to the previous

three pairwise comparisons:

a12 = V1

a13 = 1.00

a32 = 1.00.

Clearly, the consistency requirement does not hold for these three values because:

a12  …  a13 * a32.

In other words, the entire CDP matrix is inconsistent.   

EOP (End Of Proof).

The previous theorem states that under the favorable assumption that the decision maker is

capable of determining only the closest values of the pairwise comparisons, the resulting CDP matrices

may be inconsistent. The following paragraphs of this section discuss the issue of the maximum
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*max ' MAX
Vj & Vj&1

Vj % Vj&1

for j'1,2,3,...,k, and V0 ' 1.

M '
1/Vj&1 & 1/Vj

2
% 1/Vj '

Vj % Vj&1

2 Vj VJ&1

.

consistency, denoted as CImax, of CDP matrices.   The following lemma provides an interesting result

regarding the maximum  error *max associated with the pairwise comparisons of a CDP matrix.   The

maximum error *max is defined as:

*max = MAX( eij - 1) where  eij = aij(Wj / Wi),  

for any i,j = 1,2,3,...,  N. 

The aij's are the entries of a pairwise matrix and Wi, Wj are the real weights of the items i and j,

respectively.  

LEMMA 1:

Let a scale for quantifying pairwise comparisons be defined on the following (2k+1) discrete values:

[ 1/Vk, 1/Vk-1, 1/Vk-2,..., 1/V2, 1/V1, 1, V1, V2,..., Vk-2, Vk-1, Vk ],

where Vi > 0,   for any i=1,2,3,..., k.

Then, the maximum error, *max,  of the pairwise comparisons in a CDP matrix is given by the formula:

PROOF:

Suppose that a pairwise comparison has actual (and hence unknown) value equal to ", where:

1/Vj > " > 1/Vj-1 for some k > j > 1.  Let M be the middle point of the interval [1/Vj,  1/Vj-1].  That is:

Then, the largest * value for this particular pairwise comparison occurs when the value of " coincides

with the middle point M. This is true because in this case the closest value from the values permitted

by the current scale has the largest distance from ".   That is, under the assumption that the decision

maker will choose the closest value,  the value of this pairwise comparison will become equal either  to
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*1 '
1/Vj

M
&1 '

1

Vj

Vj % Vj&1

2 Vj Vj&1

&1 '
Vj&1 & Vj

Vj&1 % Vj

.

*2 '
Vj & Vj&1

Vj&1 % Vj

, that is: **1* ' **2*.

max ' MAX
Vj & Vj&1

Vj % Vj&1

, for j'1,2,3,...,k, and Vo'1.

1/Vj or 1/Vj-1.  In the first case the corresponding *, we call it *1,  becomes:

Similarly,  in the second case the value of *, we call it *2, becomes:

Since, in general, it is assumed that:  1/Vk  < " < Vk,  it is derived that the maximum value of *, *max,

is given by the following formula:

Finally, it is worth mentioning that both the expressions  *1 and *2  remain the same if the values Vj and

Vj-1 are replaced by their reciprocals. 

EOP.

    In the previous considerations, and throughout this paper, it is assumed that the real values of

the pairwise comparisons are within the interval [1/Vk,  Vk].   If, instead, the real ratios were allowed to

be from the range zero to infinity,  then the associated errors could be infinitely large.   In other words,

the real ratios are assumed to take values according to the scale under consideration.   

   Although this may appear to be restrictive, it eliminates the possibility of having infinitely large



20

CImax #
*2

max

2
,

where: *max ' MAX
Vj & Vj&1

Vj % Vj&1

,

for j ' 1,2,3,...,k, and V 1.

errors when the decision maker attempts to approximate pairwise comparisons by using a discrete and

finite scale.   Furthermore, this is a plausible assumption since, most of the time, the elements in a fuzzy

set are assumed to be somehow closely associated (i.e.,  similar) with each other and do not allow for

extreme cases.   Therefore, it makes sense not to permit to have infinitely large errors in the estimation

process. 

Next, lemma 1 is used to prove theorem 2  which deals with the value of CImax  of random CDP

matrices.

THEOREM 2:

Let a scale for quantifying pairwise comparisons be defined on the following (2k+1) discrete values:

[ 1/Vk, 1/Vk-1, 1/Vk-2,..., 1/V2, 1/V1, 1, V1, V2,..., Vk-2, Vk-1, Vk ],

where Vi > 0 for any i=1,2,3,..., k.

Then an upper bound of the maximum consistency index,  CImax, of the resulting CDP matrices is given

by the following relation: 

   
PROOF:

The proof of this theorem is based on theorem 7-16, stated in Saaty  (1980).  According to that theorem

the following relation is always true:

8max - N  <  ( N - 1)/2 *2
max,             (1)

where *max is defined as:

*max = MAX( eij - 1),  and eij = aij(Wj / Wi),   for any i,j = 1,2,3,...,  N. 

The aij's are the entries of the pairwise matrix and Wi, Wj are the real weights of items i and j,
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8max & N

N & 1
#

*2
max

2
or:

CImax #
*2

max

2
.

*max ' MAX
Vj & Vj&1

Vj % Vj&1

, for j'1,2,3,...,k,and Vo'1.

CImax #
*2

max

2
,

CImax # (1/3)2

2
'

1
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.

respectively.   From relation (1), above, we get:

 (2)

For the case of CDP matrices the value of the maximum *, denoted as *max, can be determined as follows

(see also lemma 1):

(3)

Therefore, the maximum consistency index, CImax, of CDP matrices satisfies the relation:

where *max is given by (3), above.

EOP.

In the original Saaty scale a pairwise comparison takes on values from the discrete set: 1 =

{1/9, 1/8, 1/7, ..., 1/3, 1/2, 1, 2, 3, ..., 7, 8, 9}.  Therefore, it can be verified easily that the following

corollary 1 is true when the original Saaty scale is used. 

COROLLARY 1:

When the original Saaty scale is used,  an upper bound of the maximum consistency index, CImax,  of

the corresponding CDP matrices is:
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Figure 2 depicts the maximum, average, and minimum consistency indexes of randomly

generated CDP matrices which were based on the original Saaty scale.  That is, first a RCP matrix was

randomly generated.   Next, the corresponding CDP matrix was derived and its CI value was calculated

and recorded  (see also  Triantaphyllou et al (1990)).  This experiment was performed 1,000 times for

each value of N equal to 3, 4, 5, ..., 100.    It is interesting to observe that the curves which correspond

to the maximum and minimum CI values of samples of 1,000 randomly generated CDP matrices, are

rather irregular.   This was  anticipated since it is very likely to find one extreme case from a sample of

1,000 CI value of random CDP matrices.   One the other hand, however, the middle curve,  which

depicts the average CI values of random CDP matrices, is very regular. This was also anticipated because

the impact of a few extreme CI values diminishes when a large sample (i.e.,  1,000) of random CDP

matrices is considered.   Moreover,  the same results indicate that the average CI value approaches the

number 0.0145 when the value of N is greater than 20.   More on the CI values of random Saaty

matrices (i.e., not necessarily CDP matrices) can be found in Donegan and Dodd (1991). 

The results in the current section reveal that CDP matrices (which are assumed to be the result

of a highly effective elicitation of the pertinent pairwise comparisons) are very unlikely to be perfectly

consistent. That is, some small inconsistency may be better than no inconsistency at all!  (since no CDP

matrix with CI = 0 was found when sets with more than five elements were considered).  This is kind

of a paradoxical phenomenon which is, however, explained why it occurs theoretically by the lemmas

and theorems in this section.
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Figure 2.   Maximum, Average, and Minimum CI Values of Random CDP Matrices When the Original 

               Saaty Scale is Used.
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3.3.    Evaluative Criteria.

In Triantaphyllou and Mann (1990),  the evaluation of the effectiveness of Saaty's eigenvalue

method  was based  on a continuity assumption. Under this assumption the eigenvalue approach in some

cases causes worse alternatives to appear better than alternatives that are truly better in reality. 

Two kinds of ranking  inconsistency  were examined. The first kind is "ranking reversal".  For

example,  if the  real ranking of a set of three members is (1, 3, 2) and  a method yields  (1,  2, 3) then

a case of a ranking reversal occurs.  The  second  kind is  "ranking  indiscrimination".   For example, if

the real ranking of a set of three members is (1, 3, 2) and  a  method yields (1, 2, 2), that is, a tie

between two or more members, then  a  case  of ranking indiscrimination occurs. In order to examine

the effectiveness of various scales the concept of the CDP matrices can be used.  That is, the ranking

implied by a CDP matrix (which, as mentioned in the previous section, represents the best decisions that

a decision maker can make) has to be identical with the actual ranking indicated by the corresponding

RCP matrix.  Therefore, the following two evaluative criteria can be introduced to investigate the

effectiveness of any scale which attempts to quantify pairwise comparisons:

CRITERION 1:

Let A be a random RCP matrix with the actual values of the pairwise comparisons of N alternatives.  Let

B be the corresponding CDP matrix when some scale is applied.  Then,the ranking yielded when the CDP

matrix is used should do not demonstrate any ranking inversions  when the CDP ranking is compared

with the ranking derived from the RCP matrix.

CRITERION 2:

Let A be a random RCP matrix with the actual values of the pairwise comparisons of N alternatives.  Let

B be the corresponding CDP matrix when some scale is applied.  Then, the ranking yielded when the

CDP matrix is used should do not demonstrate any ranking indiscriminations  when the CDP ranking is

compared with ranking derived from the RCP matrix. 

Since the previous two ranking anomalies are independent of the scale under consideration or
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the method used to process matrices with pairwise comparisons, the previous two evaluative criteria

can be used to evaluate any scale and method. 

4.   A Simulation Evaluation of Different Scales. 

Different scales were evaluated by generating test problems and then recording the inversion and

indiscrimination rates as described in criteria 1 and 2.  Suppose that a scale defined on the interval  [9, 1/9]

(as described in section 2.1.) or an exponential scale (as described in section 2.2.) is defined on the interval

[X, 1/X].   That is, the numerical value that is assigned to a pairwise comparison that was evaluated as:

"A is absolutely more important than B"  (i.e., the highest value) is equal to X.  For instance, in the original

Saaty scale (as well as in all the other scales in section 2.1.) X equals to 9.00.  Under the assumption that

a scale on the interval [X, 1/X] is used, the pairwise comparisons also take numerical values from the

interval [X, 1/X].  In this case the entries of RCP matrices  (as defined in section 3.1.) are any numbers

from the interval [X, 1/X].  However, in CDP matrices the entries take values only from the discrete and

finite set that is defined on the interval [X, 1/X].  We call it set 1.  For example,  in the case of the original

Saaty scale the entries of CDP matrices are members of the set 1 = {1/9, 1/8, 1/7, ..., 1/2, 1, 2, ..., 7,

8, 9}.  

For the above reasons test problems for the case of the first and second evaluative criterion were

generated as follows.   First, N random membership values of N elements were randomly generated from

the interval [0, 1].   These membership values were such that no ratio of any pair of them would be larger

than X or less than 1/X.  After the random membership values were generated, the corresponding RCP

matrix was constructed.  Next, from the RCP matrix and the discrete and finite set 1 the corresponding

CDP matrix was determined.  Then,the eigenvalue approach was applied on this CDP matrix and the new

ranking of the N elements.  The eigenvalue method was used because it is rather simple to apply and is the

method used widely in the literature when only one decision maker is considered.  The recommended

ranking of the N elements is compared with the actual ranking which is determined from the real

membership values that were generated in the beginning of this process.  If a ranking inversion or ranking

indiscrimination was observed, it was recorded so.  This is exactly the testing procedure followed in the
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investigation of the original Saaty scale as it is reported in Triantaphyllou and Mann (1990).  

A FORTRAN program was written which generated the N random membership values, the RCP and

CDP matrices, and compared the two rankings as described above.  Sets with N = 3, 4, 5, ..., 30 elements

were considered.  For each such set 21 scales defined on the interval  [9, 1/9]  (which correspond to the

values " = 0, 5, 10, 15, ..., 90, 95, 100)  and 57  exponential scales which  correspond to ( values equal

to 0.02, 0.04, 0.06, ..., 1.10, 1.12, 1.14 were generated.  The previous scales will also be indexed as

scale 1, scale 2, scale 3, ..., scale 78. 

In figures 3 and 4 the results of the evaluations of scales 1,2,3,..,21 (also called class 1 scales) in

terms of the first and second criterion, respectively, are presented.  Similarly, in figures 5 and 6 the results

of the evaluations of scales 22, 23, 24,.., 78 (also called class 2 scales) in terms of the first and second

criterion, respectively,  are presented.  It should be noted here that only 57 exponential scales were

generated because in this way values of ( from zero to around to 1.00 can be considered.  In the original

Lootsma scales the value of ( was 0.50 and 1.00.   In this investigation all the scales with ( = 0.02, 0.04,

0.06, ..., 0.50, ..., 1.00, ..., 1.14 are considered.   For each case of a value of N and one of the 78 scales,

1,000 random test problems were generated and tested according to the procedure described in the

previous paragraphs.   The computational results of this investigation are depicted in figures 5 and 6. 

   At this point it should be emphasized that the present simulation results are contingent on how the

random membership values were generated.   Other possibilities, such as assigning membership values from

a nonuniform distribution (such as the normal distribution), would probably favor other scales.   However,

the uniform distribution from the interval [0, 1] was chosen  in this study (despite the inherited restrictions

of this choice) because it is the simplest and most widely used in simulation investigations.   
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Figure 3.
Inversion Rates for Different Scales and Size of Fuzzy Set (Class 1 Scales). 

Figure 4.
Indiscrimination Rates for Different Scales and Size of Fuzzy Set (Class 1 Scales). 
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Figure 5.
Inversion Rates for Different Scales and Size of Fuzzy Set (Class 2 Scales). 

Figure 6.
Indiscrimination Rates for Different Scales and Size of Fuzzy Set (Class 2 Scales). 
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5.  Evaluation of the Computational Results.

Figures 3, 4, 5, and 6 depict how the previous 78 different scales perform in terms of the two

evaluative criteria.   Figures 3 and 4 depict the inversion and indiscrimination rates (as derived after applying

the two evaluative criteria) for class 1 scales.   That is, for the scales defined in the interval [9, 1/9]. 

Similarly, figures 5 and 7 depict the inversion and indiscrimination rates for the exponential scales (or class

2 scales).   It is also interesting also to observe here that when both classes of scales are evaluated in terms

of the second criterion (indiscrimination rates in figures 4 and 6),  then they perform worse when the size

of the set is in the region 8 to 12.   

Clearly, there is no single scale which outperforms all the other scales for any size of set. 

Therefore, there is no scale or a group of scales which is better than the rest of the scales in terms of both

evaluative criteria.  However, the main problem is to determine which scale or scales are more efficient.

Since there are 78  different scales for which there are relative performance data in terms of two

evaluative criteria, it can be concluded that this is a classical multi-criteria decision-making problem.  That

is, the 78  scales can be treated as the alternatives in this decision-making problem.  The only difficulty in

this consideration is how to assess the weights for the two evaluative criteria. Which criterion is the most

important one?   Which is the less important?   Apparently these type of questions cannot be answered in

a universal manner.  

The weights for these criteria depend on the specific application under consideration.   For instance,

if ranking indiscrimination of the elements is not of main concern to the decision maker,  then the weight

of the ranking reversals should assume its maximum value (i.e.,  becomes equal to 1.00). However, one

may argue that, in general, ranking indiscrimination is less severe than ranking reversal. Depending on how

more critical ranking reversals are, one may want to assign a higher weight to the ranking reversal criterion.

 If both ranking reversal and ranking indiscrimination are equally severe then the weights of the two criteria

are equal (i.e., they are set equal to 0.50). 

    For the above reasons, the previous decision-making problem was solved for all possible weights

of the two criteria.   Criterion 1 was assigned weight W1 while criterion 2 was assigned weight W2 = 1.00

- W1 (where  1.00 > W1 > 0.00).   In this way, a total of 100 different combinations  of weights were
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examined.  

For each of these combinations  of the weights of the two  evaluative criteria, the decision-making

problem was solved by using the revised Analytic Hierarchy Process (introduced by Belton and Gear

(1983)).   In  Triantaphyllou and Mann (1989) the revised Analytic Hierarchy Process was found to perform

better when it was compared with other multi-criteria decision-making methods.  For each of the above

decision-making problems the best and the worst alternative (i.e. scale) was recorded.  

The  results regarding the best scales are depicted in figure 7.  Similarly, the results regarding the

worst scales are depicted in figure 8.   In both cases the best or worst scales are given  for different values

of the weight for the first criterion (or equivalently the second criterion) and the size of the set.       

The computational results demonstrate that only very few scales can be classified either as the best

or the worst scales.  It is possible the same scale (for instance, scale 78) to be classified as one of the best

scales for some values of the weight W1 and also as the worst scale for other values of the weight W1. 

Probably, the most important observation is that the results illustrate very clearly that there is no single

scale which is the best scale for all cases.  Similarly, the results illustrate that there is no single scale which

is the worst scale for all cases.  

However, according to these computational results,  the best scale can be determined only if the

number N is known and the relative importance of the weights of the two evaluative criteria has been

assessed.   It is also interesting to observe from figure 7 that sometimes under similar weights of the two

evaluative criteria, the same scale might be classified as the best.   The same is also true for the worst

scales depicted in figure 8.  This phenomenon suggests that sometimes an approximated assessment of

the relative weights is adequate to successfully determine either the best or worst scale.
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Figure 7.
The Best Scales

Figure 8.
The Worst Scales
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6.  Concluding Remarks.

This paper revealed that the scale issue is a complex problem.  The results demonstrated that there

is no single scale which can always be classified as the best scale or as the worst scale for all cases.   The

present investigation is based on the assumption that there exists a real-valued rating of the comparison

between two entities, that ideally represents the individual preference.   However, the decision-maker

cannot express it, hence he has to use a scale with finite and discrete options.   

   In order to study the effectiveness of various scales, we furthermore assumed the scenario in which

the decision maker is able to express his judgments as accurate as possible.   Under this scenario, it is

assumed that the decision maker is able to construct CDP matrices with pairwise comparisons instead the

unknown RCP matrices.   Based on this setting, a number of computational experiments was performed

to study how the ranking derived by using CDP matrices differs from the real (and hence unknown) ranking

implied by the RCP matrices.   The computational results reveal that there is no single scale which is best

in all cases.   It should be emphasized here that given an RCP matrix (and a scale with numerical values),

then there is one and only one CDP matrix which best approximates it.   Moreover, this CDP matrix may

or may not yield a different ranking than the ranking implied by the RCP matrix. 

An alternative assumption to the current one,  which accepts that there exists a real-valued rating

of the comparison between entities, is to consider the premise that maybe the real entity is the CDP matrix

as given by the decision maker.   In this case the RCP matrix is maybe just an illusion.   In the later case

the preference reversal leads to a very different conclusion:  if the CDP is the only "real" thing, then it

means that the individual should point at the interval [1/Vi,  1/Vi-1] or [Vi-1,  Vi] rather than to the values Vi.

 That is, the preference reversal effects indicate that two objects will be indifferent (since their ranking

changes in the interval).

To determine the appropriate scale in a given situation certain factors have to be  analyzed. First

the number N, of the items to be compared, has to be known.  Secondly, the relative importance of the two

evaluative criteria has to be assessed.  These evaluative criteria deal with possible ranking inversions and

ranking indiscriminations that may result when a scale is used.  When these factors have been assessed

figure 7 depicts the best scale for each case.  Similarly, figure 8 depicts the worst scale for each case.  
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   For instance, suppose that one has to evaluate the membership values of a set with 15 members.

Furthermore, suppose that ranking reversal is considered, in a particular application, far more severe than

ranking indiscrimination.   In other words, the weight of the first evaluative criterion is considered to be

higher than the weight of the second criterion.  Using this information, we can see that figure 7 suggests

to use scale 22 from class 2  (i.e., an exponential scale with parameter  ( = 0.02).   Moreover, figure 8

suggests that the worst scale for this case is scale 77 from class 2 (i.e., an exponential scale with

parameter  ( = 1.12).   

   The same figures also indicate that the choice of the best or worst scale is not clear under certain

conditions.   For instance, when the number of members is greater than 15 and the two evaluative criteria

are of almost equal importance.   In cases like this, it is recommended to experiment with different scales

in order to increase the insight into the problem, before deciding on what is the best scale for a given

application. 

The computational experiments in this paper indicate (as shown in figure 7) that exponential scales

are more efficient than the original Saaty scale (i.e., Scale 1).   Only two Saaty-based scales (i.e., scales

19 and 21) are present in figure 7.   In matter of fact, for sets with up to 10 elements Scale 21 was best

over a wide range of weights.   It is also worth noting that all the worst scales in figure 8 came from the

exponential class.

   However, as the various examples in section  2.3 suggest, human beings seem to use exponential

scales in many diverse situations.   Therefore, exponential scales appear to be the most reasonable way

for quantifying pairwise comparisons.  The computational results in this paper provide a guide for selecting

the most appropriate exponential scale for quantifying a given set of pairwise comparisons.

Finally, it needs to be emphasized here that the scale problem is a very crucial issue when

membership values of the members of a fuzzy set are determined by using pairwise comparisons.  These

membership values can provide the data for many real life decision-making problems.   An alternative point

of view of this study would be to perform in the future a similar investigation with methods which do not

use pairwise comparisons and thus are counterparts of the pairwise comparison methodologies.   However,

since pairwise comparisons provide a flexible and also realistic way for estimating these type of data, it
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follows that an in depth understanding of all the aspects of the scale problem is required for a successful

solution of a decision-making problem.  
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