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ABSTRACT.  A decade ago in this journal B. W. Brewer defined a sequence
of polynomials   V  (x, 1) and for  zz = 4  and 5 evaluated

2    x(Vn(x, 1)),
* = 1

X   the nonprincipal quadratic character of the prime  p, in closed form.   A. L
Whiteman derived these results by means of cyclotomy.

Brewer subsequently defined   V (x, Q).   This paper applies cyclotomy to
the more general polynomials and provides evaluations for several more values
of  zz.   Relevant quadratic decompositions of primes are studied.

.
1.   Introduction.  Let  /   ix) =  2m „   a .x! denote a polynomial of degree  222

'zzz ;=0       1 °
with integral coefficients.   Let  p be a fixed odd prime, and assume  p.a.

Let  X denote the nonprincipal quadratic character (mod p) and define the

character sum

x = 0

Sif0) = PxiaJ-
(i.i) s(fx) = o.

Í-Xia2) if P¡(ia21-4a2aA,
[11]

ip-l)xia2     otherwise.

If  272 > 3, however, formulas for evaluating  Sif   ) in closed form have been

found only in special cases.   Bounds on  \Sif   )|   can be derived, however, for

larger classes of polynomials.   Andre' Weil proved that if  272 is odd, unless  fix)

= g  ix)hix) (mod p), where  gix)  is a nonconstant polynomial with integral coef-

ficients,

Received by the editors July 10,  1970.
AMS 1970 subject classifications.   Primary 10G05, 12C20, 10C05.
(!) This research was partially supported by the Agency for International Development

contract la—221 and National Science Foundation grants GP-3464, GP-5308, and GP-8973.
Copyright © 1972, American Mathematical Society

317

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



318 R. E. GIUDICI, J. B. MUSKAT AND S. F. ROBINSON [September

\S(fm)\<(m-Í)Jp.      [20]

The form of the bound suggests that given appropriate quadratic decompositions of

p in the form

p= cj\ + c2y22 + •■■ + ckyl'    7>0' ! </'<£>

it is plausible that a closed form expression for  S(f   ) might consist of a linear

combination of some of the  y's and a constant.   One such expression was given

by Ernst Jacobsthal, who proved that for f Ax) = x(x    + a), if  p = X    + 4Y    =
X = 1   (mod 4),

r-2(a|p)4X    ifx(a) = + l,
(1.3) S(/3) = {

(+4Y if x(a) = -l.

(The biquadratic residue symbol  (a|pF  will be used throughout only for primes

p = 1   (mod 4) and values of a  such that X^ - + 1> so tnat tne symbol will

•assume only the values   ±1.)   If  p = .3  (mod 4),  S(f^) = 0.   [ll]
The evaluations of Jacobsthal and similar results of Lothar von Schrutka

[17] and Sarvadaman Chowla [4], [5] were generalized by Albert L. Whiteman,

who considered the Jacobsthal sum

P-l
(1-4) *„(«) = Y   X(x(xn + a)),

x=l
and the related sum

(1.5) <i7(a)=X>(x«+a).
x=l

He expressed both sums in terms of Dickson-Hurwitz sums.   These sums appear

as coefficients of Jacobi sums, which are character sums defined in the theory

of cyclotomy.   (See §3.)   Certain of the Jacobi sums, in turn, can be transformed

into diagonal quadratic decompositions of  p.   For example, if both  72 and

(p - 1)/t2 are even numbers and  g  is a primitive root of p,

72-  1

£ d>n(g')2 = n2p.        [21,(4.3)1
7=0

Recently Burns W. Brewer considered an interesting sequence of polynomials

Vn(x, Q).   Let

Vn(x, Q) = xVn_l(x, 0) - QVn_2(x, 0),       72 > 2,

VjU, Q) = x,        V2(x, Q) = x2 - 20.

He defined
P-l

(1-7) \„(Q) = S(Vn(x, Q)) = £   x^„(x, Q)).
x = 0
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1972] EVALUATION OF BREWER'S CHARACTER SUMS 319

He evaluated  A (l),  72 = 1, 2, 3, 4, and 5 [l], and A.(g)  [2] by means of certain
binomial coefficient congruences.

Whiteman obtained some of Brewer's evaluations by means of Jacobi sums and

the related Eisenstein sums ([25], [26], [27]).   Whiteman's methods were extended

to evaluate  A6(g) and  A1Q(g) and to relate  f^2niQ) to AJxQ)  if  72  is odd.   [16]
This paper presents several contributions to the evaluation of A  (g).   Some

new classes of quadratic decompositions of p ate developed.   As applications,

A (g),  72 = 7, 8, 9, 12, 14, and 18, are derived, and a new expression for A. AQ)
is obtained.

2.   Reduction formulas.   Let A  (g) be defined by (1.7).   Let A  be a generator

of GFip ).   Then g = Àp       is a primitive root of  p.
1 2k 7Brewer proved that if g   = g    Q  (mod p), then

'Vß ') = xk>kn\(Q).        [2, Theorem l]

Two immediate consequences are that it suffices to determine  A  (l) and A  (p)^ Z2 72   °

and that

(2.1) A (Q) = - A (g) = 0,        ps 3  (mod 4),   22 odd.

He also showed that if
P-2

«„(8) = ¿2 x{sns + Qng-ns),
s = 0

P
(2.2) 8„(ß) = £ x(À"['(p- 1)+rl + Q"X-nlt(p- l>*%

t=o
where  g = gT (mod p), then

(2-3) 2An(g) = Qn{Q) +®n{Ql      [2; Lemma 2l

In order to evaluate a Brewer sum A  (g) = A  (pr) of order  n in closed form,
?!   *- ZI   ° '

one first decomposes the sum by means of (2.3).   Then one seeks to reduce

fi  igT) and 0 (gr)> where possible, to sums of lower orders, or in some cases to

constants.   This section is devoted to reduction procedures.

0  igr) can be replaced by the sums $ and W defined by equations (1.4) and

(1.5):"

l*2nignr),    22 odd,        [16,(3.4)]
(2.4) nni¿)=l

^2nignT),     22 even.        [16,(3.3)3

Whiteman proved that
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(2.5) <ï>n(gtn+k) = (-l)t(n + 1)<l>n(gk), [21,(2.1)1

(2.6) Vn(gtn+k) = (-l)tnV(gk), [21,(3.5)1
fi n

f(-l)* + l<l)(g»-*),     72 even,
(2.7) ^«") = < [21,(3-7)1

i(-l)»^n(g»-h,     a odd,

(2.8) V2n(gk)=Vn(gk) + <Pn(gk). [21,(3.9)1

Combining (2.6) with (2.7) gives

(2.9) $72(l) = ^i1)     if "  is odd-

Lemma 1.   // (n, b) = d, then there exist integers  y and z,  (z, b) = 1, such

that
(2.10) nz+by=d.

Proof. (2,10) has an integer solution (zn, y0), and the general solution is

z = zQ + tb/d,        y = y   - tn/d,        t any integer.        [13, Theorem 2-6]

Since this is also the general solution of zn/d + yb/d = 1, (zQ, b/d) = 1.   Then

Dirichlet's theorem guarantees that there are infinitely many primes in the

arithmetic progression  zQ + tb/d.

Theorem 1.  If (n, p - l) = d, then <Ma) = 0¿(a) and V¿a) = ^¿(a).

Proof.  In Lemma 1 let   b = p - 1.   Since  (z, p — 1) = 1,  h and  hz run to-

gether over reduced residue systems (mod p).   Since  z is odd,

P-l P-i
*>>=!!   X^z)X^nz+a)=Y.   X^)x(hd+a) = <S>d(a).

zz=l zj=l

Similarly,

Vn(a) = ¿   x^nz + a) = ¿  x(hd + a) = ^(a).
¿ = 1 zb = l

The reduction of fi  (0) is summarized by the following: (Brackets denote

the greatest integer function.)

Corollary 1.   Let  u = (2t2, p - l).   If n  is odd, let t - [nr/u].

((-l)i(I> (l), 7  even,

If n  is even,

Í(-l)í(I> (l), 7  ew72,

.(-!)'<!> (gu/2),     r odd.

V¿gr) = \/2(D + (-l)2nr/^u/2(l).
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Proof.  Let  72 be odd.   By (2.4) and Theorem 1,

n„(«r) = ®2nignr) = <¡>u(gnr).

If  r is even, / = 727/zz.   Apply (2.5):

W) = *„(«'"> = (- Dt(u + l\il) = (- D'<DU(1).

If  r is odd,   t = 222-/zz - 1/2.

,Zzz.+u/2\ _ Z    ,Vrh  Z„u/2

If  22 is even, by (2.4) and Theorem 1,

*.(«"')-*B(«i"+"/S)=(-l.),*1,(«-

by (2.8).   Apply (2.6) and (2.5) with s = 2t22-/zz:

The reduction of  0„(g) was studied in [l6], where the following were proved:

(2.11)   If d=(n, p + l),   0Jg) = 0d(g"/d) [16, Theorem 5.1].
(2.12)  If 72 is odd, 02n(g)=0n(g  ) [16, Theorem 5.4].
If tf £ GFip2), define the trace  TiÇ) = rf + ¡tp.   Then (2.2) becomes

p
©n(g) = eB(g') = ¿ x(A"[((p- 1)+rl + x"lrc*+1 >T<€» - i>-i)

z=0

= ¿ xu"['(p- 1)+ri + x"fpr+pí(p- ui) = 22 xiTi^n[t(p~1)+r]))-
z = o z=o

Lemma 2.  X(T(Ac+*(" +1>)) . (- DkXiTiXc)).

Proof.

j-(Ac+Ze(p + l)) _ Ac+fe(z> + l) + ^P{c+k(p+l)} = ^c + z,(p + 1) + ^pc+k(p+l)

= xk^p+1Axc + Xpc) = gkT(Xc).

Lemma 2 shows that although X is of order  p   - 1, certain exponents of X

in 0 (g) need be examined only modulo 2(p + l).

The next two theorems, which generalize Theorems 5.2 and 5.3 of [16],

show that in order to obtain 0 (g)  it suffices to compute 0 (l ) and, if  n is odd

and  p = 1  (mod 4), also 0 (g).   The latter also indicates conditions when 0 (g)
= 0.

Theorem 2. 0 (g'+2k) = (- l)nk® (gr).
77 ° n   °
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Proof.

e„(gr+2*) = ¿x:(TU',t/(í'-1)+r+2*l))
Z = 0

■ y. x(T^(u+k){p~l)+r+2k])> = y x(T(A"["(í,~i)+r+fe(í,+i)l))

u--k u = -k

p-k
-(-1)»*   £   x(T(An£"(í,-1)+rJ)),

Z2= —fe

by Lemma 2,

(-l)^¿x(T(A"[í(p-1)+rl)) = (-D"^(gr),
z=o

since   t and   a both run over complete residue systems (mod (p + 1)).

Corollary 2.   // 77  is odd and p = 3  (mod 4), then 0 (gr) = 0.

Proof,  ejtg') = ©„(gr+p- X) = (- Dn(p- U/2 ©n(gr) = - ®„(gr).

The notation a   \\N, where   a is a prime, means that a   | TV but  a j   iV.

Theorem 3.  // 72  is even,  2^ ||  77, a72zi 2^|| (p + 1), then

(     ®nU), p<7?,

(     ®„(D =  0,       p>7).
Proof. First assume p<rj.   Let  £ = (p + 1 )/2^     -1/2;  * is an integer.

®M=Xx(T(Xntt(p-l) + %
7=0

= Z  x(T(A"f("^)(p-1) + 1l)) = "£ x(T(X»^p-^p-"+%
"=* zz = Ze

-¿x<rU*w-|}-*i7-1)+ll)).
Z = 0

7z[- k(p- 1)+ l] = -(l/2)(p- 1) • 7z(p+ l)/2^+ (l/2)n(p- l) + n = (p+ 1)7.,
where  b = - (l/2)(p - l) - t7/2p + 72-/2.      By Lemma 2, ©n(g) = (- l)*®n(l).

If  p= 77= 1, (1/2) (p- 1)   is even and tz/2  is odd.   If p = 77 > 1,   (1/2)(p - 1)
is odd and  ?2/2  is even.   In either case, h  is odd, so if  p= 77, ®n(g) = - ® (1).

If   p < 77, 72/2^ and  72/2 are both even, so © (g) = 0 (l).
Now assume  p > 77.   Let  k = (p + l)/2 ^ +   .
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®niQ) = 2^xiTi^"[t(p-l)'r]))
2 = 0

Z   xiTiin[(U+kHP-1)+r]))=   £   XiTiX^p-l)+kU,-1)+%

«=-* u=-ze

0

I
z=o

= Z^^^['(^1)+rl+*(P+1))) = (-D^(e),

where h = (l/2) (p - 1 ) • n/271.   Since p > 2,  è is odd, so   ®niQ) = - ©n(g) = 0.
According to (2.11), 0 (g)  can be reduced to a  0 sum of lower order unless

p = - 1  (mod 72).   If 72 is even and  p = - 1  (mod 2t2), 0 (g) = 0, by Theorem 3.   If
72 is odd and  p = — 1  (mod 4tz), 0 (g) = 0, by Corollary 2.   The cyclotomy over
GF(p ) required to evaluate  0 (l), where   22 is even and  p = n - 1   (mod 2n),

and   0 (1) and 0 ig), where   72  is odd and  p = 2n - 1   (mod 4n), is developed in

§4.
Similarly, reduction may be applied in the evaluation of ÍÍ  (g) unless   p =

1   (mod 2«),  according to Corollary   1.    §3  presents  the  cyclotomy  over

GFip) required for evaluation where   p = 1  (mod 2?î).

3- Cyclotomy over GF(p). Let p = l (mode). Set f=ip-l)/e. Let ß =
exp i2ni/e).   If e is even, let  e = 2F.

Let g be a fixed primitive root modulo p. If p ¡[ a, define the index of a,

(mod p - 1), by the congruence  g "    a = a (mod p).

The Jacobi sum  R(u, v) = R  (u, v) of order  e  is defined by

(3-D

p- 1
R   (u,  v)=Y     flf Ind«+ulnd(l-fl)

Z2=2

í>-2
= (-l)uf\*     o" Indzi+z> Ind(a+1)

a=\

ip-2,    e\u,
(3.2) Reiu.0)=! [24,(2.5)]

1-1, otherwise.

(3-3) Re(u, v) = Re(v, u) = (- l)v'Re(- u - v, v).       [7, (83)]

If  e  does not divide   zz, v, or  u + v,

(3.4) Re(-U- A)Rei-u, -v)= p.      {7, (28)]
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If the exponents of  ß in (3.1) which are congruent (mod e) ate grouped, one

may write

(3.5) «>■ *)-<-l)«"¿ Cjß>.
7 = 0

The coefficients   C. will be called Jacobi coefficients.   Clearly,

e- l

(3.6) r (ku, kv) = i-l)kv/ Z cjßki-
1 = 0

The inverted form of the finite Fourier series (3.5) is

e- 1

(3.7) Cm = I 22 (- AkviReiku, kv)ß~km.
e

k = 0

The cyclotomic number ih, k) = ih, k)     of order e is defined to be the number

of solutions of
gs + l = g'  (mod ¡9),        0<s,   t<p-2,

(3 8) s = h  (mod e),        t = k (mod e).

The following identities are well known [7, (14), (15)J:

(h, k) = (- h, k - h),(3.9)
Í(k, h), f even,

(l       » U    ■* ,      AA(k + E, h + F),     / odd.
A Jacobi sum can be expressed in terms of the cyclotomic numbers as a

double finite Fourier series:
e- 1   e- 1

Re(u, v) = (- l)ui 22   Z  {h' kKßhU+kV-       [23> (2-6)1
b-Q    k=0

The inverted form is

(3.11) e\h, k)e^22   Z   AAulRe(u, v)ß~hu-kv.       [23,(2.7)1
u=0     v=0

For Jacobi sums which can be expressed in the form   R£(vn, n), one may

write
e- l

(3.12) Re[vn'  n) = (~ ti™'   Z   B{i'   V)ß"''
7=0

where the coefficients   B(j, v) = B£(j, v) ate Dickson-Hurwitz sums [22, (2.7)]

defined by
e- 1

(3.13) Be(j. 22)= 22 {h' i-»*V
¿> = 0

If  e = xy,
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y-1    y-1
{h'k)x=   Z    Z    ̂ h + mx'   k+qx)e. [9,(2)]

772=0     <?=0

Hence
y- 1

(3-14) Bx(j, v)=   £    Be(j+ mx, v).
772=0

i/-i-   Ah
\U e{j.

Be(j,0)={' [7,(17)1(3.15)

If  e  is even, by (3.14) and (3.15),

(2/- 1,    El/,
(3.16)  73e(/, E) + Be(j +E,E) = BE(j, 0) = ! [26, Lemma 3l

Í2/-1,    E|/,
(2/, e|/.

If  e  is even, define

(3.17) D(/', f) = De(/, t7) = Be(j, v) - Be(j + E, v).

Whiteman proved that if  v and   e are relatively prime,

B(j, v) = B(jv', v'),     where  vv' = 1   (mod e).       [23, Lemma l]

An immediate consequence is

(3.18) De(j, v) = De(jv', v'),     where  vv' = 1   (mod e).

From (3.9) and (3.13), B(j, v) = B(j, e - v - l).   Hence

(3.19) De{l'  v)=  De{Í-   e~ V~  !)-

If  E  is even,   E - 1   and   e  are relatively prime, so that, by (3.18) and (3.19),

(3.20) De(j, E) = De(j,  E - I) = De(j(E - 1), E - 1) = De(j(E - 1), E).

Whiteman related Dickson-Hurwitz sums to the Jacobsthal sum ^n(a) and

the related sum 1*  (a):
72

Í4?e(4g'),     e odd,
(3-21) eBe(j, l) = p_i+J [21,(5.8)1

f W (.4g1),    e even.

(3-22) <D£(1) =(-l)(E-1)/ED (0, E). [26, Lemma 4]e

The latter can be generalized as follows:

Theorem 4. 0>E(g7 = (_ íy^-^ED^- r, E).
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Proof.

<W> = L   *(*> x(hE + gr) = *(«') £   X(g') Y(g'E-' + 1)
*=1 7=0

-<-l>'  *£ 2 tx(g2sE-r+ l)-x(«(2#+1>H-'+ «I-
5=0

From the definition of cyclotomic number in (3.8), the number of values of

s for which  g s   ~T + 1   is a quadratic residue of p  is   E 2     q    (- 7, 2t)  , while

EXE_~    (- r, 2t + 1)    is the number of values of  s for which  g s   "' + 1   is a

quadratic nonresidue.   Thus

(Z>-3)/2 8-1
£     x(g2sE-r+ O = E £   [(-'. 2t)e - (~r, 2t + 1)J.
5=0 7=0

Similarly,

(P-3)/2 E-i
X      x(g(2s + 1)E-'+D = £  £   KB.-* 2/)e-(E-r,  2i+l),l.
5=0 7=0

Thus
E-l

$e(gr) = (- DrE   £   [(- r, 2i)e + (E - r, 2; + l)e -(E-r, 2/)e - (- r, 2/ + 1) ]
< = 0

e- 1

= (- l)rE £   [UE - 7, s)e ~(sE+ E-r, s) J = (- 1)7- I)**-1* £D,(-r( E),
5=0

by (3.10), (3.13), and (3.17).
In connection with applying Theorem 4, note that

(3.23) De(0, E) = -x(2)     (mod 4).

This follows from [14, Theorem 2 and the preceding Lemma].

For the evaluation of iî (Q), Theorem 4 is sufficient, for any *P sum may

be transformed into a sum of Jacobsthal sums by repeated use of (2.8) and fi-

nally (2.7). One can, however, evaluate a W sum directly; this approach, which

generalizes [16, (4.1)], will be used in evaluating AAQ).

Theorem 5.  // p = 2E/ + 1   aTTzi E  is even,

e- 1
0E(gr)=  £   (-l)m</+r>ReU, E).

77Z=0
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Proof.  By (2.4),
i>-l P-2 P-2

W) = *e(/r) = Z x^e + gEA=21 xiges + gEr)=22 xiges-Er+»-
b-\ s=0 s-0

By the definition of  cyclotomic number,

£-1

°EUr) = *  Z  [{~Er> 2t)e - {~Er' 2t + l7J
z=0

ß-l

Z = 0

e- 1   <?-lz z
zz = 0   v = 0

= <?   Z   e'2   Z    Z    (-D"/Re("z  v){ßEru~2tv- ßEru-(2t+l)v^

by (3.11),
e— 1   e- 1 E- 1

= e~l22 Z (-i)"/«e("'^/8Er"(i-/3-") z z3"2"-
«=0   v=0 7=0

The inner sum vanishes unless   tz = 0  or  F; if  22 = 0,   1 - ß~v =0.   Hence

*W)=   Z   Í-1>B/R^«'   E)ßEr"=   Z    (-l)"(/+r)Re^'  £)-
M=0 "=0

This section concludes with the derivation of several quadratic decomposi-

tions of  p used in expressing values of certain Brewer sums.   The method was

suggested by work of Herbert Walum [l9l.

Theorem 6.  Let e = xy.   If for every integer t none of u(xt + l), v(xt + l),

and (22 + v)(xt + l)  is divisible by e, then

y- 1z
7 = 0

x-l
Z ßymcj+y

zzz=0
P,

/here the  C's are defined in (3.5).

Proof.  By (3.7),

Z   £y%+ym=Z   ßyme-l2L   i-A™<Re(su, sv)ß-^>+y^
Z7Z=0 zzz=0

e-lz
s=0

e- 1 x- 1
e-1 22 i-i)sv/peisu,sV)ß-si 22 ßym(l~s)

s = 0

y- 1

zzz=0

-   22   i-A(tx + l)v/Reiitx+l)u,itx+l)v)ß-(tx + l)',
Z = 0

since the inner sum vanishes unless  s = 1   (mod x).   Thus
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y-1z
7 = 0

x- 1

£ /syras+y
772=0

^  ^   ^ (-l)(í3C+1^Re(0x+ Du, (tx+l)v)ß-(tx+^
e        7=0     Z=0

y- l
.   J2   (-l)(zx+1)t//Re(-(^x+ l)a,-U*+ l)z7/3(zx+1)

2 = 0

y-1y-1
~   £    Z   (-D(i-Z)Xv/Re((Zx+ l)a, («"+ Dz;)
y       (=0    z=0

y-i

(3.24)

• Re(-(zx+ l)u, -(zx+ l)v) £  ß(z-0*J

7=0

-   £]   Re((tx + Du, (tx + l)v) Re(-(tx + Du, -(tx + 1)7,
y- 1

7=0

z=0

since the innermost sum vanishes unless  z = t.   The hypotheses of the theorem

insure that (3.4) can be applied to every term in (3-24), so that (3.24) becomes

(l/y) 2yt~A~ p = p.
Let  2   || a, 2   || v, 2   || a + v, and 2   || e.   If  x = 4, tx + 1  is odd, so the hypoth-

eses of Theorem 6 are satisfied if

(3.25)   S is greater than   v, v, and co.

\Cj + ßyCJ+y+ß2yCj+2y+ßiyC^ \2 = (C-C  ,  )2 + (C.+   - C... ):7 7+y 7T¿y      t-'        7 + 3y' 7        7 + 2y 7+y        ;+3y

Since  E = 2y,
y-1 E-l

(3.26) p     £ [(Cy-C.+2y)^(C.+y-C.+3y)^= £   ^7-C7+h)2-
7=0 y = 0

((3.25) is satisfied if a = 1 (mod 4) and v = 1, 2 (mod 4) or a = 2 (mod 4) and
77 = 1 (mod 4).) Of particular interest in the case a = E, 77 = 1. R (E, l) can

be expressed in the form (3.12).   Then (3.26) becomes

E-l

(3.27) P=  £  De(j, E)2.
7 = 0

For further simplification, apply (3.20) to obtain  D  (/, E) = ± D  (E - j, E).
If, furthermore, 4 | E, then

(3.28) D(E/2, E) = D(3E/2, E) = -D(E/2, E) = 0.
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Hence (3.27) becomes

E/2-1

(3.29) P= DeiO, E)2+ 2    22      DeA' £)2.        e=0(mod8),
7=1

E/2-1

(3.30) P = De(0, E)2 + De(E/2, E)2+ 2    22      ¡>i% B)\       * = 4 (mod 8).
7 = 1

Consider now  x = 3.   If the hypotheses of Theorem 6 are satisfied, then

IS + ßVCi*> + ß2yCi±2y\1= C) + CJ+y + CUy - CÁ*y-Cfmy-C7*yC*+2
(l/4)(2CrCj+y - C. + 2y)2 + i3/4)iCj+y-Cj+2y)

y
2

Thus

y- 1

(3.31) 4?= Z  t(2C7-C7+y- W2+3(S'+y- W21-
7 = 0

Now let  x = 6.   If the hypotheses of Theorem 6 are satisfied, and   D . = C.

C ,j+E '

I cj + ßyCj+y + ß2yC]+2y + ßiyCj+iy + ß^cj+4y + ß^cj +5J2
\D.+ ßyD.+   +/32yD       I21       ' l+y       H 7 + 2yl

(3.32) = D2 + D2+y + D2+2y + DPi+y - D}Dj+2y + D.+yb .+2y

- (1/4)(2D; + Dj+y - Dj + 2y)2 + i3/4)iD-+y + D]+2y)2.

Hence
y-1

(3 33) 4/2= V {(2D.+ D.,   - D... )2 + 3(D.X   + D.^ )2].\J-JJI r ¿__,   L ; ;+y 7 + 2y 7+y 7 + 2y
7 = 0

Further simplification can be achieved for the coefficients of  R  (E, l),  E

even. Here   E = 3y.   By (3.20)

(3.34) D (k, E) = -(- l)kDeiE - k, E),

so that the expression (3.32) takes on the same value for  j = k and  / = E — 2y —

k = y - k.   This permits pairing of terms in (3.33).   Only the terms corresponding

to /'= 0 and /' = y/2 are unpaired.   They can be simplified.   Set   k = y in (3.34);

the   7 = 0 term in (3.33) becomes  4{D  (0, E) + Djy, E)]  .   For  / = y/2  there are
two cases.   When y/2  is odd,  D  (y/2, F) = DJoy/2, E), so the / = y/2 term in
(3.33) becomes  4{Djy/2, E) + DjE/2, E)]2.   If, however, y/2  is even,

Dj5y/2, E) = - Djy/2, E) and  De(3y/2, E) = DjE/2, E) = 0, by (3.28).   The
/= y/2  term in (3-33) becomes 120  (y/2, E)2.   Hence if
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y/2-1

Z = £    K2De(/. E)+ De(j + y,   E) - De(j + 2y, E)) 2
7=1

+ 3(De(/+y, E) + De(j+2y, E))2],

P = [De(0, E) + De(y, E)] 2 + 3De(y/2, E)2 + Z/2,        e = 0  (mod 24),

(3.35) p = [De(0, E) + De(y, E)]2 + [D(y/2, E) + Dg(E/2. E)]2 + Z/2,
e = 12 (mod 24).

To show that all the squares in the sum  Z are even, one notes that all the

relevant  D (i, E) ate even:

De(i, E) = Be(7, E) - ße(z + E, E) = 2/- 2Be(i + E, E),

by (3.16).

4. Cyclotomy over GF(p ). Let p = E(2f + l) - 1. A has been defined as a
generator of GF(p ). If <f £ GF(p ), let ind rf be defined, modulo p - 1, by the
equation Aind ^ = £.   Set  e = 2£;  e|(p2 - l).   Let  ß = exp(27rz/e).

Let (/> denote the primitive   eth power character of GF(p  ) defined by

(0, £=0.
Note that if a £ GF(p) and  a = gr (mod p),

<A(«) = ßinda = ß(p*1)r = /3E<2/ + 1)r = (- l)r = xU),

so that t/r  is an extension of the character x to OF(p  ).

The generalized Gaussian sum r(ßT) over GF(p )  is defined by

r(ßs)= £ ßsi*d££T(£)t        ¿;= exp(277z'/p).

f£GF(P2); £*0

(4.1) 7(ßs)r(/3-s) = /3sind(-1)p2-       tl«, P- 3351

Let  N he a fixed quadratic nonresidue of  p.   P(x) = x    — N is^an irreducible

quadratic polynomial in GF(p)[x].   Hence the residues   a + bx, modulo  P(x), a,

b £ GF(p), x    = N, form a representation of  GF(p  ).

The Eisenstein sum  e(ß  )  is defined by
Í>-1 P-l

(4.2) dßS)=   £   z35ind(l+¿.x)=   £   ^(i+z,*).        [10]

fc=0 ¿>=0

If s  is odd,

(4.3) r(/3*) = X(2)Cf(/3*),       [27,(3.8)1

where   C=1.PZ}   xia)Ca   is the ordinary Gaussian sum.   Whiteman combined

(4.1) with (4.3) to show that
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(4.4) eißs)eiß-s) = P    if s  is odd.       [27, (3.5)1

Further relationships between Eisenstein sums will be derived by combining

(4.3) with the Davenport-Hasse identity [6, (0.9)]

(4.5) Il   r{ßkX+t) = <f>-ytiy)Aßyt)   H   Aßkx), e = xy.
*: = 0 7ä=l

Let a    be the number of values of  b, 0 < b < p - 1, for which ind (l + bx) =
i (mod e).   Then the Eisenstein sum (4.2) can be expressed as  eiß ) =

2 er"0  a.ßsi.   The Fourier transform is
e- 1

(4.6) -z= 22<^ß-si-

(4.7)       ai+ai+E=\ [27, Lemma 31

If iffil + bx) = ß', xffil - bx) = xff(l + bx)p = ßpl = ß(E-l)i.   This shows a
1-1 correspondence between numbers of the form  I + bx whose index is  = z (mod e)

and numbers of this form whose index is  = (E - l)z (mod e).   Hence

(4.8) flz=az(E-l)>

(4.9) Aßs) = eiß(E-1)s)       [27,(3.9)1

is an immediate consequence.   Furthermore, ind(l + bx) = 0 (mod e) if and only

if ind(l - bx) = 0  (mod e), so that the numbers of the form  1 + bx,   1 < b < p - 1,
whose indices are  =0  (mod e) may be paired.   In addition, however, ind 1  =

0  (mod  e),  so that  by  (4.7)

(4.10) % is odd>       aE  is even-

Whiteman established (4.8) and (4.10) for e = 20 [27, (4.6) and p. 78].
Define the difference  d. = a. -   a.  p.   dQ = aQ - a„ = 2/ + 1 - 2a£, by (4.7).

Apply (4.10):

(4.11) dQ=2f+l     (mod 4).

Whiteman showed that ([27, (3.25), (3.26)] and (2.12))

EdQ, E= 0 (mod 8),

{(-l)<Ed0,       E=2(mod8),
» -EdQ, E = 4 (mod 8),

-(-l)fEdQ,     E = 6 (mod 8).

If  ra is even, set  ?z = E  and use (4.12).   If  72 is odd, 0^(1) = 02   (l), by
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(2.12).   Set  2n = E and apply (4.12).   The only remaining case in the discussion

at the end of §2 is the evaluation of  ®E/2(g),   E/2  odd,  p = E - 1   (mod 2E).
In proving (4.12), Whiteman defined

rn(j) = £lf/(x(p-^j+kn)+l)
k = 0

and showed that

TEtj)=x(2)Bd.ß-*.       [27,(3.22)1

&n(g) = ¿ x(A"[(p- 1)i + 1l + A^^- 1)i + Ib

= '£,f/(xp"l(p-l)t+lî)lf/(x(-lp)nl(p-1)c+lK d
t=o

p
I
<=0

/jl>'>^/j(l-f)«^(A(P-l)»(2l-l)+   1}_

Now set  72 = E/2.   Since p = 1 (mod 4),
z>

)E/2®£/ 2(g) = ßE/ 2 £ <M^~l)n{2t-l)) = ßE/ 2 rE(-E/2)
Z=0

/3E/2x(2)^_E/2r3 E/2

(4.13) ®E/2ig) = X^EdE/r

The following is analogous to Theorem 6.

Theorem 7.   If p = E(2f + l) - 1, let e = xy,  x even.    Then

y- 1

7 = 0      I   772=0

Proof.  By (4.6),

x- 1 x-1 e-l

Z     ß^'i+y^k     Zßym     X^ßSh3-SU +ym)

772=0

e- 1

772 = 0 5=0

X-  1 y-1
= \H <ißs)ß~sj £ z3ym(1-5) = í^  e(/3íx+1)/3-(íx+1)'

5 = 0 m-0 7=0

Thus

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] EVALUATION OF BREWER'S CHARACTER SUMS 333

y- 1 x-l

2—1      2^   " 7+yzzz
y = 0 I z?z = 0

= -2 Z Z Aßtx+i)ß-<tx+i» 22 <(ß~: ~l)ß(zx+1)
e      7=0    Z=0 z=0

= — Z Aßtx+l) 22e{ß~zx~l)12 ßixlz-t]
y    í=o z=o ;=o

^y¿1f(/3-+1)a/3---1) = ^y£P = p,
y z = 0 y 2 = 0

by (4.4).
Set  x = 4 in Theorem 7.   Then  F = 2y.

\a. + ßya..    +ß2ya. + 1   + ßiya .+    \2 = \d. + ßyd.+ \2 = d2 + d2i    ;       f      7+y       f ;+2y       <^ ;+3yl I    7       t"      j+y\ , ,

y- 1

+ v-

(4.14)
p - Z K2 + dV) - Z 4

7=0 7=0

It follows from (4.8) that  d. = ± dP    ..   Then (4.14) becomes7 c    1

E/2-1

(4.15) 7)=^02+ 4/2+ 2    Z      rf/'        e=0(mod4).
7=1

If E/2  is even, aE/,2 = zï,E/2, so <^E/2 = 0-   Hence

(4.16)
E/2-1

p = zi2 + 2     21     ^T2,       e s ° (mod 8)-
7=1

-5yl

If x = 6  in Theorem 7,

= Irf. + dj+y/2 - d]+2y/2 + (dj+y +dj + 2)^J/2] 2.

= (l/4)[(2^. + ^y-c7;+2y)2+3(^.+yW;+2y)2].

Hence

(4.17)

y- 1

^■Si^t^-w + sw^+v»].
7=0

The reader has doubtless noted by now the striking parallel between the

Eisenstein sum coefficients   a . and the Jacobi coefficients   Bji, E).   This is

now exploited to obtain from (4.17)
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p = (dQ + dy)2+3d2/2

, y/2-l
+ 2    Z     [(2¿7 + ¿/+y - W2+ 3U7+y + rf/+to)2l.        e s ° (mod 24),

7=1

P = (d0+dy)2+(dy/2+dE/2)2

+ 1     E     t{2dj + dj+y - dj+2y)2+ l{dj+y + W'1' £ ' U   (m°d 24>"
7=1

The argument is the same as that at the end of §3, but with (4.8) playing the

role of (3.20).   Showing that d.+    ± df+-     is even is slightly different:   (4.7)
implies that each  d term in the summation is odd; the sum of two odd terms is

even.

5.   Brewer sums of orders  1,2,3, 4, and 6. This section contains the

evaluations of several character sums.   These evaluations, drawn mostly from

earlier papers, are needed in the next sections.

$2(a), evaluated by Jacobsthal, was given in §1.   (See (1.3).)   By (1.5)

and (1.2),

p~l Í-2,       y(a) = 1,
(5-1) W2(a)=  £   x(x2+a)-x(a)=; *

x=o ( 0, ^U) = -L

(5.2) 1'j(l) = <I)j(l) = -l. (2.8), (2.9), (5.1)

P- l
Ai(2)= £ *<*>-<>•     Cl.7), (l.i)

x = 0

Thus by (2.3) and (2.4), <S>2(Q) + &X(Q) = 0;

(5-3)      0j(Q) = -<ï)2(Q).
(5-4)     1'4(02) = li'2(ö2) + 'I>2(Q2)=-2+x(e)<I,2(l)-       (2.8), (5.1), (2.5)

A2(0) = -l,by (1.2).   Hence by (2.3), (2.4), and (5.4), - 2 = ?4(Q2) + @2(0) =
-2+x(Q)®2(l) + ®2(Q).

(5.5) 02(Q) = -x(2)*2(l)
A3(ö) = *2(-3ß). (1.7), (1.4)

A3(0)= 0,       p= 3 (mod 4).       (2.1)

Now assume   p = 1   (mod 4).   Set

(5-6) R4(l, 1)=(-1)/[D4(0, 1) + D4(l, 1)^1= -X+ 2Y^~.
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From (3.19) and (3.23),   X = 1   (mod 4).
By (2.5), (3.22), and (3.19), if p m 1    (mod 4),

(5.7) <D2(g2) = X(g)$2(l) = 2y(g)(-l)/D4(0, 2) = -2X(g)X.

Similarly, by Theorem 4, if  p = 1   (mod 4),

(58) $2(s) = -2(- ^A 2) = 2(-i)'d4(i, l) = 4y,
i>2(g3) = -4y.

Note the agreement with (1.3).

(5.9) ®2iQ)=2XiQ)X, />=Hmod4).       (5.5), (5.7)

(5.10) *4(g2) = -2-2X(g)X,        p=l(mod4).       (5.4), (5.7)

Í4Y, if X = - Y (mod 3),       [1, Theorem ll
-2(-3|p)4X,       p=l(modl2). [26, p. 461

In the former case in (5.11), obviously  p = 5  (mod 12).   The latter result can

be obtained from (5.7).
For p = 5 (mod 12), if Ind(- 3) = 1  (mod 4), Ind(- 3g) = 2 (mod 4), while if

Ind(- 3) s 3 (mod 4),  Ind(- 3g) = 0 (mod 4).   Then by (5.7)

!2X,       Ind(-3) ■ 1  (mod 4),
-2X,     Ind(-3) = 3  (mod 4).

Consider now   p = 1  (mod 12).   If - 3  is a biquadratic residue of p, by

(5.8), <D2(- 3g) = *2(g) = AY, while if Ind (- 3)= 2 (mod 4), <D2(- ig) = - AY.
Thus-

(5.13) A3(g) = 4(-3|p)4y-

The choice of g affects the sign of  Y.   If p = 5 (mod 8), the sign of   y
can be related to the index of 2:

y = - Ind 2     (mod 4).       [12, Theorem 2]

If p = 1 (mod 4), 04(g) = 02(g2) = 02(1), by (2.11) and Theorem 2.   If p = 5 (mod 8),
by Corollary 1, Ü¿Q) = *2(l) + $2(l).   Hence by (2.3), (5.1), and (5.5),

2A4(g) = -2+<D2(l)-<D2(l)=-2.

If  p = 1  (mod 8), by Corollary 1 and (3.22),

fl4(g) = ¥4(1) + X(g)$4(l) = V4(l) + 4X(g)(-l)/D8(0, 4).

Hence by (2.3), (5.9), and (5.10),

2A4(g) =-2+4(-1)^(00^0, 4).
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Applying (3.20) to (3.12), one may set

(5-14) R8(l,3) = (-l)/[/)8(0/3) + D8(l,3)v^l=C+Dv'r2.

Thus by (3.19),

A4(ß) = -l+2x(ß)C,

(5.15) W8(04)=-2-2X+4x(0)C.

Note that by (3.23), C = - (- l)f (mod 4).
If  p = 3  (mod 4), by Corollary 1 and (5-2),

n4(e) = vP1(i) + i'j(i) = -2.

(x(Q)0/l)>     P= 3 (mod 8),
(5-16) &ÍO) = / (Theorem 3)

iO, p=- 7 (mod 8).

If p = 3  (mod 8), by (4.12),04(l) = - 4dQ.   Now by (4.16),  d\ + 2z72 = p.    Set
C = - ¿i,,.   Thus

(5.17) 04(l) = 4C,       Cs2/- 1 (mod 4).       (4.11)

In summary,

.   ,   ,      Í-1+ 2x(ö)C,        p= 1, 3 (mod 8),A4(0)=J
1-1, otherwise,

where  C = 2/ - 1  (mod 4), / = [p/8],  C2 + 2D2 = p.
A7l) was evaluated in [l] and [25].
If p = 5  (mod 6),

it

,AQ)Y-l,    p=5     (mod 12),
A«(e)=^ [16,(6.2)]

p= 11  (mod 12).

If p = 1  (mod 6), one may set

(5.18)       R6(l, 2)=-A + Bsf^3,       A = 1  (mod 3).       [7, pp. 408-4101
Then

Í-1 - 2A, p = 7  (mod 12),
[16, (6.11)1

-1- 2A- 2(-3|p)4x(Ö)X,     P=l  (mod 12).

A, C, and  X will retain their meanings through the next three sections.

6.   Evaluation of Ag(Q) and  A,2(Q).   By (2.3) and (2.4),

2A8(Q) = Q8(0) + Ö iß) = * 16(Q8) + 88(ß).

From Theorem 1 and (2.6),
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'f16(g8)
*2(1) 2, p= 3  (mod 4), (5.1)
f4(l) = -2-2X, p=5(mod8), (5.10)
W (1) = -2- 2X+4C,    p= 9 (mod 16).       (5.15)

By means of (2.11) and Theorems 2 and 3,

0„(e) =
(5.9)02(1)= 2X,    psl    (mod 4),

04(1) = 4C,    p=3    (mod8), (5.17)
0, p s 15  (mod 16).

It remains to evaluate the two cases where the reduction procedures of §2

do not help, namely Og(g),  p = 1   (mod 16), and  0g(g),  p =1 (mod 16).
According to Theorem 5, if  p = 1   (mod 16) and  g = gr (mod p),

7 7
n8(g)= 22 i-i>ma+r)Rj^^ = i-A,+r22R,6(2k+hS) + J2Rï6{2k-s)-

15z
zzz=0 ze=0

The first sum, by (3.12) and (3.6), can be written as

7      15

7e=0

22 Z B^i- *)ß{2k+lSi= XBi¿>' *ß'22ß2k1
Ze = 0 7 = 0 7 = 0 k = 07 = 0

= 8[B16(0, 8)- B16(8, 8)1 = 8Dlf(0, 8).

The terms of the second sum are evaluated individually.   By (5.14) and (3.3),

R 16(2, 8) = R 16(6, 8) = C + Dsp2.

Their complex conjugates are   R, ,(14, 8) and   R16(10, 8); they are equal to  C -

Dy/AT.   By (5.6), R16(4, 8) = - X + 2 YyfA\~;   «16(12, 8) = -X-2yV-^l.
Rl6(0, 8) = R16(8, 8) = - 1, by (3.2) and (3.3).   Hence

0 (g) = -2- 2X+ 4C+ 8(-l)/x;(g)D16(0, 8).

If  p = 7  (mod 16), by Theorems 2 and 3 and (4.12), 0g(g) = x(g)0g(l) =
sxiQK-

The evaluation of  A„(g) can now be summarized as follows:

p (mod 16)

1

3, 9, 11

5, 13, 15

7

Afi(g)

-1 + 2C+ 4(-l)/x(g)Dl6(0, 8)
-1 + 2C

-1

-l + 4X(gV0
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By (3.29) and (4.16) both  D16(0, 8) and dQ correspond to xQ in the quaternary
quadratic form

,2p = *¡J + 2x\ + 2x% + 2x2+2x2 + 2x2-
y

(6.1)

by (3.4) and (4.4), furthermore,

(6.2)
Given the decomposition (6.1), one can determine the  sign of xQ as follows:

xn= D1fi(0, 8) m 3 (mod 4), (3.23)
(6.3)

? 2

x0 = ¿0 = 2/ + 1 = (- l)7 (mod 4).       (4.11)

Rewrite (6.2) as  2xQx2 = (xx - xA   - 2x,.   If q is an odd prime divisor of

(6.4) 2x2 = (xx - x3)2  (mod q).

Consequently, if  q = ± 3  (mod 8),  2 is a quadratic nonresidue of  q, so  q divides

x,, and also x,.   Then  r?     divides either  xn   or  x2.   Factor q     out of both sides

of (6.4) and repeat the procedure if possible.   The conclusion is that if q =

±3  (mod 8),   q  ' exactly divides either xQ  or x2, for some integer  /, and then

q' | x x,  q1 \x,.   It follows that  xQ  and  x2  are both = ± 1  (mod 8).   Combine with

(6.3):  D16(0, 8) = 7 (mod 8), dQ m (- I)1 (mod 8).
In evaluating A. 2(g), eight residue classes, modulo 24, must be examined.

Curiously, no two residue classes have the same formulas.

2A12(g) = O12(g)+012(g) = ,i'24(g12)+012(g).

Theorems 2 and 3, Corollary 1, (2.6), (2.11), and (2.12) are used for reduction.

Then (2.8) and (2.9) are applied to eliminate all V sums.   The results are shown

in the following table.   Other relations used in a specific case are cited in the

right margin.

p (mod 24)

1

5

7

11

13

17

19

23

*„«?")IA

*24(<?     > = X«?) *12<17 + *6(1) + 2*3(1>

2-2X*4(D

*6(1) = 2*3(1)

*2(D = -2

+ 12(D= *6(D + 2*3(1)

*s(QU) = 4x(Q)C-2X-2
+6(1) = 2*3(1)

+ 2(l) = -2

0,19)

©2(1) = 2X (5.9)

06(1) = 03(1) (5.10)

©4«?3) = 0

012(<?)= x(<?)012(D(5.1)

02(1) = 2X (5.9)

06(1)=03(1) (5.15)

04(<?3)=4x(g)C (5.16), (5.17)

012(D = O (5.1)
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(6.5) $3(l) =-2A - 1,       p=l(mod6).       [5, Theorem 2]

When p =. 5  (mod 12), ©3(1) = 2A3(l) - 0,(1);  ííj(l) = *fi(l) = *2(l) = - 2X,
by (2.3), (2.4), Theorem 1, and (5.7).   Apply (5.11):

(6.6) 03(l) = SY+2X,       X = -Y(mod3),       p= 5  (mod 12).

When p =- 1  (mod 12), $6(l) = 2Aj(l) - ®3(l).   Apply (5.11), (2.11), (5.3),
and (5.7):

(6.7) <t>6(l) = -X[2 + 4(-3|p)4l,     p=l(modl2).

*12(1) = 12(- 1)/D24(0, 12),     p =- 1  (mod 24), (3.22)

= (- 1)/Í8D24(0, 12) + 8D24(4, 12)

+ 4[D24(0, 12) + D24(8, 12) + D24(16, 12)11,       (3.20)

= 8(- DfU + 4(- DfD8(0, 4) = 8(- l)fU + 4C,

by [14, (81), (92)], (3.14), and (5.14), where p = U2 + 24V2,   U m Ind 3 - 1  (mod 4).
Next it will be shown that

(6.8) ©12(1) = 04(1) = 4C,       p =1 11  (mod 24),

so that the evaluation of A12(ß)  may be summarized as follows.   Note that if

p = 5  or 7 (mod 8), A12(g) = A12(l).

p (mod 24)

1

5

7

11

13

17

19

23

A12(ß)

X(ß)[4(-l)/f7+ 2C1 - 2Á- i_2(-3|p)4X

4Y - 1
-2A -1

2x(ß)C- 1
-2A - 1- 2(-3|p)4X

2x(ß)C+ 4y- 1
2x^ß)c- 2A - 1
-1

To establish (6.8), consider for e = 24  the Eisenstein sum e(ß) =

S,=30  aß'^^dß'.

e(ßl) = ¿U¿ + a[+8 + a¿ + 16)/33' = ¿(rf. + d.+8 + d^Aß»
z=0 z=0

is an Eisenstein sum of order 8.
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According to (4.12),

(6.9) 01.2(l) = -12z2'o,

(6.10) 04(1) = -4(dQ + d8 + dxA = -4(dQ -d4+ dA.

Let y = 3,  t= 1  in (4.5):

r(/3)r(/39)r(z317) = ip~ \3)T(ß^T(ß8)r(ß 16).

r(/38)r(/316) = -r(/37)r(i317).       (4.1)

Since  p = 11 (mod 24), iz>~3(3) = x(3) = 1-   Thus

r(ß)r(ß9)Aß17) = -Aß^AßAAß17).

c(ß)e(ß9)   = -c(ßi)c(ß7).       (4.3)

Apply (4.9) with  s = 3:  c(ß) = - e(ß7).
If the Eisenstein sums of order 24 are expressed in terms of the basis

(1, ß, ß2, ßA ß4, ß\ ß6, ß7\ and the relationships

(6.11) ^ = dxx,  d2 = -dxo,  d^d9,  d4 = -d8,  d^=d7,  d6=0      (4.8)

are used, then

((ß) = (d0 + dA + (dx - dAß + 2d2ß2 + U? - dx)ßi

+ (d5 + dAß^-d2ß6 + (di + dx) ß7,

-e(ß7) =i-d0- dA + i-di- dAß + 2d2ß2 + idi + dAß1

+ (-dx + di)ßi-d2ß6 + (-dx-dAß7.

Equate coefficients of 1: dç. + d, = — d0 - d .. Hence dç. = — zi4. Also, zig =
-dA, by (6.11). Substitute into (6.10): 04(l) = - l2dQ =©12(l), by (6.9). This
establishes (6.8).

Equating coefficients of  ß shows that d, = - d,, so that

c(ß) = (dx - dA(ß - ßl - ß5) + dpß2 - ß6) = -(dx - dAA^ + d2A~3.

Let  W = dx - dy   V = d2.   (4.4) implies that e(ß)e(ß~1) = p = 2W2 + 3V2.   Since
an odd square is   = 1   (mod 8)  and  p = 11  (mod 24),  8|2W  , so  W is even.   Thus

if 2(7 = W,  p = 8U2 + 3V2.

1.   Evaluations of AJQ) and Alg(g).  For p = 3 (mod 4), A9(g) = 0, by
(2.1).

2A9(g) = 09(g) + 09(g) = Í.18(g9) + 09(g).

Applying the reduction formulas of §2 produces the following:
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p (mod 36)

1

5, 29

13, 25

17

<D (09)

<P18(ß9)

<K2(ß9)

4>6(ß9)

4\(09)

© „(ß)

©x(ß9)
©3(ß3)

0/ß9)
09(ß)

First consider ß = 1.   The evaluations of  $2(l), $6(l), 0j(l), and ©3(l) are

given in (5-7), (6.7), (5-3), and (6.6), respectively.   According to (3.22), $j8(l) =
18(— l)'D,,(0, 18); this can be expressed in terms of a coordinate in a quadratic

form of ten variables given by (3-30).   There is also a more complicated expres-

sion for $10(1)  in terms of a coordinate of a form in six variables given by (3.35).

The latter is developed here.

Let  H0 = Di6(0, 18) + D36(6, 18) denote the first coordinate of (3-35) with
e = 36.   Then

$18(1) = (- 1)/[12D36(0,  18) + 12D36(6, 18)

+ 6D,.(0, 18) + 6D,il2, 18) + 6D, Â24, 18)136 36        ' 36

= 12(-l)'//0 +47.U),
by (3.20), (3.14), and (3.22).   Apply (6.7):

<D18(1)= l2(-DfH0- 2X[1 + 2(-3|p)4l-

09(1) = 018(1)= 18(-DfdQ,    by (2.12) and (4.12).

Although  z/Q  can be expressed in terms of a quadratic form in ten variables

given by (4.15), a form in six variables given by (4.18) will be used.

Set  hn hr.   is the first variable in (4.18) with  e = 36.

©9(1) = (- D'[l2(dQ + d&) + 6(dQ + dl2 + 777/1
= 12(-l)/èQ-(-l)/+(i', + 1-6)/l2©6(l)

by (4.12).   Since   f = (p + 1 - 18)/36,

09(1)= 12(-1)/7>O + 06(1)= 12(-Dfh0+8Y+2X,

p= 17 (mod 36).       (2.12), (6.6)
Now let Q = g.   By (2-5)

*6(z§9) = -i,6(z?3),        <t>2(g9) = <D2(g) = 4Y.       (5.8)

Theorem 2 implies

03(g3) = -03(g), ©j(g9) = 01(g) = -4y.       (5.3), (5.8)

2A3(g) =í>6(g3) + 03(g),
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by (2.3) and (2.4).   If p = 1  (mod 12),

_<D6(g3) = _2A3(g) -0j(g).        (2.11), Theorem 2

(7.1) $6(g9) = -4>6(g3) = 47[1 - 2(-3| P)41,

by (5.13), (5-3), and (5.8).   If p = 5  (mod 12),
- 0 3(g) = - 2A 3(g) + O 2(g 3). Theorem 1

(7.2) 0,(g3) =-03(g) = 4(-3g|p)4X-4y-       (5-12), (5.8)

Theorem 4 yields, for p = 1  (mod 36),

<D18(g9) = 18(- 1)/D36(9, 18) = (- D'[12H9 + 6D12(9, 6)1 = 12U l)'//,, - <D6(g3),

where   t¡9 = D36(9, 18) + D36(3, 18), by (3-14).   By (7.1) $18(g9) = 12(- D'h^ +
4Y[l-2(-3\p)4].

If p = 17 (mod 36), set  7>9 = d9 + dy   By (4.13),

©9(g) = 18(-1)'¿9 = (- D'[12h9 + 6(d9 +d2l + a-33)]

- 12(-l)/7.9-03(g)= 12(-l)/7>9-4y+4(-3g|p)4X.       (7.2)

Both  779  and  h9 appear in quadratic decompositions of  p in six variables,

as the second term in (3-35) and (4.18), respectively.

The evaluation of AAQ) can be summarized as follows:

p (mod 36)

1

5, 29

13, 25

17

A9(D
6(-DfH0- 2X(-3|p)4

4y
-2X(-3|p)4

6(-DfhQ + 4y

Aq(«)

6(-l)//79-4y(-3|p)4

2X(-3g|p)4

-4y(-3|p)4

6(-l)//79 + 2X(-3g|p)4

Comparing the above with (5.11), (5-12), and (5.13) reveals that  A7l) =
A3(l), A9(g) = -A3(g),  pel, 17  (mod 36).

If  72 is odd,  A    (ß) can be expressed as follows.   (See [16, Theorem 5.6].)

2A27/e> = V2n(Q) + 02n(ß) = *4„(ß2") + ©„(ß2),       (2.3), (2.4), (2.12)

= VjQ2") + <D2n(ö2") + X(ß)©n(l),- (2.8), Theorem 2

= f2n(l) + y(ß)[(D2n(l) + 0n(l)],

= 2d>n(l) + 2X(Q)An(D,

(7.3)        A2n(0 = S>d(D + x(ö)An(l),       d= (p- 1, Tz)
Let tí = 9.

(2.5), (2.6)

(2.8), (2.9), (2.4), (2.3)

Theorem 1
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A , v     Í-1 ?*5 (mod 6), (5.2)
«>9(1) =/-l - 2A, p = 7, 13 (mod 18),       (6.5)

(9B9(-2Ind2, l)-(p-1),       psl (mod 18).       (3.21)

BA- 2 Ind 2, l) appears in a six-variable quadratic decomposition of 4p

given by (3.31) with  e = 9.

p  (mod 36)

1

5, 29

7, 31

11, 23, 35

13, 25

17

19

Ve>
9B9(-2Ind 2, l)-(p- l) + x(e)[6(-l)/W0-2(-3|?)4X]

-l + 4XiQ)Y
-1-2A

-1

-l-2A-2X(g)(-3|?)4X

-i + x(ö)[6(-i)/*0 + 4y]

9B9(-2Ind 2, 1) -ip- 1)

8.   Evaluation of Ay(g) and A14(g).  For p = 3 (mod 4), Ay(g) =0, by
(2.1).

2A?(g) = 07(Q) + 07(g) = $14(g7) + 07(g).
Assuming  p = 1   (mod 4), apply the reduction procedures of §2:

<D14(g7) = <D2(g7), p4l     (mod 28),

07(g) = 01(g7) = -í>2(g7),        pú 13  (mod 28).       (5.3)

If p = 1  (mod 28), by (3.22),

4>14(D= 14(-D^j^O, 14).
<D14(g7) = -14(-l)/D28(21> 14) = 14(-1)/D28(7, 14),

by Theorem 4.   According to (3.30) with  e = 28, both  D2g(0, 14)  and  D2g(7, 14)
are coordinates in a quadratic decomposition of p in eight variables.

If p = 13  (mod 28), (2.12) and (4.12) imply that

$7(1) = 014(1) = - 14(- l)fd0 ■ 07(g) = 14X(2)z2'7 = - 14(- D'dr

by (4.13).   dQ  and  d.  ate the first two coordinates in the eight-variable decom-

position of p given by (4.15) with  e ='28.   Hence by (5.7) and (5.8),

X+ 7(- l)fD2SiO, 14),       p= 1     (mod 28),
A7(l) = ] -X- 7i-l)fd0,

0,
p = 13  (mod 28),
otherwise,
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A7(g)
2y+ 7(-l)/D28(7, 14), p= 1     (mod 28;,
-2y- 7(-l)/zi7, p= 13 (mod 28),i
0. otherwise.

A14(Ö) = x(ß)'V» + 4>p),     d=ip-l, 1). (7.3)

If p = 1  (mod 14), 07(1) = 7B7(- 2 Ind 2, l) - (p - l), by (3.21); otherwise  <S>x(l)
= -1, by (5.2).   By (7.3):

p (mod 28)

1

13

15

otherwise

A14(g)

7B7(-2Ind 2, l)-ip- l) + xiQ)[x+7i-AfD2äiO, 14)]

-l + X(g)[-X-7(-l)^0]

7B7(-2Ind 2, l)-(p- l)
-1

B7(- 2 Ind 2, l)  is embedded in a six-variable quadratic decomposition of

72p[8, (33)].

9.   Another expression for A. „(g).   The Jacobi sum  RAl, l) = B,(0, l)+
B,(l, l)/3 + BA2, l)ß    is associated with the binary quadratic form

(9.1) 4p=L2+27M2,       L = 1  (mod 3):

(9.2) L= 2BÍ0, 1) - BAl, 1) - B,(2, l),      3M = B,(l, 1) - B,(2, l).       [7, p. 39713V

R,(l,l) = 2,:..=qBAj, l)/37   is associated with the quaternary quadratic form

I6p = x2 + 50zz2 + 50tz2 + 125«z2,
(9-3) xw = v2 - u2 - 4uv,   x = 1  (mod 5).       [7, p. 402]

In studying Jacobi sums of order six one encounters a second binary qua-

dratic form for primes  s 1  (mod 3):

(9.4) P=A2+3B2,       A=l(mod3).      [7, pp. 408-410]

Relating this form, already alluded to in (5.18), to (9.1) involves the index

of 2, modulo 3.   However, in (9.4),  p has a coefficient of 1.   This form, further-

more, is used in evaluating  A,(g),  p = 1   (mod 3).   Notice that in (5.19) there is

no reference to Ind 2.

By contrast, the evaluation of A Q(g)   [16, (7.6)] which is expressed in

terms of the coordinates of (9.3), has five cases, depending upon Ind 2  (mod 5).

One may ask for another quaternary quadratic form for  p = 1   (mod 5) which would

provide a simpler expression for  A.0(g).   Such a form is developed here.

(Attempts to generalize to p = 1  (mod 7) failed; an appropriate quadratic form in

six variables was not discovered.)
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Let  e = 5-   Define

(9-5) 7= B5(/-2Ind2, l)-(p- l)/5;       r. = <î>5(g;)/5,

by (3.21).   By setting  n = 0,  v = 1   in (3.12) and comparing with (3-1) one may

deduce that £j=0/35(/,  l) = p - 2;

(9.6) 7 + 7 + 7 + 7 + 7 = - i

is an immediate consequence.

4
11,(1.1)-¿B,U l}ß*

z = 0

4 4
= ß_2ind2y[B(7_2Ind2)i)-(p-l)/5]/37 = ß-2Ind2X/7^-

Since, according to (3.4),   |R5(l, l)|2 = p, |Sf=fJ C/3y|2 = p,  so that

p=y/2r        Z-^    7 A,
(9.7) ,=o

A = t0t1 + 77 + 77 + 77 + 77 = t0t2 + 77 + 77 + 77 + 77.
Define

4X=5f0+l, 417=7+7-7-7,

41^=7-7+7-7,     41^=7-7-7 + 7.

Theorem 8.   X,  (7,  V, aW W are integers satisfying  X   + 51/    + 5V    + 5W   =

p,   XW = V2 - U2 - UV.

Proof.  7   is odd, while   t., 7, 7, and  7 are even [15, p. 123].   From the
last equation  in (9-7) drop  all products  of two even  numbers:

7(7 — 7 ~~ '3 + Z4^~ ̂     (mod 4).   Since  7  is odd, W is an integer.   Then  U =
W + (7 - 7)/2  and   V = W + (7 - 7)/2 are integers.   Finally by (9-6),  X = 27
- (7 +7+7 + 7)/4 = 27 - W - (7 + 7)/ 2  is an integer.   Now

x2+ 5iJ2 + 5K2 + 5iy2 = [(47-7-7-/3-7)2+ 5(7+ 7-7-7^

+ 5(7 - 7 + 7 - í4)2 + 5(7 - 7 - 7 + 7)21/16

7=0     7=0 k=/+i

by (9.7).
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To show that  X,  U; V, and   W also satisfy  XW = V2 - U2 - UV, solve for
Íq, ty, t2, ¿,, and   t,   in terms of  X, U, V, W, and a constant and substitute into

the last equation in (9-7).

A10(g) = x(2)A5(l) + 1>d(l),       d=ip-i,5).       (7.3)

If p ¡r=l  (mod 10), <Dj(l) = - 1, by (5.2).   If p = 1 (mod 10), $5(l) = 5r0, by (9.5).
Thus

I4X- 1, fis 1   (mod 10),

-1, otherwise.

A,(l) was given by Brewer [l].   X satisfies the equations in Theorem 8.   Its

sign is chosen so that  X = 4 (mod 5).   That  X is thus defined uniquely can be

deduced from [7, Theorem 8].

10.   Conclusion.  The evaluations of Brewer sums presented here may serve

as a guide to the evaluation of Brewer sums of other orders by means of cyclotomy.

There may be extensions in other directions, as suggested by [3].

This paper is comprised of the principal contributions of the dissertation of

the first author, completed under the direction of the second, several results of

the latter, and results from the dissertation, completed under Professor Albert

L. Whiteman, of the third author with subsequent extensions.

The formulation of many of the theorems in this paper was aided considerably

by studying tables of various character sums.   We wish to express our gratitude

to the University of Pittsburgh Computer Center for granting access to its IBM

7090/1401 system, partially supported by National Science Foundation grant

G-11309.
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