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Abstract
In this research work, let’s focus on the construction of numerical scheme based on radial basis functions finite diffe­

rence (RBF-FD) method combined with the Laplace transform for the solution of fractional order dispersive wave equations.  
The numerical scheme is then applied to examine the eventual periodicity of the proposed model subject to the periodic boundary 
conditions. The implementation of proposed technique for high order fractional and integer type nonlinear partial differential equa-
tions (PDEs) is beneficial because this method is local in nature, therefore it yields and resulted in sparse differentiation matrices in-
stead of full and dense matrices. Only small dimensions of linear systems of equations are to be solved for every center in the domain 
and hence this procedure is more reliable and efficient to solve large scale physical and engineering problems in complex domain.

Laplace transform is utilized for obtaining the equivalent time-independent equation in Laplace space and also valuable to 
handle time-fractional derivatives in the Caputo sense.

Application of Laplace transform avoids the time steeping procedure which commonly encounters the time instability issues. 
The solution to the transformed model is then obtained by computing the inversion of Laplace transform with an appropriate contour 
in a complex space, which is approximated by trapezoidal rule with high accuracy. Also since the Laplace transform operator is  
linear, it cannot be used to transform non-linear terms therefore let’s use a linearization approach and an appropriate iterative 
scheme. The proposed approach is tasted for some nonlinear fractional order KdV and Burgers equations. The capacity, high order 
accuracy and efficiency of our approach are demonstrated using examples and results.
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1. Introduction
Significant advancement to both the theory and application of fractional calculus has been 

made in the last century. The most essential advantage of fractional calculus is its nonlocal nature and 
effectiveness in modeling anomalous diffusion that happens in complex system transport dynamics, 
such as fluid flow in viscoelastic material [1], porous materials [2, 3], anomalous transport in biolo-
gy [4], etc. Also fractional calculus is used to model problems in control theory, image processing, en-
tropy theory and wave propagation phenomenon [5–7]. Due to large application in engineering, physics 
and mathematical sciences the analytical and numerical techniques for solving differential equations 
of fractional order increased dramatically in the recent year [8–11]. To learn more about fractional cal-
culus, such as its existence, uniqueness of solution, applicability and solution methods, etc, [7, 12–14]. 
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Many natural phenomena have been successfully modeled using fractional differential 
equations (FDEs) [7, 12, 15]. Physical phenomena including traffic flow models with fractional de-
rivatives [16], fractional order KdV equation [9], fractional advection dispersion equation [10], and 
shock waves in a viscous medium [17] can be represented using non-linear differential equations. 

The fractional derivative is a nonlocal operator, discretizing the temporal fractional deriva-
tive is a difficult task. To numerically solve FDEs in the complex domain and anticipate long-time 
ranges, an efficient numerical approach is required. Let’s employ the Laplace transform to solve 
these problems because the temporal fractional derivatives are easily handled by the Laplace trans-
form. Radial basis function generated finite difference (RBF-FD) method will be used to treat the 
spatial variable.

Mesh-free methods are becoming more popular, emerging, interesting and fascinating  
numerical techniques due to the ability to solve those physical and engineering problems with no 
meshing or minimum of meshing for which the traditionally used mesh-based methods are not 
suited like finite volumes, finite differences, finite elements, moving least square, point interpo-
lation, element free Galerkin, reproducing kernel particle and boundary element free methods. 
RBFs methods appears to be really consists and most prominent techniques among the meshless 
methods family while looking at the interpolation of multi-dimensional scattered data and have 
received recently a tremendous and considerable attention in scientific community because of its 
capacity to achieve spectral accuracy, efficiency and high flexibility in solving complex PDEs, in-
tegral equations and fractional equations in comparison to other advanced approaches [18–21]. The 
most commonly used kernel in meshless techniques is the multi-quadric (MQ) kernel suggested 
by [21–24]. [22, 23] using the radial basis function for solution of a collocation strategy for PDEs.

Another specific qualitative characteristic disclosed on solutions to IBVPs of some evolu-
tionary equations that have been established through investigations and are linked by their large-
time stunts the term eventual time periodicity was coined to describe this phenomenon. This en-
ticing and appealing event take place by a piston or flap or paddle-type wave maker put on one  
of the channel’s ends in tests of research. When the wave generator oscillates at a predictable period 
T0 > 0, at each location along the channel, the amplitude of the waves appears to become periodic, 
when a particular period of time has elapsed [25–28]. Various studies have previously addressed 
these important and fascinating eventual periodic phenomena such as Burger-type equations,  
generalized equations for KdV, BBM, and its dissipating counterparts [29–36].

In this work, let’s offer an iterative strategy for obtaining approximate solutions of non­
linear time fractional KdV and Burgers equation using the Laplace transform in conjunction with  
RBF-FD meshless method. Also the said scheme is implemented to investigate eventual periodicity 
to these equations.

2. Materials and methods
2. 1. Preliminaries
Definition 1.
The fractional order derivative in the Caputo sense [12, 37] is defined by:

	 D w t
n t z

d

ds
w s st n

n

n

t
a

aa( ) =
-( ) -( )

( )+ -∫
1 1

1
0

Γ
d , 	 (1)

where
n n z-( ) < < ∈ +1 a .

Definition 2.
The Laplace transform of a given function w(t) where t ≥ 0 is defined as:

	 

w t L w t e w t tzt
t

( ) = ( ){ } = ( )-∫ d
0

, 	 (2)

if improper integral converges.
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Lemma 1.
Let w(t) be a continuous function on 0 ≤ t ≤ tn and if M1, M2 are some constants, with property,

	 e w t MM t- ( ) <2 1, ∀ >t tn .	 (3)

Then Lw t( ) exists.
Lemma 2.
If w t C p( ) ∈ ∞[ )0, , then the Laplace transform of the Caputo fractional derivative is defined as:

	 L D w t s s w s st
i i

i

n
a a a( ){ }( ) = - ( )- -

=

-

∑ 1

0

1

0( ) ,  a ∈ -( ) ∈ +n n z1, .	 (4)

2. 2. Nonlinear Time Fractional KdV-Burgers Model
A non-linear time fractional model for KdV-Burgers equation [38] is considered in the  

following form:

	
∂ ( )

∂
+ ( ) ∂ ( )
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-

∂ ( )
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+
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=

a

h ξ ζ
u x t

t
u x t
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x

u x t

x

u x t

x
f x t

,
,

, , ,
,

2

2

3

3 (( ), x Rd∈ ⊂W , 	 (5)

where α∈(0,1), t∈[0,T], η, ξ, ζ are parameters and f(x,t) is the source function.

	 u x u, ,0 0( ) =  x ∈W 	 (6)

is the initial condition and

	 u x t g t, ,( ) = ( )  x ∈∂W,  t ≥ 0 	 (7)

are the boundary conditions with boundary operator .

2. 3. Description of the method
Description of RBF-Finite Differences method.
Let’s deal with general time dependent PDE for mathematical formulation and define  

the RBF-FD process in a gradual way. Take the problem of frame:

	 u x t u x tt , , ,( ) = ( )L  x Rd∈ ⊆Ξ ,  d ≥ 1, t > 0 	 (8)

associated with initial and boundary conditions:

	 u x u x, ,0 0( ) = ( )   u x t h x t, , ,( ) = ( )  x ∈Ξ,	 (9)

where u0 and h are certain provided functions, while the spatial operators L,  representing the 
differential operators. Assume { }xi i

N
=1 denotes N number of nodes used for approximation in the 

domain Ξ for the given problem. RBF-FD is a mesh-free method and essentially a generalization  
of conventional finite difference (FD) method. In classical FD approach the derivative of a func-
tion u is defined as a linear combination of the values of u at some closest surrounding values (sten-
cil) nodes. The difference is that RBF-FD methods use radial basis function instead of polynomials 
use in classical FD method [24].

Global RBF differentiation matrix.
Discretization of equations (8), (9) via global RBF method can be followed by approximat-

ing the unknown function u by the linear combination of radial kernel ϕ at the node x specified by:

	 

u x C x x x Cj j
T

j

N

( ) = -( ) = ( )
=

∑ f Φ ,
1

 x ∈Ξ,	 (10)
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such that:

	 Φ x x x x x x x
T

N( ) = -( ) -( ) -( )( )f f f1 2, ,..., ,	 (11)

and C is the expansion coefficients vector. Now equation (10) in Lagrange form is stated as:

	 

u x x K u
T( ) = ( ) -Φ 1 . 	 (12)

Here K representing system interpolation matrix for the global RBF. Now the interpo-
lant (kernel-based) u  in (12) gives good approximation of u. Consequently, any operator used  
on u also would be an excellent estimation of relevant operator employed on u [21, 24]. Applying 
linear differential operator L  on above equation (12) gives:

	 L L

u x x K u
T( ) = ( ) -Φ 1 . 	 (13)

From (13) let’s use the notation below for values:

	 K

x

x

T

N
T

L
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

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
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Φ

1
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. 	 (14)

The global discretization (differentiation) matrix L of size N×N may thus be considered as:

	 L K K= -
L

1. 	 (15)

Since from (14), it is possible to see that the i th row of KL corresponds to LF(xi)T, therefore 
let’s observe from (15) that the i th row of L,

	 L x Ki i
T= ( ) -LΦ 1, 	 (16)

serve as global differentiation matrix L one single row.
Local RBF differentiation matrix.
Let’s now report derivation of local differentiation matrix and describe how to compute the 

local finite differences associated weights which give rise to local interpolant in a locally small 
neighborhood regarding point xi exactly. Let’s consider the set of points Ξ = {x1, x2, …, xN}, where 
it is possible to make the derivative approximation, these points can be regarded as stencil centers. 
For a given ith evaluation node say xi, the size of nearest neighboring nodes in stencil N xi

 of xi is n. 
Specifying also the set of points Z = {z1, z2, …, zN} at which it is possible to analyze (sample) data. 
The points inside the stencil having size n are collected at Zi ⊂ Z. Now estimation of differential 
operator L on stencil with center node xi and collected at Zi is given by:

	 L K Ki
x

z
i

i
= -

L
1.	 (17)

Actually it assembles a stencil having center node xi hence to declare it as local differen-
tiation matrix however it behaves globally since it operate whole entire data of that small stencil.  
All those Li matrices contains non-zeros entries in sparse (global) matrix LFD, however their posi-
tion must still be determined further in that sparse matrix LFD.

Now Li
FD  which representing the i th row of LFD and holds non-zero values from ma-

trix Li (since it has one test node xi so it is row vector). As the points in Zi ⊂ Z are used in con-
structing Li (Hence columns of LFD connected along with those points which are non-zero columns  
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of row i. Determining the position in the sparse row Li
FD  of those points correctly, define an in

cidence matrix having entries below:

	 P
k l i e k Z l Z

i k l
i

th

[ ] =
=


,

, , . ., ,

,

1

0

if entryin meet the in

else.

th

	 (18)

Use this to describe the complete sparse matrix as:

	 L
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Ultimately the discretization for problem (8), (9) maybe written as:

	 ′ =u u , 	 (20)

where  =










L

B

FD

FD
,  BFD stand for the discretization of operator applied at the boundary and can 

accordingly be found as LFD. Evolving in time the ODE system (20), some solver ODE such as, 
ode113 ode23, ode45, and several others can be used from Matlab.

Time discretization via Laplace transform.
Now discuss how to reduce the non-linear fractional order differential equation (5)–(7) 

to system of nonlinear algebraic equations. The resulting system is then solved with the help  
of RBF-FD approach on a local level. The use of Laplace transform eliminates the time variable. 
Since the Laplace transform is a linear operator, it can’t be directly applied to equations that are 
non-linear, therefore let’s design an iterative approach for linearizing the nonlinear equation so  
that the Laplace transform can be applied to each step of the iterative process. It is possible to  

linearize the term u x t
u x t

x
,

,( ) ∂ ( )
∂

 of the problem (5)–(7) as given below:
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∂
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f x t3 = ( ), . 	 (21)

Applying Laplace transform to (21):

	 s u x t s u u x t
u x t

x

u x t

x
n n

n n
a a h ξ ζ

 
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∂- -1
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3 
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x
f x t
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, ,

( )
∂

= ( )3 	 (22)

and boundary conditions:

	  


u x s g s, ,( ) = ( )  x ∈∂W. 	 (23)

Now introducing the differential operators 1,  2  and 3 :

	 s u x s s u u x t u x s D u x s u xn n n n na a h ξ ζ   

, , , ,( ) - + ( ) ( ) - ( ) +- -1
0

1
1 2 3  ,, , .s f x s( ) = ( )



	 (24)

Thus the non-linear iterative update process to approximate the solution u(x,s), using u0  
as the initial approximation is given by:

	 s u x t u x s s u f x sn na ah ξ ζI D D D+ ( ) - +  ( ) = + ( )- -1
1 2 3

1
0, , , ,





 x Rd∈ ⊂W ,  n = 1 2, ,..., 	 (25)
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where u x sn( , ) is the nth iterate of the solution. The iterations will continue when the change in the 
solution is less than or equal to some pre-assign value. The problem (25) is approximated using 
radial basis functions in FD setting. An inverse Laplace transform approach is used for getting  
the solution u(x, t) of the given model (21).

Technique of numerical inversion: to obtain the solution u(x,t), let’s use the numerical  
inversion formula below:

	 u x t
i

e u x s sst

L

L

, , ,( ) = ( )∫
1

2
1

2

π


d  λ λ> 0, 	 (26)

where L i1 = - ∞λ  and L i2 = + ∞λ ,

	 u x t
i

e u x s sst, , ,( ) = ( )∫
1

2π
�� d 	 (27)

where Γ is suitable path joining L1 to L2. In this paper let’s use two types of contours. The para
bolic contour [39]:

	 s i= +( )ν ω 1 2 , 	 (28)

for the strip:

	 ω ς κ= + i , 	 (29)

where -∞ < < ∞ς , which reduces to:

	 s iς ν κ ς νς κ( ) = -( ) -( ) + -( )1 2 12 2 , 	 (30)

and the Hyperbolic path [40] is defined as follows:

	 s iς ω ν a ς( ) = + - -( )( )1 sin ,  ς ∈R, 	 (31)

with

ν > 0,  ω ≥ 0,  0
1

2
< < -a λ π

and

1

2
π λ π< <  [40].

Using the parabolic path defined in (30), integral in (26) becomes:

	 u x t
i

e u x s ss t, , .( )( ) = ( )( ) ( )
-∞

∞

∫
1

2π
ς ς ςς  

d 	 (32)

Applying the trapezoidal rule with equal step size the approximation to (32) is given by:

	 u x t
h

i
e u x s sh

s t
j j

j M

M
j, , ,( ) = ( )

=-
∑2π

  s sj j= ( )ς ,  ς j jh= , 	 (33)

where h is the step size.
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3. Results and Discussion
3. 1. Numerical Results of our proposed scheme
This section is devoted to demonstrate the accuracy and efficiency of our proposed numeri-

cal scheme called as radial basis function finite difference method combined with Laplace trans- 
form (RBF-FD)-LT by solving a number of nonlinear testing challenges. The main advantage of our 
method is avoidance of time stepping procedure which need a small time step for higher accuracy and sta-
bility, the second advantage is that our method has the capability to work in multi-dimensions in irregu­
lar domain as well. The accuracy of our method is tested in terms of L∞, L2, root mean square (RMS) 
and E(c, M) errors norms. Comparison with available results in literature for example in reference [38], 
Tables 1–4 and Fig. 1–9, shows that our method is more accurate and stable. Let’s solve some bench-
mark problems like time fractional KdV, Burger and KdV-Burger equations in one dimension as under.

Problem 1: consider model equation (5)–(7) for η = 1, ξ = 0, ζ = 1, let’s obtain the non-linear 
KdV equation [41].

	
∂ ( )

∂
+ ( ) ∂ ( )

∂
+

∂ ( )
∂

= ( )
au x t

t
u x t

u x t

x

u x t

x
f x t

,
,

, ,
, ,

3

3 	 (34)

where 0 < α < 1. The initial condition is:

u x, ,0 0( ) =  x a b∈[ ],

and

u a t e ta, ,( ) = -1

3000
2 5  t ≥ 0;  u b t e tb, ,( ) = -1

3000
2 5  t ≥ 0,

are the boundary conditions:

	 f x t
e t

t t xe x x
x

x, ,( ) =
-( ) - + -







-
- -

2

2
5

2 3

25

1

6

1

180000

1

10

1

15Γ a
a 	 (35)

the exact solution is:

	 u x t e tx, .( ) = -1

3000
2 5 	 (36)

In this problem let’s choose [t0,T] = [0.5, 5] and t = 1 in our computation.
The Hyperbolic contour (31) with optimal parameter values θ = 0.1, σ = 0.1541, ω = 0, is used 

and shown in Fig. 1. 

Fig. 1. Graphical representation of Hyperbolic contour (31) for N = 71, M = 60, t0 = 0.5  
and T = 5 corresponding to problem 1
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The computed solutions at N = 71, Nx = 5, M = 60, α = 0.5, t = 1 and T = 5 are shown in Fig. 2, 
our proposed numerical approach is stable and accurate, according to numerical computations.

Fig. 2. Plot of approximate solution in comparison with exact solution (solid lines show  
exact solution and «.» showing numerical solution for problem 1

In Table 1 the errors in terms of L∞, L2 and RMS are decaying slowly for 21 ≤ N ≤ 71,  
M = 60, Nx = 5, α = 0.5, [a, b] = [–3, 3], and the graphical representation of these errorsare shown  
in Fig. 3. The estimation of error E(c,M) = (e–cM/logM) with c = 0.5 is 6.5742E-4.

Table 1
Numerical results corresponding to problem 1

N L∞ L2 RMS
21 1.0259E-05 2.6557E-05 4.8850E-07

41 3.0939E-06 1.1907E-05 7.5460E-08

51 3.5167E-06 1.5228E-05 6.8955E-08

61 1.0960E-06 4.4012E-06 1.7968E-08

71 1.4984E-06 6.7997E-06 2.1104E-08

81 6.7697E-07 2.9525E-06 8.3576E-09

91 9.0620E-07 4.7338E-06 9.9583E-09

100 7.6117E-07 4.3381E-06 7.6117E-09

Fig. 3. Graphical representation of errors obtained in Table 1 corresponding to problem 1
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Table 2 shows the L∞ error and error estimate E(c,M) for various α values and quadrature 
points along the hyperbolic contour (31).

Table 2
Errors corresponding to problem 1

(N, Nx = 71.5) α = 0.20 α = 0.50 α = 0.75 α = 0.90
E(c, M)

M L∞ L∞ L∞ L∞

45 1.6109E-06 1.5257E-06 1.4358E-06 1.4302E-06 2.7103E-03

61 1.6014E-06 1.4984E-06 1.3521E-06 1.2451E-06 5.9954E-04

71 1.6014E-06 1.4984E-06 1.3521E-06 1.2451E-06 2.4163E-04

91 1.6014E-06 1.4984E-06 1.3521E-06 1.2451E-06 4.1627E-05

Problem 2: now consider model equation (5)–(7) for η = 1, ξ = 1, ζ = 0, let’s obtain the non- 
linear Burger equation [38] with:

	 f x t
t x

t x x t,
sin

sin cos sin( ) =
( )

-( ) + ( ) ( ) +
-2 2

3
2 2 2 4 2

2
4 2 2

a π
a

π π π µπ
Γ

ππx( ), 	 (37)

	 u x, ,0 0( ) = 	 (38)

	 u t0 0, ,( ) =  u t1 0, ,( ) =  t ≥ 0, 	 (39)

the actual solution is:

	 u x t t x, sin .( ) = ( )2 2π 	 (40)

Here let’s consider the domain Ω = [0, 1]. The contour mentioned in (30) is used here and  
is shown in Fig. 4.

Various numerical solutions are shown in Tables 3, 4. The computed solutions are almost 
converges to exact solutions, as seen in Table 3, where let’s choose [t0,T] = [0.09995,3], t = 0.1, 
α = 0.5, N = 81∈Ω, stencils points Nx = 9∈Ωj, ξ = 0.10, 0.5,1 and quadrature points M = 80,90,100.  
At the same values of parameters ξ, t, α and ζ as given in[38] the proposed techniques yields 
identical results to those reported in [38]. Finally, the numerical solution at ξ = 1, α = 0.5, N = 41,  
Nx = 5 stencil points t0 = 0.3, t = 0.5, T = 3 and M = 50 quadrature points are depicted in Fig. 5.  
The proposed numerical scheme is accurate and stable.

Fig. 4. Graphical representation of parabolic contour (30) for N = 81, M = 60, t0 = 0.09995,  
t = 0.1 and T = 3 corresponding to problem 2
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Table 3
Comparison table for approximate vs actual solution corresponding to problem 2

x
M = 80 M = 90 M = 100

Exact [38]
ξ = 1 ξ = 0.5 ξ = 0.1

0.0 0.0000 0.0000 0.0000 0.000000
0.1 0.0059 0.0059 0.0059 0.005878
0.2 0.0095 0.0095 0.0095 0.009511
0,3 0.0095 0.0095 0.0095 0.009511
0.4 0.0059 0.0059 0.0059 0.005878
0.5 0.0000 0.0000 0.0000 0.000000
0.6 –0.0059 –0.0059 –0.0059 –0.005878
0.7 –0.0095 –0.0095 –0.0095 –0.009511
0.8 –0.0095 –0.0095 –0.0095 –0.009511
0.9 –0.0059 –0.0059 –0.0059 –0.005878
1 0.0000 0.0000 0.0000 0.000000

(RBF-FD)-LT L∞ = 3.9383E-6 L∞ = 4.0820E-6 L∞ = 1.4288E-5

–
[38] L∞ = 4.1294E-5 L∞ = 3.7739E-5 L∞ = 2.1269E-5

(RBF-FD)-LT L2 = 2.5970E-5 L2 = 2.7051E-5 L2 = 1.0798E-4

[38] L2 = 2.9174E-5 L2 = 2.6666E-3 L2 = 1.5070E-5

Table 4
Errors at ξ = 1, t0 = 0.3, t = 0.5 and T = 5 corresponding to problem 2

(N, Nx = 61.11) α = 0.2 α = 0.50 α = 0.75 α = 0.90 α = 0.5
M L∞ L∞ L∞ L∞ RMS
40 1.2397E-03 1.2292E-03 1.2145E-03 1.2018E-03 2.0151E-05

50 1.2278E-03 1.2172E-03 1.2025E-03 1.1898E-03 1.9954E-05

60 1.2277E-03 1.2172E-03 1.2024E-03 1.1897E-03 1.9954E-05

70 1.2277E-03 1.2172E-03 1.2024E-03 1.1897E-03 1.9954E-05

80 1.2277E-03 1.2172E-03 1.2024E-03 1.1897E-03 1.9954E-05

(M, Nx = 50.5) α = 0.2 α = 0.50 α = 0.75 α = 0.90 α = 0.5
N L∞ L∞ L∞ L∞ RMS
11 1.8568E-03 1.8389E-03 1.8155E-03 1.7963E-03 1.6717E-04

21 1.1852E-03 1.1750E-03 1.1608E-03 1.1486E-03 5.5954E-05

41 1.2308E-03 1.2203E-03 1.2055E-03 1.1928E-03 2.9762E-05

51 1.2304E-03 1.2198E-03 1.2050E-03 1.1923E-03 2.3918E-05

61 1.2278E-03 1.2172E-03 1.2025E-03 1.1898E-03 1.9954E-05

Fig. 5. Plot of approximate solution for problem 2 at N = 41, Nx = 5, α = 0.5, ξ = 1, M = 50,  
t0 = 0.3, t = 0.5 and T = 3 in comparison with exact solution (solid lines show exact  

solution and «.» showing numerical solution
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Problem 3: finally, look at the basic Burger equation [42] which is given by:

	
∂ ( )

∂
+ ( ) ∂ ( )

∂
-

∂ ( )
∂

=
a

h ξ
u x t

t
u x t

u x t

x

u x t

x

,
,

, ,
.

2

2 0 	 (41)

The initial condition is:

	 u x
x

x
,

sin

cos
,0

2( ) =
( )

+ ( )
πξ π

h π
 h > 1,  ξ > 0, 	 (42)

and
	 u(0,t) = 0, u(1,t) = 0, t > 0	 (43)

are the boundary conditions.
The exact solution is:

	 u x t
t x

t x
,

exp sin

exp cos
,( ) =

-( ) ( )
+ -( ) ( )

2 2

2

πξ π π

h π ξ π
 h > 1. 	 (44)

Here take Ω = [0,1]. The parabolic contour (30) is used here. The parameter values t = 0.001, 
ξ = 0.1, 0.2, 0.5, 1, and N = 41, and as given in [42] are used. Fig. 6 depicts the numerical solutions 
found using our proposed method, the results of the numerical technique are identical to those in [42].

Fig. 6. Numerical result for N = 41, M = 71, t0 = 0.0001, T = 1, η = 2 and ξ = 0.1  
corresponding to problem 3

3. 2. Eventual Periodicity of the proposed model equations
Now let’s present the results of our method investigating the eventual periodicity of the 

given model (5)–(7) for KdV, Burger and KdV-Burger equations studied by [30] in graphical 
form along with appropriate boundary data g(t) (periodic function of period T0 > 0). The initial  
data u0 is not necessarily necessary in eventual periodicity so take it zero. For each problem the 
amplitudes u(x,t) produced in six graphs at particular points. N indicates complete domain points, 
while Nx denotes points in respective sub-domains. The X and Y axes are representative in these 
graphs of time t and amplitude u respectively. The last graph shows the amplitude remains zero  
in every problem.

Eventual periodicity of fractional KdV equation: let’s compute eventual periodicity of 
model equation (5)–(7) for fractional KdV equation with parameters α = 0.2, η = 0.05, ξ = 0, 
ζ = 1, f(x,t) = 0 and g(t) = sin(20πt)tanh(5t). The amplitudes u(x,t) for this model is shown in six 
plots in Fig. 7 at given specific points x = –0.950670, –0.808460, –0.587280, –0.308720, 0.0, 
0.999650 in the domain [–1, 1] and in a time domain [0, 1.8]. The plots below clearly confirm the  
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subsequent periodic activity with damped amplitude of the solution in the specified domain at  
these particular positions.

Fig. 7. Eventual periodicity for fractional KdV equation at different specific points in space 
domain [–1, 1] and in a time domain [0, 1.8] as shown in above plots: a – at x = –0.950670;  

b – at x = –0.808460; c – at x = –0.587280; d – at x = –0.308720; e – at x = 0.0;  
f – at x = 0.999650, using N = 200, Nx = 25, g(t) = sin(20πt)tanh(5t)

Eventual periodicity of fractional Burger equation: compute eventual periodicity of mo­
del equation (5)–(7) for fractional Burger equation with parameters α = 0.2, η = 0.05, ξ = 1, ζ = 0,  
f(x,t) = 0 and g(t) = sin(20πt)tanh(5t). The amplitudes u(x,t) for this model is shown in six plots  
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in Fig. 8 at given specific points x = –0.950670, –0.808460, –0.587280, –0.308720, 0.0, 0.999650 
in the domain [–1, 1] and in a time domain [0, 1.8]. The plots below clearly confirm the subsequent 
periodic activity of the solution in the specified domain at these particular positions. The influence 
of Burgers type dissipation on the damped amplitude is clearly seen.

Fig. 8. Eventual periodicity for fractional Burger equation at different specific points in space 
domain [–1, 1] and in a time domain [0, 1.8] as shown in above plots a – at x = –0.950670;  

b – at x = –0.808460; c – at x = –0.587280; d – at x = –0.308720; e – at x = 0.0;  
f – at x = 0.999650, using N = 200, Nx = 25, g(t) = sin(20πt)tanh(5t)

Eventual periodicity of fraction KdV-Burger equation: finally compute eventual periodicity 
of model (5)–(7) for fractional KdV-Burger equation with parameters α = 0.2, η = 0.05, ξ = 10–4,  
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ζ = 10–5, f(x,t) = 0 and g(t) = sin(20πt)tanh(5t). The amplitudes u(x,t) for this model is shown  
in six plots in Fig. 9 at given particular points x = –0.950670, –0.808460, –0.587280, –0.308720, 
0.0, 0.999650 in the domain [–1, 1] and in a time domain [0, 1.8]. The plots below clearly con-
firm the subsequent periodic activity of the solution in the specified domain at these particular  
positions. The pattern of eventual periodicity has not changed, but the amplitudes have been dras-
tically reduced.

Fig. 9. Eventual periodicity for fractional KdV-Burger equation at different specific  
points in space domain [–1, 1] and in a time domain [0, 1.8] as shown in above plots:  

a – at x = –0.950670; b – at x = –0.808460; c – at x = –0.587280;  
d – at x = –0.308720; e – at x = 0.0; f – at x = 0.999650,  

using N = 200, Nx = 25, g(t) = sin(20πt)tanh(5t)
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4. Conclusions
In this research work, a hybrid numerical scheme is developed by combining the Laplace 

transform technique with RBF-FD mesh free method for approximating the solution of some non-
linear time fractional dispersive wave equations (like KdV, Burger and KdV-Burger model) and 
also the periodic behavior of solution called as eventual periodicity. This method is integrated with 
Laplace transform approach for time integration and for fractional derivative in Caputo sense. The 
main advantage of Laplace transform technique is that it is free of issues relating to stability due 
to time steeping scheme. The spatial operators in multi-dimensions are approximated by RBF in 
the finite difference (FD) setting which generates small size differentiation matrices in local sub- 
domains and these are assembled as a single sparse matrix in the global domain. So large amount 
of data can be manipulated very easily and accurately. The construction of our approach is simpler 
and easier to solve any nonlinear higher order time fractional PDEs as compared to other numerical 
methods available in the literature. The simulation has been demonstrated through error norms 
recorded in tables and graphs, which shows the accuracy and robustness of our method.
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