
On the Evaluation of Transactor-based Verification
for Reusing TLM Assertions and Testbenches at RTL∗

Nicola Bombieri Franco Fummi Graziano Pravadelli
Dipartimento di Informatica - Università di Verona

{bombieri, fummi, pravadelli}@sci.univr.it

Abstract

Transaction level modeling (TLM) is becoming an usual
practice for simplifying system-level design and architec-
ture exploration. It allows the designers to focus on the
functionality of the design, while abstracting away imple-
mentation details that will be added at lower abstraction
levels. However, moving from transaction level to RTL re-
quires to redefine TLM testbenches and assertions. Such
a wasteful and error prone conversion can be avoided by
adopting transactor-based verification (TBV). Many recent
works adopt this strategy to propose verification methodolo-
gies that allow (1) mixing TLM and RTL components, and
(2) reusing TLM assertions and testbenches at RTL. Even if
practical advantages of such an approach are evident, there
are no papers in the literature that evaluate the effectiveness
of the TBV compared to a more traditional RTL verification
strategy. This paper is intended to fill in the gap. It theoreti-
cally compares the quality of the TBV towards the rewriting
of assertions and testbenches at RTL with respect to both
fault coverage and assertion coverage.

1. Introduction

The design of SoCs, based on the integration of RTL
components, is more and more complex, due to deploy-
ment of objects like multi-processor platforms with em-
bedded memories and third party Intellectual Property (IP)
blocks [1]. RTL design is simply not suitable for designing
a multi-processor system with complex protocols. Its rela-
tively low level of abstraction makes tedious, time consum-
ing, and error prone its use in high-level system activities
such as IP integration and architecture evaluation. For this
reason, the emerging transaction level modeling is gaining
consensus more and more [2].

In a transaction level model, the system is designed
and verified in terms of functionality characterized by
high-level I/O events and data transfers between compu-
tational blocks. The communication, which is separated
from the computation, is modeled by channels that provide
high-level communication primitives towards the computa-
tion components. On the contrary, implementation details
related to timing, algorithm optimization, communication
protocol, etc., are hidden and may be added at lower levels
of abstraction. Such a kind of transaction level modeling

∗The authors would like to thank the STMicroelectronics Verification
Group of Agrate for the valuable support provided in assertion/property
definition.

RTL
Design

TLM
Testbenches

TLM
Assertions

Transactor

TLM
Design

TLM
Testbenches

TLM
Assertions

RTL
Design

RTL
Testbenches

CTL
Properties

Comparison

TLM to RTL
Conversion

Transactor-
based

Modeling

TLM to RTL
Refinement

Figure 1. Transactor-based modeling vs. RTL modeling.

is motivated by a number of practical advantages. These
include:

• implementation details are abstracted while preserv-
ing the behavioral aspects of the system; this allows a faster
simulation (up to 1,000x) than at RTL;
• system level design exploration and verification are
simplified, since IP components and buses can be modified
and replaced in an easier way than at RTL;
• an early platform for SW development can be quickly
developed;
• deterministic test generation is more effective and less
tedious than at RTL, since tests are written without taking
care of the communication protocol between components.

In this context, the OSCI TLM library [3] based on
SystemC represents a valuable set of templates and imple-
mentation rules aiming at standardizing the different TLM
methodologies that have been recently proposed [4, 5, 6, 7].
In fact, in spite of its name, transaction level does not de-
note a single level of description. Rather, it refers to a group
of three abstraction levels: level 1 (the lowest), level 2, and
level 3 (the highest), each varying in the degree of express-
ible functional and temporal details [8].

However, modeling a complex system completely at
TLM could be inconvenient when already existent IP cores
are reused. In fact, many vendors provide them at RTL.
Thus, the concept of transactor has been proposed to allow
a TLM-RTL mixed simulation [4, 5, 8, 9]. Whatever the
adopted transaction level is (1, 2 or 3), a transactor works
as a translator from a TLM function call, to an RTL se-

3-9810801-0-6/DATE06 © 2006 EDAA

quence of statements, i.e., it provides the mapping between
transaction-level requests, made by TLM components, and
detailed signal-level protocols on the interface of RTL IPs.

Besides the capability of simulating TLM-RTL mixed
design, the use of transactors provides also valuable advan-
tages from the verification point of view. Functional verifi-
cation based on testbench generation [10, 11] and assertion-
based verification (ABV) [6, 7] (using, for example, a prop-
erty specification language like PSL [12]) represent the
main verification techniques at TLM. The adoption of a
transactor-based design methodology allows an easy reuse
of TLM testbenches [4, 5] and TLM assertions [8] at lower
levels of abstraction. This avoids a wasteful and error-prone
conversion of both TLM assertions into RTL properties, and
TLM testbenches into RTL ones.

Even if transactor-based verification is increasingly
used, to the best of our knowledge, there are no works
in the literature which evaluate the effectiveness of the
TBV with respect to a fully RTL verification. In this
paper, we provide a theoretical and practical comparison
showing that TBV (upper side of Figure 1) is at least as
efficient as a fully RTL verification methodology which
requires to convert TLM assertions into RTL properties and
to create new RTL testbenches (lower side of Figure 1).
Such a comparison is twofold and it relies on the use of a
high-level fault model as a common metrics to estimated
coverage of both testbenches and assertions/properties (see
Section 2). Given an RTL description, we show that:

• in case of fault simulation, the reuse of TLM test-
benches through TBV allows to detect the same set of
faults detectable by RTL testbenches (see Section 3);

• in case of ABV, checking TLM assertion through TBV
allows to verify the same set of behaviors covered by model
checking the RTL design, once the assertions have been
refined into temporal properties to reflect the interface and
timing differences between the TLM and the RTL models
(see Section 4).

The theoretical results are confirmed by experimental re-
sults reported in Section 5.

2. Evaluation Methodology

Figure 2 shows the proposed evaluation methodology.
The TLM design is refined in an equivalent RTL module
by following a standard semi-automatic TLM design flow.
Then, in the upper side, the RTL module is embedded in
the transactor-based verification architecture, where it in-
teracts with TLM testbenches and TLM assertions through
the transactors. In this way, both the simulation engine and
the ABV infrastructure are unchanged moving from TLM
to RTL. On the contrary, in the lower side of the Figure,
the RTL module communicates directly with new RTL test-
benches. Moreover, a model checker is used to verify the
CTL properties derived from the TLM assertions. The pro-
posed evaluation methodology compares the two alterna-
tives by measuring the effectiveness of fault simulation and
assertion/property checking.

Assertion
Coverage
Checking

Assertion
Coverage

TLM to RTL
Conversion

Fault
Simulation

Fault
Coverage

Property
Coverage

Fault
Coverage

Fault
Simulation

Property
Coverage
Checking

RTL
Design

TLM
Testbenches

PSL
Assertions

Transactor

TLM
Design

TLM
Testbenches

PSL
Assertions

RTL
Design

RTL
Testbenches

CTL
Properties

Transactor-based
Modeling

Comparison

Figure 2. Evaluation methodology flow.

Testbench generation, based on (fault) coverage metrics,
is the core of dynamic verification, the main verification
technique at RTL [13]. Given an high-level fault model,
testbench effectiveness is measured as fault coverage, i.e.,
the percentage of faults detected by the testbenches with re-
spect to the total number of modeled faults. This allows first
to measure the quality of testbenches, and secondly to iden-
tify possible design errors by analyzing the nature of unde-
tectable faults [14]. In the following we show that, inde-
pendently from the adopted high-level fault model, the fault
coverage achieved by a set of RTL testbenches is compara-
ble with the one achieved by reusing the TLM testbenches
through the transactor.

Static verification based on model checking [15] rep-
resents, whenever applicable, a valuable alternative to dy-
namic verification. It formally verifies the correctness of the
design by checking if it satisfies temporal properties (gen-
erally expressed by using CTL or LTL) derived from the
specification. Unfortunately, model checking cannot be ap-
plied on TLM descriptions, since model checkers require a
synthesizable model to represent the Kripke structure they
use to accomplish the property verification. Thus, at TLM,
ABV represents the natural alternative to model checking.
Assertions are defined, instead of CTL or LTL properties,
by using, for example, the property specification language
proposed by Accellera. Assertions are monitored during the
simulation of the design providing an immediate check of
failures.

In the following we show that, at RTL, the set of design
behaviors monitored by model checking CTL properties,
note as property coverage, is comparable with the asser-
tion coverage, i.e., the set of behaviors monitored by reusing
the corresponding TLM assertions through the transactors.
Such a comparison between property and assertion cov-
erage is performed by exploiting a fault simulation based
technique that relies on the same high-level fault model
adopted to compare the fault coverage [16].

The proposed twofold evaluation, based on fault cov-
erage and assertion/property coverage, shows that the
transactor-based verification is not only valuable for time
savings and conversion error avoidance, but also because it
is at least as effective as RTL verification.

POs

write(addr, data)

…

read(addr, &res)

…

Testbench

Transactor RTL
design

(write_status)

(read_status)

Assertion
Checkers

RTL
signals

C
he

ck
 L

in
es

Control inputs

Data inputs

Control outputs

Data outputs

clk

clk

PIs

RTL
signals

Figure 3. The role of the transactor.

2.1 Transactor Definition

Figure 3 shows how the transactor is exploited to
reuse TLM testbenches and assertions on the RTL de-
sign [4, 5]. The testbench carries out one transaction at
time, composed by two TLM function calls (write()
and read()). First, data are provided to the RTL de-
sign by means of write(addr, data). The trans-
actor converts the write() call to the RTL protocol-
dependent sequence of signals required to drive control and
data inputs of the design under verification (DUV). More-
over, the write status is reported to the testbench to notify
about successes or errors. Then, the testbench asks for
the DUV result by calling read(addr, &res). The
transactor waits until the DUV result is ready by mon-
itoring the output control ports, and, finally, it gets the
output data. Then, testbench can carry on with the next
transaction. If assertion checking is desired, the parameter
of the function calls (addr, data, write status,
&res, read status), which represent inputs and out-
puts of the RTL computation, are provided to the asser-
tion checkers. The testbench is modeled at transaction
level, thus, assertions are checked when write() and/or
read() return according to the aim of assertions.

2.2 High-Level Fault Model

Before describing the evaluation methodology in details,
it is necessary to explain what motivations lie under the
adoption of an high-level fault model to compare TBV vs.
RTL verification.

Both ABV and functional verification based on testbench
simulation are necessarily incomplete, since it is not com-
putationally feasible to exhaustively simulate sequential de-
signs. It is important, therefore, to quantitatively measure
the quality of testbenches used during the verification. Tra-
ditional coverage metrics derived from SW testing (e.g.,
statement, branch, path coverage) represent a low cost pop-
ular solution [17]. However, they are based on controllabil-
ity information, i.e., the activation of statements, branches
or sequences of statements, and they do not address observ-
ability requirements, i.e., to see whether effects of possible
errors activated by tests can be observed at the DUV out-
puts. The fact that a statement with a bug has been activated

by input stimuli does not mean that the observed outputs
will be incorrect.

An alternative approach is represented by the use of
high-level fault models [18], which include the charac-
teristics of both coverage metrics and logic-level fault
models [19]. Independently from its typical implementa-
tion (perturbed assignment, operator substitution, mutants,
saboteurs, etc.), an high-level fault provides an abstraction
of a possible design error, since it produces perturbed DUV
behaviors. Thus, the analysis of its nature allows an effec-
tive verification of the expected and unexpected behavior
of the DUV, particularly when faults are directly injected
into RTL code, which is very familiar to the designer. In
such a way, the fault coverage is used as a metrics to eval-
uate the quality of testbenches as well as to reveal design
errors. Achieving 100% fault coverage is generally harder
than 100% statement or branch coverage. Then, stimuli
generators targeted to fault coverage allow a wider explo-
ration of the DUV state space. Thus, they provide better
test cases with respect to ones obtained by using traditional
coverage metrics. For this reason, given an high-level fault
model, the fault coverage represents a good parameter to
measure the effectiveness of TBV with respect to RTL test
generation.

Moreover, according to the methodology proposed
in [16], an high-level fault model can be used also to eval-
uate the quality of the model checking process by comput-
ing the property coverage. This measures the capability of
properties to identify high-level faults that perturb the orig-
inal functionality of the design implementation. The pres-
ence of a detectable high-level fault implies that the behav-
ior of the perturbed implementation differs from the behav-
ior of the unperturbed implementation. Thus, while the set
of properties is satisfied by the original unperturbed imple-
mentation, at least one of them should be refuted if checked
on the perturbed implementation. The property coverage is
measured as the percentage of high-level faults that causes
at least a property failure. Extending this strategy to asser-
tions, as reported in Section 4, allows us to compare TBV
assertion coverage to RTL property coverage.

Independently from the adopted high-level fault model,
not all faults must be considered during test generation or
assertion/property coverage evaluation, but only those de-
tectable under the constrains which model the environment
where the DUV will be embedded in. Environment con-
straints model restrictions which must be fulfilled by input
sequences. In fact, when the design is embedded in a real
application, its input signals can be driven by others mod-
ules which produce only a subset of all possible input se-
quences. Thus, the environment is modeled as a determin-
istic FSM which interacts with the FSM of the DUV.

Under this assumption, a classification of faults is
needed. It is based on well known testing concepts reported,
for example, in [20].

Definition 1 Given the implementation, I , of the DUV, a
set of faults, F = {f1, . . . , fn}, a set of perturbed imple-
mentations, IF = {If |f ∈ F}, the environment, E , where
I is embedded, and the set of FSM retroactive networks

PO and
Check line

Comparator

TLM-to-RTL
Transactor

Unperturbed
DUV

Checkers of the
Unperturbed DUV

Perturbed
DUV

Checkers of the
Perturbed DUV

Read/Write
Transactions

Testbench

Test
cases

ATPG

RTL
Signals

RTL
Signals

Perturbed/
Unperturbed

POs and
Check Lines

Check
Line

Check
Line

PIs and
POs

PIs and
POs

Figure 4. Simulation engine.

originated by E , NIE∪NIFE 1, where NIFE = {NIfE |f ∈
IF}, a fault f ∈ F is:
Detectable if there is at least an input sequence, ι =
(i1, . . . , in), such that at least one output of I differs from
the respective output of If when ι is simultaneously applied
to I and If . We say that ι is a test sequence for f on I.
E-detectable if there is at least an input sequence ι =
(i1, . . . , in), such that at least one output of NIE differs
from the respective output of NIfE when ι is simultaneously
applied to NIE and NIfE . We say that ι is a test sequence
for f on NIE 2. We call E-det the set of E-detectable faults.

The proposed evaluation methodology is independent
from the adopted high-level fault model, which is only re-
sponsible to generate perturbed implementations according
to the previous definition. However, different high-level
fault models can provide different coverages. Thus, more
the high-level fault model is suitable to detect design errors,
more the application of the methodology is accurate. We
use the bit coverage high-level fault model since it has been
proved to be related to design errors [21].

2.3 Simulation Engine
Figure 4 shows the architecture of the simulation engine

that has been implemented to accomplish the evaluation
methodology previously summarized. The Figure refers to
the TBV case, while the RTL implementation directly con-
nects the testbench to the perturbed and unperturbed RTL
DUVs without passing through the transactor.

The testbench either acts as a random automatic test pat-
tern generator (ATPG) or it simply loads test cases from
file. Then, it controls the TLM-to-RTL transactor (if it
is present) which drives test sequences into the perturbed
and the unperturbed RTL implementations of the DUV.
Assertions/properties are converted in checkers by using
FoCs [22]. It takes an assertion/property and it generates a
state machine that monitors a set of signals to notify asser-
tion/property failures. The comparison of primary outputs
(POs) and check lines are used for computing respectively
the fault coverage and the assertion/property coverage.

1An FSM retroactive network NIE is composed of two FSMs: I,
which describes the DUV, and E , which models the environment where
I is embedded. Some output lines of I are connected to the input lines of
E , and some output lines of E are connected to input lines of I.

2Note that ι is also a test sequence for f on I.

3. Testbench Reuse

We consider a general high-level fault model to theoret-
ically show that reusing TLM testbenches by means of a
transactor allows to detect the same set of faults detectable
by applying a testbench directly to the RTL model. This
conjecture relies on the following definitions and theorem.

Definition 2 Under the same conditions of Def. 1 and as-
suming that the implementation I is modeled at transaction
level, a fault is TLM-detectable if there is a test vector such
that the outputs of the unperturbed and perturbed DUVs
differ when the test vector is simultaneously applied to both
the designs. The fault is TLM-undetectable if such a test
vector does not exist.

Definition 3 Under the same conditions of Def. 1 and as-
suming that the implementation I is modeled at RTL, a fault
is RTL-detectable if there is a test sequence such that the
outputs of the unperturbed and perturbed DUVs differ when
the test sequence is simultaneously applied to both the de-
signs. The fault is RTL-undetectable if such a test sequence
does not exist.

It is worth to note that, at TLM, testbenches are com-
posed of test vectors, while, at RTL, we need test sequences
generally composed of more than one test vector. This is
due to the fact that TLM is untimed (eventually a clock can
be introduced at level 1), thus the result of a transaction
is instantaneously available once a single test vector is ap-
plied. On the contrary, at RTL the design is generally mod-
eled as an FSMD where the result is available after a number
of clock cycles and it may depends on values provided to the
primary inputs at different times. When a TLM testbench is
applied to an RTL design, the transactor converts test vec-
tors in the corresponding test sequences modeling the com-
munication protocol needed by the RTL design. From this
observation the following definition derives.

Definition 4 Under the same conditions of Def. 1 and as-
suming that the implementation I is modeled at RTL and
wrapped by a TLM-to-RTL transactor as defined in Sec-
tion 2.13, a fault is:
Functionally T-detectable, if there is a test vector such that
the outputs of the transactor connected to the unperturbed
and perturbed DUVs are available at the same time and
they differ, once the transactor has simultaneously applied
the test sequence derived from the test vector to both the
designs.
Timing T-detectable, if there is a test vector such that the
outputs of the transactor connected to the unperturbed and
perturbed DUVs are available at different times, but they
are equal, once the transactor has simultaneously applied
the test sequence derived from the test vector to both the
designs.
Functionally and timing T-detectable, if there is a test vec-
tor such that the outputs of the transactor connected to the
unperturbed and perturbed DUVs are available at different

3Please, note that in this case the environment constraints are directly
modeled by the transactor.

times, and they differ, once the transactor has simultane-
ously applied the test sequence derived from the test vector
to both the designs.
T-detectable, if it is functionally T-detectable and/or timing
T-detectable.
T-undetectable, if for each test vector the outputs of the
transactor connected to the unperturbed and perturbed de-
signs are available at the same time and they are equal,
once the transactor has simultaneously applied the test se-
quence derived from the test vector to both the designs.

Theorem 1 An RTL-detectable fault is also T-detectable.

Proof: If a fault is RTL-detectable there exist a test se-
quence such that it propagates the effect of the fault to at
least one output of the perturbed RTL DUV (Def. 3). Note
that, such a test sequence respects the protocol imposed by
the environment constraints that must be connected to the
RTL DUV as required by Def. 1.

Let us consider that the fault is propagated to a data
output. Accordingly to the transactor implementation de-
scribed in Section 2.1 and Def. 4, such a fault becomes func-
tionally T-detectable (then, T-detectable) when the RTL de-
sign is connected to a TLM testbench through the transactor.
In fact, the same test sequence generated by the RTL test-
bench can be obtained by applying an opportune test vec-
tor to the transactor (which acts like the environment con-
straints).

On the contrary, let us consider that the fault is prop-
agated to a control output. In this case, the communica-
tion protocol between the transactor and the perturbed RTL
DUV is necessarily changed. This causes that: the result
of the perturbed DUV is provided to the transactor with a
timing discrepancy with respect to the unperturbed DUV.
Thus, according to Def. 4, the fault is timing T-detectable
(then, T-detectable). �

Theorem 1 shows that the TBV is at least as effective as
the RTL verification from the fault coverage point of view.
The Theorem assumes that the TLM testbenches are able to
produce a set of test vectors that can be converted from the
transactor into a set of test sequences which includes the
test sequences directly generated by the RTL testbenches.
However, such an assumption is reasonable, since it is much
more difficult to create efficient RTL testbenches than TLM
ones [4].

4. Assertion Reuse
Let us compare now assertion coverage and property

coverage to show the effectiveness of reusing TLM asser-
tions at RTL through TBV, instead of converting assertions
into CTL properties specifically tailored to the RTL design.
The desired goal is to show that TLM assertions cover the
same set of behaviors covered by the corresponding CTL
properties.

The assertion/property coverage measures the quality of
assertions/properties to detect design errors in all parts of
the DUV description [16]. It is computed by analyzing the

capability of assertions/properties to highlight differences
between the unperturbed and the perturbed implementations
of the same design. If an assertion/property, which holds
on the unperturbed design, fails in presence of a fault, then
the behavior perturbed by the fault is covered by the prop-
erty/assertion.

Definition 5 Under the same assumption of Definition 1,
the property coverage, CP , and the assertion coverage, CA,
are defined as:

CP =
of faults that causes a property failure

of RTL-detectable faults
(1)

CA =
of faults that causes an assertion failure

of T-detectable faults
(2)

Given the previous Definition and Theorem 1, the sim-
ulation engine of Figure 4 is used also to compare TLM
assertion coverage and RTL property coverage. In fact, the
methodology presented in [16] for property coverage can be
reused for assertion coverage, provided that, the definition
of RTL-detectable faults is substituted with the definition of
T-detectable faults.

For sake of completeness, it is worth to note that a set
of assertions, achieving 100% assertion coverage on the
TLM design, may not achieve 100% on the RTL design.
This is due to the fact that at TLM no assertions can be
defined related to communication protocols and timing be-
tween events, since such details are not modeled at trans-
action level. However, this observation does not affect the
effectiveness of reusing TLM assertions at RTL, since they
allows to check the functionality of the RTL design. Then,
new RTL properties must be added only to verify timing and
communication protocols.

5. Experimental Results

Experimental results have been conducted by using three
components (Root, Div and Dist) of a real industrial SoC
implementing a face recognition system provided by STMi-
croelectronics. The modules are composed of, respectively,
7802, 11637, 40663 gates, and 155, 269, 100 flip-flops.

5.1 Fault Coverage Comparison

Table 1 reports the results related to the fault cover-
age comparison. Column #Faults reports the total num-
ber of modeled high-level faults. Columns FC%, #TV
and Time show, respectively, the achieved fault coverage,
the number of test vectors generated by the testbench, and
the time required to generate/simulate such vectors, for the
TBV and the RTL verification flow. In particular, TBV
(reuse) is related to the reuse of TLM testbenches at RTL
via transactor, while TBV (reuse+ATPG) is related to the
integration of the TLM testbenches by adding new test vec-
tors generated by applying an ATPG to the RTL module via
transactor. As expected from theoretical results, the TBV
fault coverage is greater than or equal to the RTL one for
all the modules. Moreover, it is interesting to note that

TBV (reuse) TBV (reuse+ATPG) RTL
Design #Faults FC% #TV Time (s.) FC% #TV Time (s.) FC% #TV Time (s.)

Root 1627 94.5 23 23 98.5 25 145 97.8 741 2050
Div 2333 84.3 20 31 97.0 191 112 86.6 1073 1774
Dist 3061 90.7 8 57 98.9 15 316 94.2 254 11540

Table 1. Fault coverage comparison.

the number of test vectors and the time required by TBV
is lower than the corresponding RTL quantities. In partic-
ular, the time spent by TBV is extremely lower than the
one needed at RTL. This derives from the fact that, at RTL,
test vectors must be completely generated ex-novo. On the
contrary, TBV can reuse the ones generated during the ver-
ification of the TLM descriptions. Thus, fault simulation
is required instead of ex-novo test generation when TBV is
applied. Indeed, the reuse of high-quality TLM test vec-
tors could be insufficient to achieve an high-fault coverage
also on the RTL design (TBV (reuse)). For this reason, the
TLM testbenches have been integrated by generating new
test vectors achieving the fault coverage reported in TBV
(reuse+ATPG). Thus, the TBV time is composed by sum-
ming the time required for fault simulation and the time re-
quired for testbench integration.

5.2 Property/Assertion Coverage Comparison

Regarding the comparison between assertion coverage
and property coverage, experimental confirmation is pro-
vided only for the Root module, since no assertions were
available for other designs at the moment of paper submis-
sion.

Five assertions have been defined to check the function-
ality of the TLM description Root. They achieved 100%
assertion coverage, showing that they are enough to verify
the correctness of the TLM description. After RTL refine-
ment, the same assertions have been checked on the RTL
implementation by using TBV. Then, they have been con-
verted into CTL properties and verified by using the SMV
model checker. Finally, assertion coverage via TBV, and
property coverage have been computed and compared on
the RTL implementation. The first achieves 95.1%, while
the second 95.9% confirming the effectiveness of TBV.

As observed in Section 4, assertion/property coverage on
the RTL design does not achieve 100%, even if the same as-
sertions do it at TLM. This emphasizes the fact that TLM
assertions, but also the corresponding RTL properties, are
not able to identify perturbations that affect behaviors de-
pending on timing synchronization or communication pro-
tocols. This has been confirmed by analyzing the nature of
high-level faults not covered by the assertions/properties.

6. Concluding Remarks

The paper presented a theoretically-based methodology
to evaluate the quality of TBV with respect to a more tradi-
tional RTL verification flow. The evaluation relies on com-
paring both fault coverage and assertion/property coverage
by using and not using TBV to verify the correctness of

an RTL design. In this way, we showed that TBV is ef-
fective for reusing testbenches as well as assertions when
a TLM description is refined into an RTL implementation.
The reported experimental analysis confirmed the expected
results.

Future works will be related to the analysis of which ty-
pology of assertions cannot be expressed at TLM, but must
be included during RTL verification to achieve 100% cov-
erage. Moreover, we are working to compare fault coverage
between TLM and RTL.

References
[1] J. Krasner. Embedded Software Development Issues and Challenges. Embed-

ded Market Forecaster, 2003.

[2] L. Cai and D. Gajski. Transaction Level Modeling: An Overview. In IEEE
CODES + ISSS, pp. 19–24. 2003.

[3] A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez. Transaction Level Modeling
in SystemC, 2004. White paper. www.systemc.org.

[4] D. Brahme, S. Cox, J. Gallo, M. Glasser, W. Grundmann, C. Norris Ip,
W. Paulsen, J. Pierce, J. Rose, D. Shea, and K. Whiting. The Transaction-
Based Verification Methodology. Tech. Rep. CDNL-TR-2000-0825, Cadence
Berkeley Labs, 2000.

[5] C. Norris Ip and S. Swan. A Tutorial Introduction on the New SystemC Verifi-
cation Standard, 2003. White paper. www.systemc.org.

[6] A. Dahan, D. Geist, L. Gluhovsky, D. Pidan, G. Shapir, Y. Wolfsthal, L. Bena-
lycherif, R. Kamdem, and Y. Lahbib. Combining System Level Modeling with
Assertion Based Verification. In IEEE ISQED, pp. 310–315. 2005.

[7] A. Habibi and S. Tahar. Design for Verification of SystemC Transaction Level
Models. In IEEE DATE, pp. 560–565. 2005.

[8] N. Bombieri, A. Fedeli, and F. Fummi. On PSL Properties Re-use in SoC
Design Flow Based on Transactional Level Modeling. In IEEE MTV . 2005.

[9] R. Jindal and K. Jain. Verification of Transaction-Level SystemC Models Using
RTL Testbenches. In ACM/IEEE MEMOCODE, pp. 199–203. 2003.

[10] K. Ara and K. Suzuki. A Proposal for Transaction-Level Verification with Com-
ponent Wrapper Language. In IEEE DATE, pp. 82–87. 2003.

[11] Z.-H. Wang and Y.-Z. Ye. The Improvement for Transaction Level Verification
Functional Coverage. In IEEE ISCAS, pp. 5850–5853. 2005.

[12] Accellera. Property Specification Language Reference Manual, 2004.

[13] The Medea+ Design Automation Roadmap, 2002.

[14] F. Ferrandi, F. Fummi, G. Pravadelli, and D. Sciuto. Identification of Design Er-
ros through Functional Testing. IEEE Trans. on Reliability, vol. 52(4):pp. 400–
412, 2003.

[15] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Norwell Massachusetts, 1993.

[16] F. Fummi, G. Pravadelli, and F. Toto. Coverage of Formal Properties based on
a High-Level Fault Model and Functional ATPG. In IEEE ETS, pp. 162–167.
2005.

[17] G. Myers. The Art of Software Testing. Wiley - Interscience, New York, 1979.

[18] S. Ghosh and T. Chakraborty. On Behavior Fault Modeling for Digital De-
signs. International Journal of Electronic Testing: Theory and Applications,
vol. 2(2):pp. 135–151, 1991.

[19] M. Breuer, M. Abramovici, and A. Friedman. Digital Systems Testing and
Testable Design. IEEE Press, 1990.

[20] G. D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms.
Kluwer Academic Publishers, 1996.

[21] M. B. Santos, F. M. Gonalves, I. C. Teixeira, and J. P. Teixeira. RTL-based
Functional Test Generation for High Defects Coverage in Digital SoCs. In
Proceedings of ETW 2000, pp. 99–104. 2000.

[22] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal. FoCs - Auto-
matic Generation of Simulation Checkers from Formal Specifications. In CAV),
vol. 1855 of Lecture Notes in Computer Science, pp. 538–542. Springer-Verlag,
2000.

