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ON THE EVALUATION OF HIGHLY OSCILLATORY INTEGRALS
BY ANALYTIC CONTINUATION∗

DAAN HUYBRECHS† AND STEFAN VANDEWALLE†

Abstract. We consider the integration of one-dimensional highly oscillatory functions. Based on
analytic continuation, rapidly converging quadrature rules are derived for a general class of oscillatory
integrals with an analytic integrand. The accuracy of the quadrature increases both for the case of
a fixed number of points and increasing frequency, and for the case of an increasing number of
points and fixed frequency. These results are then used to obtain quadrature rules for more general
oscillatory integrals, i.e., for functions that exhibit some smoothness but that are not analytic. The
approach described in this paper is related to the steepest descent method, but it does not employ
asymptotic expansions. It can be used for small or moderate frequencies as well as for very high
frequencies. The approach is compared with the oscillatory integration techniques recently developed
by Iserles and Nørsett.
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1. Introduction. Consider the oscillatory integral

I :=

∫ b

a

f(x)eiωg(x) dx(1.1)

with ω > 0 and with f(x) and g(x) smooth functions. Integrals of this form abound
in mathematical models and computational algorithms for oscillatory phenomena
in science and engineering. Recently, much progress has been made in numerical
quadrature techniques for (1.1). Methods have been devised that compute an accu-
rate approximation to the value of the integral with low computational complexity
and with a number of operations that actually decreases as ω increases to infin-
ity [12, 13, 14, 15, 16, 17, 18]. This is in contrast to most classical integration ap-
proaches, based on polynomial interpolation, that rapidly deteriorate in the presence
of strong oscillations. In order to appreciate the inner workings of these methods, one
should understand the asymptotic behavior of the oscillatory integral (1.1) for large
values of the parameter ω.

The value of I at large frequencies depends on the behavior of the smooth func-
tions f and g near the endpoints a and b, and near the so-called stationary points.
The latter are the solutions to the equation g′(x) = 0 on [a, b]; they represent points
in which the integrand locally does not oscillate. An intuitive justification of this
property may be that, away from the endpoints and the stationary points, the os-
cillations of the integrand increasingly cancel out. Mathematically, the property is
reflected in the asymptotic expansion of I. We say that a stationary point ξ has order
r if g(j)(ξ) = 0, j = 1, . . . , r, but g(r+1)(ξ) �= 0; i.e., the first r derivatives of the
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oscillator vanish. Assuming one stationary point ξ of order r in the interval [a, b], the
asymptotic expansion of (1.1) has the form

I ∼
∞
∑

j=0

aj
ω(j+1)/(r+1)

,(1.2)

where the coefficients aj depend only on a finite number of function values and deriva-
tives of f and g at the critical points a, b, and ξ [20]. The coefficients are in gen-
eral not easily obtained, although the leading order coefficient a0 is given by the
method of stationary phase. Still, the mere existence of the asymptotic expansion
reveals a lot of information about I. For example, an immediate consequence is that
|I| = O(ω−1/(r+1)).

A first efficient method is to simply truncate the asymptotic expansion (1.2) after
a finite number of terms. By construction, the truncation error decays as a power
of 1/ω. This asymptotic method was described by Iserles and Nørsett in [14]. The
problem of the unknown coefficients in the presence of stationary points is solved
by constructing a uniform asymptotic expansion, based on factoring out the moment

μ0 =
∫ b

a
eiωg(x) dx, or similar higher order moments. The coefficients in this expansion

can be computed explicitly if the moments themselves are known a priori. A disad-
vantage of such an approach is that the error of an asymptotic expansion is essentially
uncontrollable, since asymptotic expansions tend to diverge. This is especially true
for smaller frequencies.

A second approach, proposed also in [14], is to extend Filon’s method for oscilla-
tory integrals (see [9, 5]) by considering Hermite interpolation of f . The result is a
quadrature rule for I with a classical form, involving function values and derivatives of
f . The error of this approach is controllable and may be very small. A disadvantage
is that the weights of the rule are given by oscillatory integrals themselves, and they
cannot always be explicitly computed. We will revisit Filon-type methods in section 6.

An entirely different approach was proposed by Levin in [17]. If the indefinite inte-
gral is written as F (x)eiωg(x), then we immediately have I = F (b)eiωg(b)−F (a)eiωg(a).
It was observed in [17] that F (x) is a smooth function in the absence of stationary
points. Moreover, it satisfies the nonoscillatory differential equation

F ′(x) + iωF (x)g′(x) = f(x).(1.3)

This system can be solved for F (x) by collocation. The method was generalized
in [7, 8] to more general oscillatory functions that satisfy a linear ordinary differential
equation; for example, Bessel functions. The accuracy of the methods improves with
ω if the boundary points are included in the collocation. Recently, it was shown in [18]
that collocating also the derivatives of f in the endpoints can arbitrarily increase the
order of accuracy as a function of 1/ω. In some cases, the order can also be increased
by adding internal points. This Levin-type method allows for an accurate evaluation
of the integral, without the need for moments. The accuracy is increased simply by
solving the differential equation more accurately.

For the particular case of an oscillating factor of the form cos(ωx) or sin(ωx),
specialized quadrature rules using first order derivatives were developed in [16]. An
exponentially fitting quadrature rule with n points has an error of order ω−n. The
weights depend on ω and converge to zero.

The approach taken in this paper achieves a similar high convergence rate as a
function of ω. We will show that it solves some of the problems of the other methods
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and introduces some peculiarities of its own, thus adding to the spectrum of available
approaches that appear to complement each other. For example, we present a case
that exhibits a significantly faster convergence rate for increasing ω. The method
we describe for approximating (1.1) depends on two simple observations. First, the
oscillatory function eiωg(x) decays exponentially fast for a complex g(x) along a path
with a growing imaginary part. Second, the oscillatory function eiωg(x) does not
oscillate for complex g(x) along a path with fixed real part. These observations are
exploited numerically in combination with a corollary to Cauchy’s theorem; i.e., the
value of a line integral of an analytic function along a path between two points in
the complex plane does not depend on the exact path taken (see, e.g., [11]). The
same observations also provide the foundation for the steepest descent method [1, 2].
In that method, an asymptotic expansion of the form (1.2) is developed for I. The
method was used already by Cauchy and Riemann and developed further by Debye [6].
Methods in the complex plane have since been considered for oscillatory integrals
several times in specific applications and for Laplace transforms (see, e.g., [21, 4, 3]).
We will present a rather general implementation of the steepest descent method that
is also valid for small values of ω. We prove convergence estimates of the numerical
scheme as a function of the frequency, and we extend the method to functions f and
g that are not analytic. A quadrature rule is proposed that has the same order of
accuracy as the Filon-type method. The implementation is entirely numerical; hence
we shall refer to the method as the numerical steepest descent method.

We start this paper in section 2 with some practical and motivating examples that
illustrate most of the theory described later. In section 3 we describe and analyze the
idealized setting that gives the best possible convergence. It is shown that a suitable
n-point quadrature rule in that setting leads to a convergence of O(ω−2n−1). This
setting comes with the most restrictions but still covers many important applications.
The first requirement is that the functions f and g in (1.1) be analytic in an (infinitely)
large region of the complex plane containing the integration interval [a, b]. Further, it
is assumed that there are no stationary points in [a, b] and that the equation g(x) = c
should be “easily solvable.” This rather vague description will be made more precise
further on. We then proceed by relaxing the requirements one by one until a more
generally applicable method is obtained. This increase in generality will, at times,
come with a loss in convergence rate. In section 4 we will allow stationary points.
We relax the “easy solvability” requirement in section 5. We drop the requirement
that f and g should be analytic in sections 6 and 7, respectively. Some final remarks
conclude the paper in section 8.

2. Some motivating examples. Consider the following integral, which fre-
quently appears in Fourier analysis applications:

∫ b

a

f(x)eiωx dx.(2.1)

This integral has the form of (1.1) with g(x) = x. The integrand is highly oscillatory
along the real axis if ω is sufficiently large. An important observation is that the
function eiωx decays rapidly for complex values of x with a positive imaginary part,
since eiωx = e−ωℑxeiωℜx. The speed of the decay actually grows as the frequency
parameter ω increases. Additionally, the function eiωx does not oscillate if the real
part of the argument x remains fixed.

Based on these observations, integral (2.1) can be reformulated in such a way that
the difficulty—the highly oscillatory nature—is removed. To that end, the integration
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(b) g(x) = x2

Fig. 2.1. Illustration of the integration paths for g(x) = x and g(x) = x2.

on interval [a, b] is replaced with a path in the complex plane, as illustrated in the left
panel of Figure 2.1. The first, vertical part of the path is of the form z = ha(p) := a+ip
for p ∈ [0, P ]. The second part is horizontal and connects the points ha(P ) := a+ iP
to the point hb(P ) := b + iP . Finally, the third part connects hb(P ) to b with the
vertical path z = hb(p) for p ∈ [0, P ]. Now assume that f is analytic and that f itself
does not grow exponentially large in the complex plane. Letting P go to infinity, and
using paths parameterized by ha(p) and hb(p), for p ∈ [0,∞), we can write (2.1) as

∫ b

a

f(x)eiωx dx = eiωa

∫ ∞

0

f(a + ip)e−ωp dp− eiωb

∫ ∞

0

f(b + ip)e−ωp dp.(2.2)

The integral along the path that connects the endpoints of ha(P ) and hb(P ) vanishes
for P = ∞ and can therefore be discarded. Both integrals in the right-hand side
of (2.2) are well behaved. They can be evaluated efficiently by standard numerical
integration techniques, e.g., by Gauss–Laguerre integration [5]. It can be expected
from (2.2) that the accuracy of any numerical integration scheme will increase with
increasing ω, thanks to the faster decay of the integrand. This expectation will be
confirmed both theoretically and numerically in the subsequent sections. One also
sees that, asymptotically, the behavior of f around x = a and x = b completely
determines the value of (2.1).

Next, we consider the function g(x) = x2 and the corresponding integral

∫ 1

−1

f(x)eiωx2

dx.(2.3)

Again, we can remove the integration difficulty by a careful selection of an integration
path in the complex plane. The path is drawn in the right panel of Figure 2.1.
The following notation is used for the parameterization: hxj(p) = (−1)j

√

x2 + ip.
Integrating along any such path for p ∈ [0,∞) leads to an integrand with the desired

decay properties, since eiωhxj(p)
2

= eiωx2

e−ωp. One can see that, for general g, a
similar result is obtained if the path satisfies g(hx(p)) = g(x) + ip. This path can be
found by using the inverse of g, if it exists, i.e., hx(p) = g−1(g(x) + ip). Returning
to the example function g(x) = x2, however, we note that the inverse of y = g(x) is
multivalued: we have x = −√

y corresponding to the restriction g1 := g|[−1,0], and
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Fig. 2.2. Illustration of the integration path for g(x) = x3.

x =
√
y corresponding to g2 := g|[0,1]. The paths leaving −1 and arriving at 1 are

uniquely determined by the requirement that hxj(0) = x. Hence,

h−1,1(p) = −
√

1 + ip and h1,2(p) =
√

1 + ip.

Contrary to the first example, the integral along the path that connects the limiting
endpoints of h−1,1(p) and h1,2(p) cannot be discarded. Since h−1,1(p) and h1,2(p) have
opposite signs, any connecting path should cross the real axis. Additionally we require
the connecting path to be such that the integrand along the path is nonoscillatory.
The solution is to pass explicitly through the point x = 0 via two new paths

h0,1(p) = −
√

ip and h0,2(p) =
√

ip.

The point x = 0 is such that the paths corresponding to the two inverses coincide at
x = 0. We can now rewrite (2.3) as

∫ 1

−1

f(x)eiωx2

dx =eiω
∫ ∞

0

f(h−1,1(p))e
−ωph′

−1,1(p)dp−
∫ ∞

0

f(h0,1(p))e
−ωph′

0,1(p)dp

+

∫ ∞

0

f(h0,2(p))e
−ωph′

0,2(p)dp− eiω
∫ ∞

0

f(h1,2(p))e
−ωph′

1,2(p)dp.

These four integrals are well behaved, although the derivatives h′
0,1(p) and h′

0,2(p)
introduce a weak singularity of the form 1/

√
p for p → 0. The integrands do not

oscillate, and their decay is exponentially fast.
Note that ξ = 0 is a stationary point because g′(ξ) = 0. More general stationary

points, where also higher order derivatives of g vanish, are handled in a similar way.
Consider, e.g., g(x) = x3 and its inverse g−1(y) = 3

√
y. The cubic root has three

branches in the complex plane, and the optimal path hx(p) = g−1(g(x) + ip) at the
point x is found by taking the branch corresponding to the inverse of g that is valid
at x, i.e., for which hx(0) = x. At ξ = 0, we have that g′(ξ) = g′′(ξ) = 0 and the
three branches coincide. For this example, integral (1.1) can again be decomposed
into four contributions, each of which corresponds to a nonoscillating integral. The
integration path is drawn in Figure 2.2.

3. The ideal case: Analytic integrand and no stationary points.

3.1. An approximate decomposition of the oscillatory integral. The
ideal setting for our approach has three conditions: both f and g are analytic func-
tions, there are no stationary points in the integration interval [a, b] (i.e., g′(x) �= 0),
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and the equation g(x) = z is easily solvable, preferably by analytical means. None of
these conditions is crucial in order to obtain a convergent quadrature method, as we
will relax all conditions later on. But, the ideal case leads to the highest convergence
rate among all cases described and is most suited to demonstrate our approach: the
problem of evaluating (1.1) can be transformed into the problem of integrating two
integrals on [0,∞) with a smooth integrand that does not oscillate and that decays
exponentially fast. This will be proved in this section in Theorem 3.3. First, we give
a basic lemma for the approximation of an integral with an integrand that becomes
small in some region S of the complex plane.

Lemma 3.1. Assume u is analytic in a simply connected complex region D ⊂ C

with [a, b] ⊂ D, and there exists a bounded and connected region S ⊂ D such that
|u(z)| ≤ ǫ ∀z ∈ S. If the shortest distance between any two points p and q of S along
a curve that lies in S can be bounded from above by a constant M > 0, then there
exists a function F (x), x ∈ [a, b], such that the integral of u can be approximated by

∫ x

a

u(z) dz ≈ F (a) − F (x)(3.1)

with an error e that satisfies |e| ≤ Mǫ. The function F is of the form

F (x) =

∫

Γx

u(z) dz(3.2)

with Γx any path in D that starts at x and ends in S.
Proof. Let Γx be a curve in D from x to an arbitrary point in S, denoted by q(x),

and Γa a curve in D from a to q(a) ∈ S. Choose κ as the shortest path in S that
connects q(a) and q(x). Since u is analytic in D, the integration path between a and
x may be chosen as the concatenation of Γa, κ, and −Γx. The integral is written as

∫ x

a

u(z) dz = F (a) +

∫

κ

u(z) dz − F (x) with

∣

∣

∣

∣

∫

κ

u(z) dz

∣

∣

∣

∣

≤ Mǫ.

This proves the result.
Note that F is not completely determined by the conditions of this lemma. In

particular, the endpoint q(x) of Γx may be an arbitrary function of x.
If g is analytic, then the oscillating function eiωg(x) in the integrand of (1.1) is

also analytic as a function of x. This function is small in absolute value if

|eiωg(x)| ≤ ǫ ⇐⇒ e−ωℑg(x) ≤ ǫ ⇐⇒ ℑg(x) ≥ − log(ǫ)

ω
.

Hence, if the inverse of g exists, we can find a suitable region S that is required

for Lemma 3.1 with points given by g−1(c + id) for d ≥ d0 := − log(ǫ)
ω . Note that,

in general, the inverse of an analytic function may be multivalued. Each single-
valued branch of the inverse has branch points that are located at the points ξ where
g′(ξ) = 0, and it is discontinuous across branch cuts that extend from one branch
point to another, or from a branch point to infinity. By explicitly excluding the
presence of branch points locally, a single-valued branch of the inverse can be found
that is analytic in a neighborhood of [a, b]. We can then characterize the error of
the decomposition given in Lemma 3.1 for the particular case of integral (1.1) as a
function of ω.
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Theorem 3.2. Assume f and g are analytic in a bounded and open complex
neighborhood D of [a, b], and assume g′(z) �= 0, z ∈ D. Then there exists an ap-
proximation of the form (3.1) for (1.1), with an error that has order O(e−ωd0) as a
function of ω for a real constant d0 > 0.

Proof. Define S := {z : ℑg(z) ≥ d0} ∩D with d0 > 0. A positive constant d0 can
always be found such that S is nonempty because g is analytic. In order to prove this,
consider a point x ∈ [a, b]. Since g is analytic at x, the equation g(z) = g(x) + id0

always has a solution z for sufficiently small d0 > 0 [11]. Additionally, d0 can be
chosen small enough such that z ∈ D, because D contains an open neighborhood of
x. The necessary geometrical conditions on S required by Lemma 3.1 follow from the
continuity properties of g. We have

∀x ∈ S : |f(x)eiωg(x)| ≤ |f(x)|e−ωd0 .

Since S is finite (because D is bounded), there exists a constant C > 0 such that
|f(x)| ≤ C, x ∈ S. The result is established by Lemma 3.1 with u(x) = f(x)eiωg(x)

and ǫ = Ce−ωd0 .
Theorem 3.2 shows that the error in the approximation I ≈ F (a)−F (b) for (1.1)

decays exponentially fast as the frequency parameter ω increases. It requires only
that f and g are analytic in a finite neighborhood of [a, b]. The function F is given
by an integral along a curve that originates in x, and it leads to a point z such that
g(z) has a positive imaginary part. The result follows from the exponential decay of
the integrand, which is the first of the two observations about the integrand made in
the introduction.

3.2. An exact decomposition of the oscillatory integral. Next, we will
take the second observation into account: eiωg(x) does not oscillate along a path
where g(x) has a fixed real part. This will lead to a particularly useful choice for the
path Γx in definition (3.2) of F .

Let hx(p) be a parameterization for Γx, p ∈ [0, P ]; then we find a suitable path
as the solution to

g(hx(p)) = g(x) + ip, x ∈ [a, b].

If the inverse of g exists, we have the unique solution hx(p) = g−1(g(x) + ip). The
path hx(p) is also called the path of steepest descent [1, 2]. This can be understood
as follows. Define k(x, y) := ig(z) = u(x, y) + iv(x, y), with z = x+ iy. Then we have
eiωg(z) = eωk(x,y). It can be shown that the path is such that v(x, y) = v(x0, y0) is
constant and that the descent of u(x, y) is maximal. In particular, the direction of
steepest descent coincides with −∇u at each point z = x + iy.

Using this path in the definition of F , the decomposition for (1.1) becomes

∫ x

a

f(z)eiωg(z) dz ≈ F (a) − F (x)

= eiωg(a)

∫ P

0

f(ha(p))e
−ωph′

a(p) dp− eiωg(x)

∫ P

0

f(hx(p))e−ωph′
x(p) dp.

The integrands in the right-hand side do not oscillate, and they decay exponentially
fast as the integration parameter p or the frequency parameter ω increases.

In the following theorem, we will consider the limit case P → ∞ in which the error
of the approximation vanishes. This will require stronger analyticity conditions for
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both f and g. Additionally, the function f can no longer be assumed to be bounded.
The result of the theorem will hold if f does not grow faster than polynomially in the
complex plane along the suggested integration path.

Theorem 3.3. Assume that the functions f and g are analytic in a simply
connected and sufficiently (infinitely) large complex region D containing the interval
[a, b], and that the inverse of g exists on D. If the following conditions hold in D:

∃m ∈ N : |f(z)| = O(|z|m),(3.3)

∃ω0 ∈ R : |g−1(z)| = O(eω0|z|), |z| → ∞,(3.4)

then there exists a function F (x) for x ∈ [a, b] such that
∫ x

a

f(z)eiωg(z) dz = F (a) − F (x) ∀ω > (m + 1)ω0,(3.5)

where F (x) is of the form

F (x) :=

∫

Γx

f(z)eiωg(z) dz,(3.6)

with Γx a path that starts at x. A parameterization hx(p), p ∈ [0,∞), for Γx exists
such that the integrand of (3.6) is O(e−ωp).

Proof. We will use u(z) to denote the integrand of (1.1). Using the fact that
|u(z)| = |f(z)eiωg(z)| = |f(z)|e−ωℑg(z), and conditions (3.3) and (3.4), we can state

c + id ∈ D ⇒ |u(g−1(c + id))| = O(e(mω0−ω)d), d → ∞.(3.7)

If ω > mω0, then (3.7) characterizes the exponential decay of the integrand in the
complex plane. We will now choose an integration path from the point a to the region
where the integrand becomes small and from that region back to the point x ∈ [a, b].
We will show that the contribution along the line that connects both paths can be
discarded. This will establish the existence of Γa and Γx in (3.6) and the independence
of Γa and Γx.

Assume an integration path for I that consists of three connected parts, param-
eterized as ha(p) and hx(p) with p ∈ [0, P ], and κ(p) with p ∈ [a, x]. The parameteri-
zations can be chosen differentiable and satisfy ha(0) = a, hx(0) = x, ha(P ) = κ(a),
and hx(P ) = κ(x). We have

∫ x

a

u(z) dz =

∫ P

0

u(ha(p))h
′
a(p) dp +

∫ x

a

u(κ(p))κ′(p) dp(3.8)

−
∫ P

0

u(hx(p))h′
x(p) dp.

Since the inverse function g−1 exists, we can choose the points ha(P ) and hx(P )
as follows: ha(P ) = g−1(g(a) + iP ) and hx(P ) = g−1(g(x) + iP ). Hence, by (3.7),

|u(ha(P ))| = O(e(mω0−ω)P ) and |u(hx(P ))| = O(e(mω0−ω)P ).

We will now show that, as P → ∞, the second integral vanishes. Equation (3.8) is
then of the form (3.5), with Γa and Γx parameterized by ha(p) and hx(p), respectively,
with p ∈ [0,∞). The contribution of the integral along κ(p) is bounded by

∣

∣

∣

∣

∫ x

a

u(κ(p))κ′(p) dp

∣

∣

∣

∣

≤ max
p∈[a,x]

|u(κ(p))| max
p∈[a,x]

|κ′(p)| |x− a|.(3.9)
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Defining the path κ(p):=g−1(g(p)+iP ), we have by (3.7) that |u(κ(p))|=O(e(mω0−ω)P ),
p ∈ [a, x]. We can write the second factor in the bound (3.9) as

κ′(p) =
∂g−1

∂y
(g(p) + iP )

dg

dp
(p).

The derivative of g(p) with respect to p is bounded on [a, b] because g is analytic. The

factor ∂g−1

∂y (g(p) + iP ) is bounded by O(eω0P ). Combining the asymptotic behavior

of the factors in (3.9), the second term in (3.8) vanishes for P → ∞ and ∀ x ∈ [a, b]
if ω > (m + 1)ω0. This proves the result.

Remark 3.4. Note that f and g should be analytic in a simply connected region
D that contains the paths ha, hb, and κ(p) in order to apply Cauchy’s theorem. The
unique existence of the inverse of g is a necessary condition: if g′(z) = 0 with z ∈ D,
then the point z is a branch point of the inverse function. The path κ(p) may cross
the branch cut that originates at z, and Cauchy’s theorem cannot be applied.

Remark 3.5. Conditions (3.3) and (3.4) are sufficient but not necessary. For
example, the limit case also applies when f(x) = ex and g(x) = x. If, however,

f(x) = e−x2

and g(x) = x, the integrand always diverges at infinity along the steepest
descent path, regardless of the size of ω. In that case, the path should be truncated
at a finite distance from the real axis. The accuracy of the decomposition is then
described by Theorem 3.2; i.e., the error decays exponentially fast.

3.3. Evaluation of F (x) by Gauss–Laguerre quadrature. Next, we con-
sider the evaluation of F (x) as defined by (3.6). The parameterization of the path
hx(p) is such that it solves the equation

g(hx(p)) = g(x) + ip.(3.10)

The integrand of (1.1) along this path is nonoscillatory and exponentially decaying,

f(hx(p))eiωg(hx(p)) = f(hx(p))eiωg(x)e−ωp.

In the simplest, yet important, case g(x) := x the suggested path is hx(p) = x + ip.
An efficient approach for infinite integrals with an exponentially decaying inte-

grand is Gauss–Laguerre quadrature [5]. Laguerre polynomials are orthogonal with
respect to e−x on [0,∞]. A Gauss–Laguerre rule with n points is exact for polynomi-
als up to degree 2n − 1. The integral F (x) with the suggested path can be written
as

F (x) =

∫ ∞

0

f(hx(p))eiω(g(x)+ip)h′
x(p) dp = eiωg(x)

∫ ∞

0

f(hx(p))h′
x(p)e−ωp dp

=
eiωg(x)

ω

∫ ∞

0

f

(

hx

(

q

ω

))

h′
x

(

q

ω

)

e−q dq,

with q = ωp in the last expression. Applying a Gauss–Laguerre quadrature rule with
n points xi and weights wi yields a quadrature rule

F (x) ≈ QF [f, g, hx] :=
eiωg(x)

ω

n
∑

i=1

wif

(

hx

(

xi

ω

))

h′
x

(

xi

ω

)

.(3.11)

The rule requires the evaluation of f in a complex neighborhood of x.
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Theorem 3.6. Assume functions f and g satisfy the conditions of Theorem 3.3.
Let I be approximated by the quadrature formula

I ≈ Q[f, g] := QF [f, g, ha] −QF [f, g, hb],(3.12)

where QF is evaluated by an n-point Gauss–Laguerre quadrature rule as specified in
(3.11). Then the quadrature error behaves asymptotically as O(ω−2n−1).

Proof. A formula for the error of the n-point Gauss–Laguerre quadrature rule
applied to the integral

∫∞

0
f(x)e−xdx is given by [5]

E =
(n!)2

(2n)!
f (2n)(ζ), ζ ∈ [0,∞).

Using this formula, one can derive an expression for the error E := F (a)−QF [f, g, ha]:

E =
eiωg(a)

ω

(n!)2

(2n)!

d2n(f(ha(q/ω))h′
a(q/ω))

dq2n

∣

∣

∣

∣

q=ζ

=
eiωg(a)

ω2n+1

(n!)2

(2n)!

d2n(f(ha(q))h
′
a(q))

dq2n

∣

∣

∣

∣

q=ζ/ω

(3.13)

with ζ ∈ C. The error behaves asymptotically as O(ω−2n−1). The absolute error for
the approximation to (1.1) is composed of two contributions of the form (3.13), and,
hence, has the same high order of convergence.

Remark 3.7. The decomposition I = F (a) − F (b) is of a similar type as the
decomposition of I in [14] based on asymptotic expansions. There, the terms in
the expansions are given by a combination of f , g, and their derivatives, evaluated
in the points a and b. Yet, the numerical properties of our approach are different:
the convergence rate O(ω−2n−1) when using an n-point quadrature rule for both
QF [f, g, ha] and QF [f, g, hb] should be compared to the rate O(ω−n−1) when using
an n-term asymptotic expansion of I evaluated in a and b.

Example 3.8. We end this section with a numerical example to illustrate the
sharpness of our convergence result. The absolute error for different values of ω and
of n is given in Table 3.1 for the functions g(x) = x and f(x) = 1/(1 + x) on [0, 1].
The parameterization for Γx is given by hx(p) = g(x)+ ip. The behavior as a function
of ω follows the theory until machine precision is reached. The relative error scales
only slightly worse, since |I| = O(ω−1).

One should note that decomposition (3.5) is exact for all positive values of the
parameter ω > (m + 1)ω0 > 0. The conditions from Theorem 3.3 yield the minimal
frequency parameter (m+ 1)ω0. The method itself is therefore not asymptotic—only

Table 3.1

Absolute error of the approximation of I by QF [f, g, ha]−QF [f, g, hb] with n quadrature points
for the functions f(x) = 1/(1 + x) and g(x) = x on [0, 1]. The last row shows the value of
log2(e40/e80): this value should approximate 2n + 1.

ω \ n 1 2 3 4 5
10 1.0E − 3 3.1E − 5 1.9E − 6 1.7E − 7 2.1E − 8
20 1.2E − 4 1.1E − 6 2.3E − 8 7.5E − 10 3.2E − 11
40 1.7E − 5 3.9E − 8 2.1E − 10 2.0E − 12 2.8E − 14
80 2.0E − 6 1.2E − 9 1.7E − 12 4.2E − 15 1.6E − 17

Rate 3.1 5.0 6.9 8.9 10.8
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the convergence estimate is. Table 3.1 shows an absolute error of 2.1E − 8 (relative
error 1.4E − 7) for ω = 10 with a number of quadrature points as small as n = 5.
The corresponding integral is not highly oscillatory at all. In order to achieve the
same absolute error with standard Gaussian quadrature on [0, 1], we had to choose
a rule with 10 points. Considering the fact that we evaluate both QF [f, g, ha] and
QF [f, g, hb] with n = 5 points, the amount of work is the same. Thus, even at
relatively low frequencies, our approach is competitive with conventional quadrature
on the real axis. For higher frequencies, obviously, the new approach may be many
orders of magnitude faster.

4. The case of stationary points.

4.1. A new decomposition for the oscillatory integral. At a stationary
point ξ, the derivative of g vanishes and the integrand f(x)eiωg(x) does not oscillate,
at least locally. The contribution of the integrand and its derivatives at ξ can therefore
not be neglected. The theorems of section 3 do not apply, because the inverse of g
does not exist uniquely due to the branch point at ξ.

In order to illustrate the problem, consider the following situation. Assume that
the equation g′(x) = 0 has one solution ξ and ξ ∈ [a, b]. Now define the restrictions

g1 := g|[a,ξ] and g2 := g|[ξ,b](4.1)

of g on the intervals [a, ξ] and [ξ, b], respectively. Then the unique inverse of g on [a, b]
does not exist, but a single-valued branch g−1

1 can be found that satisfies g−1
1 (g1(x)) =

x, x ∈ [a, ξ]. This branch is analytic everywhere except at the point ξ and along a
branch cut that can be chosen arbitrarily but that always originates at ξ. Similarly, a
single-valued branch g−1

2 exists that satisfies g−1
2 (g2(x)) = x, x ∈ [ξ, b]. Both branches

satisfy g(g−1
i (z)) = z, i = 1, 2, in their domain of analyticity. The integrand is small in

the region S1 with points of the form g−1
1 (c+id), d ≥ d0, or in the region S2 with points

of the form g−1
2 (c + id), d ≥ d0. It is easy to see that S1 and S2 are not connected:

applying g on both sides of the equality g−1
1 (y) = g−1

2 (z) leads to y = z, which is
only possible if z = ξ /∈ S1, S2. The path (3.10) that solves g(hx(p)) = g(x) + ip, as
suggested in section 3, leads to a path in S1 for a and to a path in S2 for b.

The solution is therefore to split the integration interval into the two subintervals
[a, ξ] and [ξ, b]. This procedure can be repeated for any number of stationary points.
The analogues of Theorems 3.2 and 3.3 can be stated as follows.

Theorem 4.1. Assume that the functions f and g are analytic in a bounded and
open complex neighborhood D of [a, b]. If the equation g′(x) = 0 has only one solution
ξ in D and ξ ∈ (a, b), then there exist functions Fj(x), j = 1, 2, such that

∫ t

s

f(z)eiωg(z) dz = F1(s) − F1(ξ) + F2(ξ) − F2(t) + O(e−ωd0), d0 > 0,

for s ∈ [a, ξ] and t ∈ [ξ, b], where Fj(x) is of the form

Fj(x) :=

∫

Γx,j

f(z)eiωg(z) dz(4.2)

with Γx,j a path that starts at x.

Proof. Define g2(x) as in (4.1). A decomposition for
∫ t

ξ
f(x)eiωg2(x) dx can be

found using the proof of Theorem 3.2 with two modifications. First, the equation
g(z) = g(x) + id0 now has at least two solutions locally around x = ξ. We choose



HIGHLY OSCILLATORY INTEGRALS 1037

the solution that corresponds to the single-valued branch g−1
2 of the inverse of g that

satisfies g−1
2 (g(x)) = x, x ∈ [ξ, b]. The branch cut can always be chosen such that it

does not prevent us from applying Cauchy’s theorem. Second, the set S in the proof is
now defined as S := {z : ℑg(z) ≥ d0 and g−1

2 (g(z)) = z} ∩D; i.e., the set is restricted
to one connected part of D, where the integrand is small, as opposed to the set of all
points, where the integrand is small. The latter set would not be connected in this
case. With these modifications, the proof shows the existence of F2 such that

∫ t

ξ

f(z)eiωg2(z) dz = F2(ξ) − F2(t) + O(e−ωd0).

The same reasoning can be applied in order to find a decomposition on the interval
[a, ξ]. This leads to the result.

The next theorem is the limit case of Theorem 4.1, where the error vanishes.
The notation g−1

1 denotes a branch of the multivalued inverse of g that satisfies
g−1
1 (g1(x)) = x, x ∈ [a, ξ]. The notation g−1

2 is similar.
Theorem 4.2. Assume that the functions f and g are analytic in a simply

connected and sufficiently (infinitely) large complex region D containing the interval
[a, b]. Assume further that the equation g′(x) = 0 has only one solution ξ in D and
ξ ∈ (a, b). Define g1 and g2 as in (4.1). If the following conditions hold:

∃m ∈ N : |f(z)| = O(|z|m),

∃ω0 ∈ R : |g−1
1 (z)| = O(eω0|z|) and |g−1

2 (z)| = O(eω0|z|), |z| → ∞,

then there exist functions Fj(x), j = 1, 2, of the form (4.2) such that

∫ t

s

f(z)eiωg(z) dz = F1(s) − F1(ξ) + F2(ξ) − F2(t) ∀ω > (m + 1)ω0(4.3)

for s ∈ [a, ξ] and t ∈ [ξ, b]. A parameterization hξ,j(p), p ∈ [0,∞), for Γx,j exists such
that the integrand of (4.2) is O(e−ωp).

Theorems 4.1 and 4.2 are easily extended to the case when ξ = a (or ξ = b) by
discarding the two terms F1(a) − F1(ξ) (or F2(ξ) − F2(b)).

Example 4.3. We consider the function g(x) = (x−1/2)2 with a stationary point
at ξ = 1/2. The inverse of g, i.e., g−1(y) = 1/2 ±√

y, is a two-valued function. One
branch is valid on the interval [0, ξ], the other on [ξ, 1]. The paths suggested by (3.10)
on [0, ξ] that originate at the points 0 and ξ, respectively, are given by

h0,1(p) = 1/2 −
√

1/4 + ip and hξ,1(p) = 1/2 −
√

ip.

The paths on [ξ, 1] for the points 1/2 and 1 are parameterized by

hξ,2(p) = 1/2 +
√

ip and h1,2(p) = 1/2 +
√

1/4 + ip.

These paths correspond to the two inverse functions. We have found the decomposi-
tion I = F1(a) − F1(ξ) + F2(ξ) − F2(b).

Note that the paths hξ,1 and hξ,2 that originate in the point ξ introduce a nu-
merical problem. Their derivatives, which appear in the integrand of the line integral,
behave like 1/

√
p, p → 0, at ξ. This weak singularity is integrable but prevents con-

vergence of the Gauss–Laguerre quadrature rules. We will require a new method to
evaluate Fj(ξ).
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4.2. The evaluation of Fj(x) by generalized Gauss–Laguerre quadra-
ture. The previous example showed a numerical problem for the evaluation of Fj(x)
by numerical quadrature: the integrand of Fj(ξ) along the path suggested by (3.10)
becomes weakly singular at the stationary point ξ. A similar singularity occurs if
higher order derivatives of g(ξ) also vanish. Assume that g(k)(ξ) = 0, k = 1, . . . , r.
The Taylor expansion of g is then

g(x) = g(ξ) + 0 + · · · + 0 + g(r+l)(ξ)
(x− ξ)r+1

(r + 1)!
+ O((x− ξ)l+2).

The path hξ,j(p) solves the equation g(hξ,j(p)) = g(ξ) + ip. Its behavior at p = 0 is

hξ,j(p) ∼ ξ + r+1

√

(r + 1)! p

g(r+1)(ξ)
i.(4.4)

The derivative has a singularity of the form p
1

r+1
−1, p → 0.

Fortunately, these types of singularities can be handled efficiently by generalized
Gauss–Laguerre quadrature. Generalized Laguerre polynomials are orthogonal with
respect to the weight function xαe−x, α > −1 [5]. Function Fj(ξ) with optimal path
hξ,j(p) is given by

Fj(ξ) =
eiωg(ξ)

ω

∫ ∞

0

f

(

hξ,j

(

q

ω

))

h′
ξ,j

(

q

ω

)

e−q dq.(4.5)

Generalized Gauss–Laguerre quadrature will be used with n points xi and weights wi

that depend on the value of α = 1/(r + 1) − 1 = −r/(r + 1). The function Fj(x) is
then approximated by

Qα
F [f, g, hξ,j ] :=

eiωg(ξ)

ω

n
∑

i=1

wi f

(

hξ,j

(

xi

ω

))

h′
ξ,j

(

xi

ω

)

x−α
i .(4.6)

This expression is similar to (3.11) but includes the factor x−α
i to regularize the

singularity.
Theorem 4.4. Assume functions f and g satisfy the conditions of Theorem 4.2.

Assume that g(k)(ξ) = 0, k = 1, . . . , r, and g(r+1)(ξ) �= 0. Let the function Fj(ξ) be
approximated by the quadrature formula

Fj(ξ) ≈ Qα
F [f, g, hξ,j ]

with α = −r/(r + 1). Then the quadrature error has order O(ω−2n−1−α).
Proof. The error formula for an n-point generalized Gauss–Laguerre quadrature

rule is

n!Γ(n + α + 1)

(2n)!
f (2n)(ζ), 0 < ζ < ∞.(4.7)

We can repeat the arguments of the proof of Theorem 3.6. An expression for the error
e := Fj(ξ) −Qα

F [f, g, hξ,j ] can be derived by using (4.7). This leads to

e =
eiωg(ξ)

ω

n!Γ(n + α + 1)

(2n)!

d2n(f(hξ,j(q/ω))h′
ξ,j(q/ω)q−α)

dq2n

∣

∣

∣

∣

∣

q=ζ

=
eiωg(ξ)

ω2n+1

n!Γ(n + α + 1)

(2n)!

d2n(f(hξ,j(q))h
′
ξ,j(q)(ωq)

−α)

dq2n

∣

∣

∣

∣

∣

q=ζ/ω

with ζ ∈ C. Hence, the error is asymptotically of the order O(ω−2n−1−α).
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Remark 4.5. Generalized Gauss–Laguerre quadrature converges rapidly only if
the function v(x) in an integrand of the form v(x)xαe−x has polynomial behavior.
Depending on f , the function f(hξ,j(p)) may not resemble a polynomial very well,
due to the root in (4.4) for small p. An alternative to generalized Gauss–Laguerre
quadrature with α = −1/2 is to remove the singularity by the transformation u =

√
p

or p = u2. The same transformation also removes the square root behavior of hξ,j(p).

The integrand after the transformation decays like e−u2

. In that case, variants of
the classical Hermite polynomials that are orthogonal with respect to e−u2

on the
half-range interval [0,∞) can be used with corresponding Gaussian quadrature rules
as constructed by Gautschi [10]. A similar convergence analysis yields the order
O(ω−n−1) in this case.

We can now characterize the approximation of (1.1) in the presence of several
stationary points.

Theorem 4.6. Assume that f and g are analytic in a sufficiently large region
D ⊂ C and that the equation g′(x) = 0 has l solutions ξi ∈ (a, b). Define ri :=
(mink>1 g

(k)(ξi) �= 0) − 1 and r := maxi ri. If the conditions of Theorem 4.2 are
satisfied on each subinterval [ξi, ξi+1], and on [a, ξ1] and [ξr, b], then (1.1) can be
approximated by

I ≈ Q[f, g] :=QF [f, g, ha,0] −Qα1

F [f, g, hξ1,0](4.8)

+

l−1
∑

i=1

(

Qαi

F [f, g, hξi,i] −Q
αi+1

F [f, g, hξi+1,i]
)

+Qαl

F [f, g, hξl,l] −QF [f, g, hb,l]

with αi = −ri/(ri + 1), with a quadrature error of the order O(ω−2n−1/(r+1)).
Proof. This follows from a repeated application of the decomposition given by

Theorem 4.2 and from the approximation of each term Fi(x) by Qαi

F [f, g, hx,i] as in
Theorem 4.4.

Theorem 4.6 can easily be extended to the case when g′(a) = 0 or g′(b) = 0. If,
e.g., g′(a) = 0, we can set ξ1 = a and use the general decomposition (4.8) with the
first two terms left out.

Example 4.7. We return to Example 4.3 of this section in order to illustrate the
convergence results. The approximation of (1.1) for the function g(x) = (x− 1/2)2 is
given by

Q[f, g] = QF [f, g, h0,1] −Q
−1/2
F [f, g, h1/2,1] + Q

−1/2
F [f, g, h1/2,2] −QF [f, g, h1,2].

Theorem 4.6 predicts an error of the order O(ω−2n−1/2). The sharpness of this esti-
mate can be verified by the results in Table 4.1.

4.3. The case of complex stationary points. So far, we have required the
stationary point ξ ∈ [a, b] to be real. But even for functions g that are real valued
on the real axis, the equation g′(x) = 0 may have complex solutions. The value of
g′(x) on [a, b] can become very small if a complex stationary point ξ lies close to
the real axis. We may therefore expect that such a point contributes to the value of
the integral (1.1). Here, we will not pursue the extension of the theory to the case
of complex stationary points in any detail. Instead, we will restrict ourselves to a
number of remarks that address some of the relevant issues.

A first observation is that Theorem 4.1 can still be applied if the region D is chosen
small enough such that it does not contain ξ. This means that the contribution of
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Table 4.1

Absolute error of the approximation of I by Q[f, g] using (generalized) Gauss–Laguerre quadra-
ture with f(x) = 1/(1 + x) and g(x) = (x − 1/2)2 on [0, 1]. The last row shows the value of
log2(e80/e160): this value should approximate 2n + 1/2.

ω \ n 1 2 3 4 5
10 4.7E − 3 7.1E − 4 1.7E − 4 4.9E − 5 1.7E − 5
20 7.8E − 4 5.6E − 5 7.2E − 6 1.3E − 6 2.7E − 7
40 1.2E − 4 2.8E − 6 1.5E − 7 1.2E − 8 1.3E − 9
80 1.6E − 5 1.0E − 7 1.7E − 9 5.0E − 11 2.1E − 12
160 2.3E − 6 3.4E − 9 1.6E − 11 1.3E − 13 1.6E − 15
Rate 2.8 4.9 6.8 8.6 10.4

ξ to the value of I, if any, decays exponentially fast as ω increases. Still, for small
values of ω, the error may become prohibitively large if ξ lies close to the real axis.

In order to resolve this problem, one must first know which stationary points can
contribute to the error of the approximations of section 4. In general, the question
can be answered by inspecting the integration paths. A stationary point contributes
if it lies in the interior of the domain bounded by the integration interval on the
real axis and the complex integration path (including the limiting connecting part at
infinity). In order to obtain an exact decomposition, the integration path should be
changed to pass through ξ explicitly. Specifically, the decomposition should include
two additional terms for ξ of the form (4.5).

As a final remark, we note that the integral of the form (4.5) has a factor eiωg(ξ)

with g(ξ) = c + id complex. If d > 0, then the contribution decays exponentially as
e−ωd. We know from Theorem 4.1 that the error introduced by discarding complex
stationary points should decay exponentially. Hence, complex stationary points for
which d ≤ 0 cannot contribute to the value of I.

5. The case when the oscillator is not easily invertible. Theorems 3.3
and 4.2 continue to hold for paths different from the one implicitly defined by (3.10).
The value of F (a) does not depend on the path taken, and does not even depend on
the limiting endpoint of the path, as long as the imaginary part of g(x) grows infinitely
large. We have merely suggested (3.10), which yields a nonoscillatory integrand with
exponential decay, as being suitable for Gauss–Laguerre quadrature. Other integra-
tion techniques may be applied for other paths with different numerical properties.
We will not explore these possibilities in depth here.

We restrict the discussion to an approach that is useful when the inverse function
of g is known to exist, but when the suggested path is not easily obtained by analytical
means. As ω increases, we see from (3.11) that QF [f, g, ha] requires function values in
a complex region around a of diminishing size. Therefore, it is reasonable to assume
that approximating the path defined by (3.10) locally around x = a is acceptable.
Use of the first order Taylor approximation g(x) ≈ g(a) + g′(a)(x− a) to replace the
left-hand side of (3.10) leads to the path

ha(p) = a +
ip

g′(a)
.

The second order Taylor approximation leads to the path

ha(p) = a− g′(a) −
√

g′(a)2 + 2ipg(2)(a)

g(2)(a)
.

In the case of stationary points the path can be approximated by using (4.4).
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The general expression for the integral along the approximate path is given by

F (a) =

∫ ∞

0

f(ha(p))e
iωg(ha(p))h′

a(p) dp.

Computing F (a) by Gauss–Laguerre quadrature yields a numerical approximation
with an error given by

E = ω−1 (n!)2

(2n)!

d2n(f(ha(q/ω))eiωg(ha(q/ω))h′
a(q/ω)eq)

dq2n

∣

∣

∣

∣

q=ζ

= ω−2n−1 (n!)2

(2n)!

d2n(f(ha(q))h
′
a(q)e

iωg(ha(q))eωq)

dq2n

∣

∣

∣

∣

q=ζ/ω

.

The order of convergence is not necessarily O(ω−2n−1) in this case because the
derivative still depends on ω. However, the function eiωg(ha(q)) is a good approxi-
mation to eiωg(a)e−ωq, and we can expect the quadrature to converge. This will be
illustrated further on.

The results can be improved to preserve the original convergence rate of O(ω−2n−1)
at the cost of a little extra work to determine the optimal path. The optimal path
depends only on g(x), and on the interval [a, b], and can therefore be reused for differ-
ent functions f . The extra computations have to be done once for each combination
of g(x) and [a, b].

The Taylor approximation of the path can be used to generate suitable starting
values for a Newton–Raphson iteration, which is applied to find the root x of the
equation

g(x) − g(a) − ip = 0.(5.1)

For the set of n (fixed) values for p that are required by the quadrature rule, the
iteration yields the points x = ha(p) on the path. The values of h′

a(p), i.e., dx
dp , are

found by taking the derivative of (5.1) with respect to p,

g′(x)
dx

dp
= i.

With the Newton–Raphson method, the points on the optimal path and the
derivatives at these points can be found to high precision. Since the Taylor approxi-
mation is already a good approximation for large ω, the required number of iterations
is small.

Example 5.1. We consider the second order Taylor approximation of the path for
f(x) = 1/(1+x) and g(x) = (x2 +x+1)1/3. The absolute error is shown in Table 5.1.
Use of the Newton–Raphson iteration for the same example yields an error of order
O(ω−2n−1). This is shown in Table 5.2. The number of iterations per quadrature
point varied between 1 and 4.

6. Generalization to a nonanalytic function f(x). If f(x) is not analytic
in a complex region surrounding [a, b], then the method presented thus far will not
work. If f(x) is piecewise analytic (e.g., piecewise polynomial), the integration can
be split into the integrals corresponding to the analytic parts of f . More generally,
however, we need to resort to another approach. For a suitable analytic function f̃
that approximates f , we can expect the integral

Ĩ :=

∫ b

a

f̃(x)eiωg(x) dx

to approximate the value of I.
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Table 5.1

Absolute error of approximation of F (a) − F (b) by Gauss–Laguerre quadrature with f(x) =
1/(1+x) and g(x) = (x2 +x+1)1/3 on [0, 1] and second order Taylor approximation of the optimal
path. The last row shows the value of log2(e160/e320).

ω \ n 1 2 3 4 5

20 1.4E − 2 2.7E − 3 7.4E − 4 2.4E − 4 8.9E − 5

40 2.5E − 3 2.6E − 4 4.6E − 5 1.0E − 5 2.5E − 6

80 3.8E − 4 1.8E − 5 1.7E − 6 2.0E − 7 2.9E − 8

160 5.2E − 5 1.1E − 6 4.0E − 8 2.1E − 9 1.5E − 10

320 6.7E − 6 6.8E − 8 7.7E − 10 1.6E − 11 4.4E − 13

Rate 3.0 4.0 5.7 7.0 8.4

Table 5.2

The same example as in Table 5.1, but using Newton–Raphson iterations to compute the optimal
path. The number of iterations per quadrature point varied between 1 and 4. The last row shows the
value of log2(e320/e640): this value should approximate 2n + 1.

ω \ n 1 2 3 4 5

20 1.1E − 2 2.4E − 3 7.4E − 4 2.5E − 4 7.5E − 5

40 2.1E − 3 2.4E − 4 4.4E − 5 1.0E − 5 2.4E − 6

80 3.3E − 4 1.5E − 5 1.2E − 6 1.5E − 7 2.3E − 8

160 4.5E − 5 6.1E − 7 1.8E − 8 8.7E − 10 6.2E − 11

320 5.9E − 6 2.1E − 8 1.8E − 10 2.7E − 12 6.2E − 14

640 7.2E − 7 6.7E − 10 1.5E − 12 6.3E − 15 4.3E − 17

Rate 3.0 5.0 6.9 8.8 10.5

This leads to a Filon-type method that was already mentioned in the introduction.
Filon’s method was extended by Iserles and Nørsett in [14]. Since the value of I
depends on the value of f and its derivatives at x = a and x = b, they successfully
used Hermite interpolation in the points a and b, in the stationary points, and in a
few other regular points in the interval [a, b]. In [14, Thm. 2.3] it was shown that
interpolating f (j)(x) at a and b, j = 0, . . . , s− 1, with a polynomial of degree 2s− 1
leads to a quadrature rule with an error of order O(ω−s−1).

Since polynomials are analytic, we can also use the Hermite approximation in our
approach. This enables the computation of the weights of the Filon-type quadrature
rule for general oscillators. (Note that the complex approach also enables the com-
putation of the moments in the asymptotic method of [14].) It does not improve the
convergence rate of the method. We can improve on the Filon-type method, however,
in a different way. Thanks to the decomposition of (1.1) as I = F (a) − F (b), it is
possible to use different approximations around a and b, and, hence, to approximate
F (a) and F (b) independently. Since F (a) depends only on the behavior of f around a,
the approximating Hermite polynomial can have a much lower degree. In the theorem
below, we show that we can obtain a similar accuracy as in [14, Thm. 2.3] with two
independently constructed polynomials of degree s − 1 instead of one polynomial of
degree 2s− 1.

Theorem 6.1. Assume that f is a smooth function and g is analytic. Let fa(x)
and fb(x) be the Hermite interpolating polynomials of degree s− 1 that satisfy

f (k)
a (a) = f (k)(a) and f

(k)
b (b) = f (k)(b), k = 0, . . . , s− 1.
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Then the approximation of (1.1) by

Ffa(a) − Ffb(b) :=

∫ ∞

0

fa(ha(p))e
iωg(ha(p))h′

a(p) dp

−
∫ ∞

0

fb(hb(p))e
iωg(hb(p))h′

b(p) dp

along the paths ha(p) and hb(p) that satisfy (3.10) has an error of order O(ω−s−1).
Proof. First, we consider the approximation with the Hermite interpolating poly-

nomial f̃(x) of degree 2s − 1 that satisfies f̃ (k)(a) = f (k)(a) and f̃ (k)(b) = f (k)(b),
k = 0, . . . , s − 1. Since f̃ is analytic, it can be used to approximate (1.1) as I ≈
Ff̃ (a)−Ff̃ (b). This approximation has an error of O(ω−s−1) by [14, Thm. 2.3]. Now

consider the approximation of Ff̃ (a) by Ffa(a). Since f̃(x) is a polynomial, we can
write Ff̃ (a) as

Ff̃ (a) =

2s−1
∑

k=0

f̃ (k)(a)
μk(a)

k!
,(6.1)

where the μk(a) are the moments of the form

μk(a) :=

∫ ∞

0

(ha(p) − a)keiωg(ha(p))h′
a(p) dp(6.2)

=

∫ ∞

0

eiωg(a)

ω
(ha(q/ω) − a)ke−qh′

a(q/ω) dq.

Although q goes to infinity, the behavior for small q/ω dominates due to the factor
e−q (this follows from Watson’s lemma [1]). Since (ha(q/ω) − a) ∼ ω−1, we see that
μk(a) ∼ ω−k−1. For Ffa(a), we have

Ffa(a) =

s−1
∑

k=0

f (k)
a (a)

μk(a)

k!
.(6.3)

The first discarded moment, μs(a), is of order O(ω−s−1). The approximation of Ff̃ (b)
by Ffb(b) has an error of the same order. This concludes the proof.

There are two ways to proceed: either fa(x) can be evaluated explicitly in the
quadrature evaluation of Ffa(a), or the moments (6.2) can be precomputed with the
previous techniques and used in the summation (6.3). The result is a quadrature
rule for integrals of type (1.1) for fixed g, a, and b, and using function values and

derivatives of f at a and b. Define wi,1 = μk(a)
k! and wi,2 = −μk(b)

k! . Then

I ≈ Qμ[f ] :=

s−1
∑

i=0

wi,1f
(i)(a) +

s−1
∑

i=0

wi,2f
(i)(b)(6.4)

is a quadrature rule with an error of order O(ω−s−1). For a fixed frequency, this
localized Filon-type method is exact for polynomials up to degree s − 1, while the
regular Filon-type method is exact for polynomials up to degree 2s − 1. Hence, the
simplified construction comes at a cost; the order of accuracy as a function of ω is the
same, but we can expect the coefficient to be much larger.
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We can generalize the result to include stationary points. The same reasoning
applies, but we need to interpolate more derivatives in order to achieve a similar
convergence rate. That rate depends on the smallest value of r for which g(r+1)(ξ) �= 0
with ξ a stationary point.

Theorem 6.2. Assume that g is analytic and that g(k)(ξ) = 0, k = 1, . . . , r, and
g(r+1)(ξ) �= 0. Let f be sufficiently smooth, and let fξ(x) be the Hermite interpolating
polynomial of degree s(r + 1) − 1 that satisfies

f
(k)
ξ (ξ) = f (k)(ξ), j = 0, . . . , s(r + 1) − 1.

Then the sequence Ffξ,j(ξ) converges for increasing values of s to a limit with an error

of order O(ω−s−1/(r+1)).
Proof. The proof follows essentially the same lines as the proof of Theorem 6.1

and uses the moments μk,j(ξ), defined using the path hξ,j ,

μk,j(ξ) :=

∫ ∞

0

eiωg(ξ)

ω

(

hξ,j

(

q

ω

)

− ξ

)k

e−qh′
ξ,j

(

q

ω

)

dq.(6.5)

The derivative of the parameterization hξ,j in the integrand has an integrable sin-
gularity of the form (q/ω)−r/(r+1) at the stationary point ξ and leads to a factor
ωr/(r+1). By (4.4) we have (hξ,j(q/ω) − ξ) ∼ ω−1/(r+1). This makes μk,j(ξ) ∼
ωr/(r+1)−k/(r+1)−1 = ω(−k−1)/(r+1). The first discarded moment μk,j(ξ) in the sum
Ffξ,j of the form (6.3) has the index k = s(r + 1), which leads to the result.

Theorem 6.2 shows only that the value Ffξ(ξ) converges with a specific rate if more
derivatives of f are interpolated. It does not explicitly state that Ffξ(ξ) can be used

in a decomposition to approximate (1.1). The existence of an analytic function f̃ that
can be used to approximate the value of (1.1) with an arbitrary accuracy, provided f
is smooth enough, was proved in [14, Thm. 3.3] using Hermite interpolation.

Assume there is one stationary point ξ ∈ (a, b), and g(r+1)(ξ) �= 0. Then we can
extend the definition of quadrature rule (6.4) to

I ≈ Qμ[f ] :=

s−1
∑

i=0

wi,1f
(i)(a) +

s(r+1)−1
∑

i=0

wi,2f
(i)(ξ) +

s−1
∑

i=0

wi,3f
(i)(b),(6.6)

with wi,1 = μk(a)
k! , wi,3 = −μk(b)

k! , and wi,2 =
−μk,1(ξ)+μk,2(ξ)

k! . This rule has an

absolute error of order O(ω−s−1/(r+1)) and a relative error of order O(ω−s).
Example 6.3. We consider the functions f(x) = 1/(1 + x) and g(x) = (x− 1/3)2

on [0, 1]. Since f is analytic, we could use the previous techniques. However, here
we will use only the values of the first few derivatives of f at 0 and 1 and at the
stationary point ξ = 1/3. The results are shown in Table 6.1 for varying degrees of
interpolation. The convergence rate is limited to the convergence rate at the stationary
point. According to Theorem 6.2, in order to obtain an error of order O(ω−s−1/(r+1)),
we need to interpolate up to the derivative of order m = s(r + 1)− 1. Hence, solving
the latter expression for s, we expect a convergence rate of (m+ 2)/(r + 1). The rate
is actually higher in the columns with even m, due to the cancellation of the moments
at ξ with odd index. For a more general function g there is no exact cancellation, but
the difference of the moments at ξ, i.e., μk,1(ξ) − μk,2(ξ), can have lower order than
predicted by Theorem 6.2. This cancellation does not occur if the stationary point ξ
is the endpoint of the integration interval.
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Table 6.1

Absolute error of the approximation of I for f(x) = 1/(1 + x) and g(x) = (x− 1/3)2 on [0, 1].
We approximate f by interpolating m derivatives. The last row shows the value of log2(e1280/e2560):
this value should approximate (m + 2)/2 for odd m and (m + 3)/2 for even m.

ω \m 0 1 2 3 4
160 1.0E − 4 1.8E − 4 9.5E − 7 9.7E − 7 8.6E − 9
320 6.5E − 5 6.5E − 5 1.7E − 7 1.7E − 7 7.6E − 10
640 2.8E − 5 2.3E − 5 3.1E − 8 3.0E − 8 6.7E − 11
1280 8.1E − 6 8.2E − 6 5.4E − 9 5.4E − 9 5.9E − 12
2560 3.2E − 6 2.9E − 6 9.5E − 10 9.5E − 10 5.2E − 13
Rate 1.4 1.5 2.5 2.5 3.5
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Fig. 6.1. A numerical comparison between the regular and localized Filon-type methods and
the numerical steepest descent method (Example 6.4). (a) Absolute error for four methods. (b) The
absolute error for numerical steepest descent, scaled by ω5/2.

Example 6.4. We make a numerical comparison between the regular Filon-type
method, the localized Filon-type method, and the numerical steepest descent method
for f(x) = 1/(1 + x2) and g(x) = (x − 1/2)2 on [−1, 1]. Filon-type methods for this
integral suffer from Runge’s phenomenon: the interpolation error for the function f is
large [19]. We choose s = 1; i.e., we use only function values of f in {−1, 1/2, 1} and
no derivatives. The order of the Filon-type methods is then O(ω−3/2). We choose
n = 1 in Theorem 4.6. The order of the numerical steepest descent method is then
O(ω−5/2), using four evaluations of f in the complex plane. We also interpolate two
additional derivatives at 1/2 for the Filon-type method: this yields a quadrature rule
with five weights and order O(ω−2). The results are illustrated in Figure 6.1.

7. Generalization to a nonanalytic function g(x). If g(x) is piecewise an-
alytic, the integration interval can be split into subintervals, where the function is
analytic. Otherwise we can try to approximate g(x) by an analytic function g̃(x)
on [a, b]. We should take care to not introduce new stationary points and to make
sure that we accurately approximate all stationary points of g(x). Alternatively, we
can approximate g(x) locally around the special points, possibly by using different
functions for each point. This will turn out to be easier and will yield the same
convergence rate.

When g(x) is smooth, it can be approximated arbitrarily well by an analytic
function g̃(x) on [a, b]. Hence, there exist analytic g̃ such that the integral

Ĩ :=

∫ b

a

f(x)eiωg̃(x) dx = F̃ (a) − F̃ (b)(7.1)
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is arbitrarily close to the value of I. Such function g̃ may be difficult to find, how-
ever, and, if found, intractable for numerical purposes. Hermite interpolation in the
points a and b is not a solution in this case, as the resulting polynomial may introduce
stationary points that the original function g did not have. However, owing to decom-
position (7.1), it becomes possible to do Hermite interpolation in a and b separately
by different polynomials.

Theorem 7.1. Assume that f and g̃ are analytic. Let ga(x) be the Hermite
interpolating polynomial of degree s that satisfies

g(k)
a (a) = g̃(k)(a), k = 0, . . . , s.

Then the approximation of F̃ (a) by Fga(a) has an error of order O(ω−s−1).

Proof. The error e := F̃ (a) − Fga(a) can be written as

e =

∫ ∞

0

f(ha(p))(e
iωg̃(ha(p)) − eiωga(ha(p)))h′

a(p) dp(7.2)

=

∫ ∞

0

f(ha(p))e
iωga(ha(p))(eiω(g̃(ha(p))−ga(ha(p))) − 1)h′

a(p) dp

=
eiωga(a)

ω

∫ ∞

0

f

(

ha

(

q

ω

))

e−q(eiω(g̃(ha( q
ω

))−ga(ha( q
ω

))) − 1)h′
a

(

q

ω

)

dq.

The path ha(p) was chosen as the solution of (3.10) with respect to the approximation
ga(x). Using a Taylor approximation around a, we have

g̃(x) − ga(x) = (g̃(s+1)(a) − g(s+1)
a (a))

(x− a)s+1

(s + 1)!
+ O((x− a)s+2).

Because ha(q/ω) − a ∼ ω−1, we have

eiω(g̃(ha(q/ω))−ga(ha(q/ω))) − 1 ∼ iω(g̃(ha(q/ω)) − ga(ha(q/ω))) ∼ ω−s.

The error e is therefore of order O(ω−s−1).
The value of Ĩ, defined by (7.1), is completely determined by the derivatives of

g̃ at a and b. If Ĩ − I is small, it follows from Theorem 7.1 that g̃ should satisfy
g̃(j)(a) = g(j)(a) and g̃(j)(b) = g(j)(b), j = 0, . . . , s, for some maximal order s that
depends on the smoothness of g. Hence, g̃ need not be explicitly constructed.

At a stationary point ξ, more derivatives are needed. The convergence rate de-
pends on the minimal value of r for which g̃(r+1)(ξ) �= 0.

Theorem 7.2. Assume that f and g̃ are analytic and that g̃(k)(ξ) = 0, k =
1, . . . , r, and g̃(r+1)(ξ) �= 0. Let gξ(x) be the Hermite interpolating polynomial of
degree (s + 1)(r + 1) − 1 that satisfies

g
(k)
ξ (ξ) = g̃(k)(ξ), k = 0, . . . , (s + 1)(r + 1) − 1.

Then the approximation of F̃j(ξ) by Fgξ,j(ξ) has an error of order O(ω−s−1/(r+1)).
Proof. The proof follows the same lines as the proof of Theorem 7.1. The difference

is that, similar to the situation in the proof of Theorem 6.2, we have hξ,j(q/ω)− ξ ∼
ω−1/(r+1) and h′

ξ,j(q/ω) ∼ ωr/(r+1). This leads to

eiω(g̃(hξ,j(q/ω))−gξ(hξ,j(q/ω))) − 1 ∼ ω−s.
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Table 7.1

Absolute error of the approximation of F̃ (a) by Fa(a) for f(x) = 1/(1 + x) and g(x) = (x −

1/2)2(x− 2)ex
2

at a = 0. We approximate g by interpolating m derivatives. The last row shows the
value of log2(e400/e800): this value should approximate m + 1.

ω \m 1 2 3 4
100 6.1E − 5 7.6E − 7 1.3E − 8 1.9E − 10
200 1.5E − 5 9.5E − 8 8.4E − 10 6.1E − 12
400 3.8E − 6 1.2E − 8 5.3E − 11 1.9E − 13
800 9.6E − 7 1.5E − 9 3.3E − 12 6.0E − 15
Rate 2.0 3.0 4.0 5.0

Table 7.2

Absolute error of the approximation of I by Ĩ for f(x) = 1/(1 + x) and g(x) = (x− 1/2)2(x−

2)ex
2

on [0, 1]. We approximate g by interpolating m derivatives. The last row shows the value of
log2(e400/e800): this value should approximate m/2 for odd m and (m + 1)/2 for even m.

ω \m 2 3 4
100 1.6E − 4 2.7E − 4 1.8E − 7
200 5.5E − 5 9.8E − 6 3.2E − 8
400 2.0E − 5 3.5E − 6 5.6E − 9
800 6.9E − 6 1.2E − 6 9.9E − 10
Rate 1.5 1.5 2.5

The error estimate for this case is analogous to (7.2) in the proof of Theorem 7.1.
Adding all contributions, it is of order O(ω−1−s+r/(r+1)) = O(ω−s−1/(r+1)).

Example 7.3. We illustrate the convergence with two examples. The function
g(x) = (x − 1/2)2(x − 2)ex

2

is approximated by a polynomial of degree m in the
endpoints a = 0 and b = 1, and in the stationary point ξ = 1/2. The resulting
errors are displayed in Tables 7.1 and 7.2. Table 7.1 shows the error in approximating
only F̃ (a). Table 7.2 shows the error of the approximation of I. The latter error is
dominated by the error made at the stationary points but follows the theory. As in
the last example for a nonanalytic function f , the convergence rate is actually higher
for even m because the difference of the terms at ξ in the decomposition of I can
have an order lower than predicted by Theorem 7.2. Note that it is not possible to
approximate g(x) by a fixed constant since in that case also eiωga(x) = eiωc reduces to
a constant. At a stationary point with r vanishing derivatives, the minimal number
of derivatives to interpolate is r + 1.

8. Concluding remarks. We have presented an approach to compute highly
oscillatory integrals of the form (1.1). The method is quite general and leads to high
order convergence when the frequency increases. The (generalized) Gauss–Laguerre
quadrature rules yields the typical Gauss rule convergence exponent of approximately
2n, but here as a function of 1/ω. This is made possible by transforming the integrand
into a numerically well behaved one, i.e., one that is not oscillatory and that has
exponential decay which becomes faster with increasing ω.

The approach by Iserles and Nørsett has led us to consider the use of Hermite
interpolation for functions f(x) that are not analytic. The resulting polynomial is an-
alytic, and this enables the use of our rapidly converging complex approach. Owing
to our decomposition of the integral into a sum of a number of functions that each de-
pend only on one point, this approach could be simplified considerably in our setting.
Vice versa, the methods developed in this paper may be used to compute generalized

moments of the form
∫ 1

0
p(x)eiωg(x)dx with p(x) a polynomial of low degree. Such
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moments are assumed to be available in the approach of Iserles and Nørsett, but an
analytical value may not always be available. The details of the latter method can be
found in [14].
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