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On the Evidential Reasoning Algorithm for Multiple
Attribute Decision Analysis Under Uncertainty

Jian-Bo Yang and Dong-Ling Xu

Abstract—In multiple attribute decision analysis (MADA), one
often needs to deal with both numerical data and qualitative in-
formation with uncertainty. It is essential to properly represent
and use uncertain information to conduct rational decision anal-
ysis. Based on a multilevel evaluation framework, an evidential
reasoning (ER) approach has been developed for supporting such
decision analysis, the kernel of which is an ER algorithm devel-
oped on the basis of the framework and the evidence combination
rule of the Dempster–Shafer (D–S) theory. The approach has been
applied to engineering design selection, organizational self-assess-
ment, safety and risk assessment, and supplier assessment.

In this paper, the fundamental features of the ER approach
are investigated. New schemes for weight normalization and
basic probability assignments are proposed. The original ER
approach is further developed to enhance the process of aggre-
gating attributes with uncertainty. Utility intervals are proposed
to describe the impact of ignorance on decision analysis. Several
properties of the new ER approach are explored, which lay the
theoretical foundation of the ER approach. A numerical example
of a motorcycle evaluation problem is examined using the ER
approach. Computation steps and analysis results are provided in
order to demonstrate its implementation process.

Index Terms—Assessment, evidential reasoning, multiple
attribute decision analysis (MADA), uncertainty, utility interval.

I. INTRODUCTION

M
ANY decision problems in engineering and manage-

ment involve multiple attributes of both a quantitative

and qualitative nature. A decision may not be properly made

without fully taking into account all attributes in question

[2], [7], [10], [11], [14], [23]. It is the rational handling of

qualitative attributes and uncertain or missing information that

causes complexity in multiple attribute assessment. There is a

growing need to develop theoretically sound methods and tools

for dealing with multiple attribute decision analysis (MADA)

problems under uncertainty in a way that is rational, reliable,

repeatable, and transparent.

Over the past two decades, considerable research has been

conducted on integrating techniques from artificial intelligence

(AI) and operational research (OR) for handling uncertain infor-

mation [1], [3]–[5], [8], [19], [21], [22], [32], [34]. Following

this line of research, an evidential reasoning (ER) approach has

been developed for MADA under uncertainty [23], [24], [28],

[31]. This approach is based on an evaluation analysis model
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[33] and the Dempster–Shafer (D–S) theory of evidence [9]. In

recent years, the ER approach has been applied to decision prob-

lems in engineering design, safety and risk assessment, organi-

zational self-assessment, and supplier assessment, e.g., motor-

cycle assessment [23], general cargo ship design [12], marine

system safety analysis and synthesis [15], [16], software safety

synthesis [17], [18], retrofit ferry design [26], executive car as-

sessment [27], and organizational self-assessment [29].

The kernel of the ER approach is an evidential reasoning al-

gorithm developed on the basis of a multiattribute evaluation

framework and the evidence combination rule of the D–S theory.

The algorithm can be used to aggregate attributes of a multilevel

structure [24]. A rational aggregation process needs to satisfy

certain common sense or self-evident rules, referred to as syn-

thesis axioms. It can be shown that the original ER approach

only satisfies the following synthesis axioms approximately.

Suppose there are two levels of attributes with a general at-

tribute at the top level and a number of basic attributes at the

bottom level. Each basic attribute may be assessed with refer-

ence to a set of evaluation grades. An attribute can be assessed

to individual or a subset of the evaluation grades with different

degrees of belief. Within this ER assessment framework, the fol-

lowing four synthesis axioms are proposed.

• If no basic attribute is assessed to an evaluation grade at all,

then the general attribute should not be assessed to the same

grade either.

• If all basic attributes are precisely assessed to an individual

grade, then the general attribute should also be precisely as-

sessed to the same grade.

• If all basic attributes are completely assessed to a subset of

grades, then the general attribute should be completely as-

sessed to the same subset as well.

• If any basic assessment is incomplete, then a general assess-

ment obtained by aggregating the incomplete and complete

basic assessments should also be incomplete with the degree

of incompleteness properly assigned.

Incomplete assessments may result from the lack of data or

the inability of assessors to provide precise judgments or the

failure for some assessors to provide judgments in a group de-

cision situation. This paper is aimed to investigate the features

of the ER approach based on the above synthesis axioms. As a

result of this investigation, the original ER approach is evolved

through the development of a new aggregation process that sat-

isfies all the above axioms precisely. Utility intervals are pro-

posed to characterize the degrees of incompleteness present in

original assessments and describe the impact of incomplete in-

formation on decision analysis. Several properties of the new

ER approach are explored, which provide the theoretical basis

1083-4427/02$17.00 © 2002 IEEE



290 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 3, MAY 2002

Fig. 1. Evaluation hierarchy for operation.

of the approach. A numerical example of a motorcycle evalua-

tion problem is examined using the ER approach. Both complete

and incomplete assessments are involved in the problem. To il-

lustrate the implementation process of the ER approach, some

of the computation steps and results are provided.

The original ER approach is revisited in the next section. As

a result of this investigation, the ER approach is further devel-

oped in Section II. In Section III, the properties of the new ER

approach are explored. In Section IV, a motorcycle performance

assessment problem is examined. The paper is concluded in Sec-

tion V.

II. THE EVIDENTIAL REASONING ALGORITHM

A. Problem Description

Subjective judgments may be used to differentiate one alter-

native from another on qualitative attributes. To evaluate the

quality of the operation of a motorcycle, for example, typical

judgments may be that “the operation of a motor cycle is poor,

good, or excellent to certain degrees.” In such judgments, poor,

good, and excellent denote distinctive evaluation grades. In a

motorcycle evaluation problem, a set of evaluation grades is de-

fined by [23]

(1)

Operation is a general technical concept and difficult to as-

sess directly. It needs to be decomposed into detailed concepts,

such as handling, transmission, and brakes. If a detailed con-

cept is still too abstract to assess directly, it may be further

broken down to more detailed concepts. For instance, the con-

cept of brakes ( ) may be measured by stopping power ( ),

braking stability ( ), and feel at control ( ), which can be di-

rectly assessed and therefore referred to as basic attributes in this

paper. Assessment attributes often constitute a multilevel hier-

archy [24]. An evaluation hierarchy for assessing the operation

of a motorcycle is shown in Fig. 1.

In hierarchical assessment, a high level attribute is assessed

through associated lower level attributes. For example, if the

stopping power, braking stability, and feel at control of a motor-

cycle are all assessed to be exactly good, then its brakes should

also be good. In evaluation of qualitative attributes, uncertain

judgments could be used. In assessment of the brakes of a mo-

torcycle, for example, assessors may be

1) 30% sure that its stopping power is at average level and

60% sure that it is good;

2) absolutely sure that its braking stability is good;

3) 50% sure that its feel at control is good and 50% sure that

it is excellent.

In the above assessments, 30%, 50%, 60%, and 100% (abso-

lutely sure) are referred to as degrees of belief and sometimes

used in decimal format: 0.3, 0.5, 0.6, and 1, respectively. Note

that assessment 1) is incomplete as the total degree of belief is

0.3 0.6 0.9 1 while assessments 2) and 3) are complete.

The missing 0.1 in assessment 1) represents the degree of ig-

norance or uncertainty. A problem arises as to how to generate

an overall assessment about the brakes of the motorcycle by ag-

gregating the above three judgments in a rational way. The ev-

idential reasoning approach provides a means for dealing with

the aggregation problem. The basic ER model and the ER al-

gorithm are discussed in the next two subsections, and the syn-

thesis axioms are defined in the following subsection where the

shortcomings of the original ER algorithm are also discussed.

B. Basic Evaluation Framework

To begin with, suppose there is a simple two-level hierarchy

of attributes with a general attribute at the top level and a number

of basic attributes at the bottom level. Suppose there are basic

attributes associated with a general attribute

. Define a set of basic attributes as follows:

(2)

Suppose the weights of the attributes are given by

where is the relative weight

of the th basic attribute ( ) with . Weights play

an important role in assessment. They may be estimated using

existing methods such as simple rating methods or more elab-

orate methods based on the pairwise comparisons of attributes

[7], [11], [30].
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Suppose distinctive evaluation grades are defined that col-

lectively provide a complete set of standards for assessing an

attribute, as represented by

(3)

where is the th evaluation grade. Without loss of generality,

it is assumed that is preferred to .

A given assessment for of an alternative

may be mathematically represented as the following distribu-

tion:

(4)

where , , and denotes a degree

of belief. The above distributed assessment reads that the at-

tribute is assessed to the grade with the degree of belief

of , . An assessment is complete if

and incomplete if . A special

case is (or for all ),

which denotes a complete lack of information on . Such par-

tial or complete ignorance is not rare in many decision making

problems. In the new ER approach to be investigated in this and

next sections, ignorance will be handled using the upper and

lower bounds of degrees of belief and utility intervals.

Let be a degree of belief to which the general attribute

is assessed to the grade . The aggregation problem is to

generate by aggregating the assessments

for all the associated basic attributes as given

in (4). The following evidential reasoning algorithm can be used

for this purpose.

C. Summary of the Original ER Algorithm

In this subsection, the original ER algorithm will be briefly

discussed and its shortcomings will be analyzed. Let be

a basic probability mass representing the degree to which the

th basic attribute supports the hypothesis that the attribute

is assessed to the th grade . Let be a remaining

probability mass unassigned to any individual grade after all

the grades have been considered for assessing the general

attribute as far as is concerned. is calculated as follows:

(5)

where need be normalized as discussed later. is given

by

(6)

Define as the subset of the first basic attributes as

follows:

(7)

Let be a probability mass defined as the degree to which

all the attributes in support the hypothesis that is as-

sessed to the grade . is the remaining probability

mass unassigned to individual grades after all the basic attributes

in have been assessed. and can be gener-

ated by combining the basic probability masses and

for all .

Given the above definitions and discussions, the original re-

cursive evidential reasoning algorithm can be summarized as

follows [24]:

(8a)

(8b)

(8c)

where is a normalizing factor so that

. Note that

and . Also note that the

basic attributes in are numbered arbitrarily. This means

that the results , , and do

not depend on the order in which the basic attributes are

aggregated.

In the original ER approach, the combined degree of belief

is directly given by

(9)

where is the degree of belief unassigned to any individual

evaluation grade after all the basic attributes have been as-

sessed. It denotes the degree of incompleteness in the assess-

ment generated.

D. Synthesis Axioms and Issues Associated With the Original

ER Algorithm

The aggregation process shown in the previous section may

not be rational or meaningful if it does not follow certain syn-

thesis axioms. Suppose as defined in (2) contains a complete

set of basic attributes for evaluation of . The four synthesis ax-

ioms to be investigated in this paper are defined as follows.

Axiom 1: must not be assessed to a grade if none

of the basic attributes in is assessed to ,

which is referred to as the independency axiom.

It means that if for all ,

then .

Axiom 2: should be precisely assessed to a grade if

all the basic attributes in are precisely assessed

to , which is referred to as the consensus

axiom. It means that if and

for all and ,

then and

.

Axiom 3: If all basic attributes in are completely as-

sessed to a subset of evaluation grades, then
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should be completely assessed to the same subset

of grades, which is referred to as the complete-

ness axiom.

Axiom 4: If an assessment for any basic attribute in is

incomplete, then the assessment for should be

incomplete to certain degree, which is referred to

as the incompleteness axiom.

The first independency axiom is naturally followed in the

original ER algorithm as from (8) and (9) we have if

for all .

Regarding the second synthesis axiom, we have the following

conclusion.

Theorem 1: If and are calculated using (9), then to

satisfy the consensus axiom it is necessary and sufficient to hold

the following condition:

(10)

Proof: From (5) and (6), the basic probability assignments

are given by

(11)

(12)

(13)

Since for , from (12) and (13),

at we have

for any

Using (8a), we then obtain at

for

Suppose at with for ,

. Using (8a) again, we generate

for

Thus, we deduce that at any

for (14)

From (11)–(14), we have

for any

(15)

Combining (8c) and (15), we get

for (16)

From (8b) and (13), we get

(17)

Since [24], combining (14) and

(17) we get

or

The consensus axiom and (9) require that

Therefore, we must have

On the other hand, if , the consensus axiom

will be satisfied as

and

Q.E.D.

Unfortunately, (10) cannot be exactly satisfied unless is

normalized to one for the most important basic attribute , or

. If , however, the th attribute would domi-

nate the assessment. In other words, other basic attributes with

smaller weights would play no role in the assessment of , which

is obviously unacceptable. This is the dilemma of applying the

Dempser–Shafer theory to aggregating multiple criteria.

To resolve the dilemma, in the original ER approach the

weights were normalized by [23], [24], [26]

(18)

and is a constant determined by satisfying

(19)

where is a small constant, representing the degree of approx-

imation in aggregation. The above normalization of weights

means that the consensus axiom could only be satisfied approxi-

mately, as shown using an example in the next section. Another

shortcoming of the above normalization technique is that the

most important attribute may play a dominating role in the as-

sessment of . It will also be shown in the next section that the
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original ER approach does not precisely satisfy the complete-

ness axiom either.

E. An Example to Illustrate the Original ER Algorithm

In summary, the original ER algorithm is composed of (4)

for original information acquisition and representation, (18) and

(19) for weight normalization, (5) and (6) for basic probability

assignments where is replaced by , recursive (8a)–(8c) for

attribute aggregation, and (9) for generating the combined de-

grees of belief.

To help understand the original ER algorithm and illustrate

its shortcomings discussed above, we show the calculation steps

for aggregating the following two assessments for two attributes

and :

which are two complete assessments. is completely assessed

to and completely assessed to and . From (4), we

have

Suppose is twice as important as , or and

. Then the weights and are normalized using

(18) as follows:

and

Since leads to [see (19)],

we have

and

From (5) and (6), we can calculate basic probability masses

as follows:

The recursive (8a)–(8c) can then be used to calculate the com-

bined probability masses as follows. Let for

. Since

we then have

The combined degrees of belief are given using (9) as follows:

The above results show that the combined assessment is to a

large extent focused on . This is because the first attribute

is completely assessed to , it is twice as important as , and

the weighs are normalized using (19). It can also be seen that

the combined assessment is not precisely complete as

, though the two basic assessments and are

complete. It can be shown that will reduce if a smaller is

selected. However, this will make even more dominant in the

assessment. In the extreme, setting will lead to

and , resulting in , , and for

.

F. New Schemes for Weight Normalization and Basic

Probability Assignment

The original ER approach is revised in this and next two sub-

sections so that the four synthesis axioms can be satisfied pre-

cisely, as will be proven in Section III. The revision includes

three main parts:

1) the renormalization of weights and the re-assignments of

basic probability masses including the decomposition of

the remaining degree of belief;

2) the development of a new ER algorithm;

3) the generation of combined degrees of belief through the

normalization of combined probability masses.

The original ER approach is in essence aimed to establish

certain relationships between and ( ;

). Such relationships are generally represented by

(20)

where is in general a nonlinear function of . If is

assumed to behave linearly at a specific point with

and for all , , and ,
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would be expressed as a linear combination of (

) as follows:

(21)

To satisfy the consensus axiom at this point, we would have

and ( ). Thus

(22)

Although in general is a nonlinear function, (22) does sug-

gest an alternative way of normalizing weights, different from

what was suggested in (18) and (19). Using the new weight nor-

malization, the assignment of basic probability masses as given

by (5) and (6) is appropriate in the sense that each basic attribute

can play a proportionally important role relative to its weight.

The linear combination equation [(21)] is simple but not

suitable for attribute aggregation in MADA under uncertainty

within the ER evaluation framework. This is because not only

its underlying linearity assumption is questionable but also it is

incapable of properly handling incomplete information. In the

rest of this section, a new evidential reasoning algorithm will

be developed for aggregating both complete and incomplete

information using the new weight normalization given by (22).

Different from the original ER algorithm as shown in

(8a)–(8c) and (9), in the new ER algorithm, the remaining

probability mass initially unassigned to any individual evalu-

ation grades will be treated separately in terms of the relative

weights of attributes and the incompleteness in an assessment.

In this way, the upper and lower bounds of the belief degrees

can be generated using the concepts of the belief measure and

the plausibility measure in the D–S theory of evidence. This

is one of the distinctive features of the new ER approach from

other MADA approaches.

Note that , given in (6), is the remaining probability

mass initially unassigned to any individual grades. In the new

ER algorithm, it is decomposed into two parts: 1) and 2)

, where

and (23)

with .

is the first part of the remaining probability mass that is

not yet assigned to individual grades due to the fact that attribute

(denoted by ) only plays one part in the assessment relative

to its weight. is a linear decreasing function of .

will be one if the weight of is zero or ; will be

zero if dominates the assessment or . In other words,

represents the degree to which other attributes can play

a role in the assessment. should eventually be assigned

to individual grades in a way that is dependent upon how all

attributes are weighted and assessed.

is the second part of the remaining probability mass

unassigned to individual grades, which is caused due to the

incompleteness in the assessment . will be zero if

is complete, or ; otherwise, will be

positive. is proportional to and will cause the subse-

quent assessments to be incomplete. In Yang [28], (

) were linearly combined, which would not be appro-

priate for the generation of a plausibility measure, as discussed

in Section II-H.

G. New Evidential Reasoning Algorithm

As used in Yang and Singh [23], an attribute aggregation table

(Table I) is again used to deduce a new ER algorithm for com-

bining two assessments and . Note that in Table I,

for all .

The combined probability masses are generated by aggre-

gating (denoted by ) the assessments and as

shown in Table I as follows:

where is the combined probability mass for the grade

generated by aggregating the two assessments and

; the combined probability mass for due to

the possible incompleteness in and , and

for due to the combined relative importance of and .

Let ( ), and denote

the combined probability masses generated by aggregating the

first assessments. The following new ER algorithm is then de-

veloped for combining the first assessments with the th

assessment using the same process as shown in Table I in a re-

cursive manner

(24a)

(24b)

(24c)

(24d)

(24e)
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TABLE I
AGGREGATION OF TWO ASSESSMENTS

The terms and are assigned to

rather than to so that the incompleteness

synthesis axiom can be satisfied, as proven in Section III-D.

After all assessments have been aggregated, the combined

degrees of belief are generated by assigning back to all

individual grades proportionally using the following normaliza-

tion process:

(25a)

(25b)

generated above is a likelihood to which is assessed.

is the unassigned degree of belief representing the extent of

incompleteness in the overall assessment. It will be proven in the

next section that the combined degrees of belief generated above

satisfy all the four synthesis axioms as defined in Section II-D.

In summary, the new ER algorithm is composed of (4) for

information acquisition and representation, (22) for weight nor-

malization, (5), (6), and (23) for basic probability assignments,

(24a)–(24e) for attribute aggregation, and (25a) and (25b) for

generating combined degrees of belief.

Similar to (4), the generated assessment for can be repre-

sented by the following distribution:

(26)

which reads that is assessed to the grade with the degree

of belief of ( ).

H. Expected Utility and Utility Interval of the ER Approach

There may be occasions where distributed descriptions are

not sufficient to show the difference between two assessments.

In such cases, it is desirable to generate numerical values equiv-

alent to the distributed assessments in a sense. The concept of

expected utility is used to define such values. Suppose is

the utility of the grade with

if is preferred to (27)

may be estimated using the probability assignment

method [8], [20] or by constructing regression models using par-

tial rankings or pairwise comparisons [30]. If all assessments are

complete and precise, there will be and the expected

utility of the attribute can be used for ranking alternatives,

which is calculated by

(28)

An alternative is preferred to another alternative on if and

only if .

If any assessment for the basic attribute is incomplete, it will

be proven that is positive. Within the ER assessment frame-

work, given in (25a) represents the belief measure in the D–S

theory and thus provides the lower bound of the likelihood to

which is assessed to [9], [13], [23]. The upper bound of

the likelihood is given by a plausibility measure [13], [32]. It

can be shown that the plausibility measure for within the

ER evaluation framework is given by . Thus the be-

lief interval provides the range of the likelihood

to which may be assessed to . It is obvious that the interval

will reduce to a point if all assessments are complete.

The above discussion shows that if any basic assessment is

incomplete, the likelihood to which may be assessed to is

not unique and can be anything in the interval .

In such circumstances, we define three measures to characterize

the assessment for , namely the minimum, maximum and av-

erage expected utilities.
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Without loss of generality, suppose is the least preferred

grade having the lowest utility and the most preferred grade

having the highest utility. Then the maximum, minimum and

average expected utilities on are given by

(29)

(30)

(31)

If all original assessments are complete, then and

. Note that the above

utilities are only used for characterizing an assessment but not

for attribute aggregation.

The ranking of two alternatives and is based on their

utility intervals. is said to be preferred to on if and

only if ; is said to be indif-

ferent to if and only if and

. Otherwise, average expected utility may

be used to generate a ranking, though such a ranking is in-

conclusive. For instance, if but

, one could say that is preferred

to on an average basis. However, this ranking is not reliable,

as there is a chance that may have higher utility than . In

such cases, to generate a reliable ranking the quality of the orig-

inal assessments must be improved by reducing incompleteness

present in the original assessments associated with and .

Note that to clarify the relationship between and there is

no need to improve the quality of information related to other

alternatives.

III. PROPERTIES OF THE NEW ER ALGORITHM

In this section, we prove the conclusions that we took for

granted to develop the new ER approach in the last section.

These include the basic synthesis theorem, the consensus syn-

thesis theorem, the complete synthesis theorem and the incom-

plete synthesis theorem.

A. Basic Synthesis Theorem

In the new ER approach, the combined degrees of belief

( ) and are generated using (24a)–(24e), (25a),

and (25b). These belief degrees are between zero and one and

are summed to one as proved in the following theorem.

Theorem 2: The degrees of belief generated using (25a) and

(25b) possess the following property:

(32)

(33)

Proof: First of all, we prove that (24b) is held for any

. Note that without partition of

into and , would be calculated

using (8b), or

From the definitions of and shown in (23), we

have

for all

Suppose and note that and

. For , from the new ER algorithm [(24c)

and (24d)] we have

Suppose for there is .

For , from the new ER algorithm we then get

Having proven (24b), (24a)–(24e) is then the straightforward

implementation of the evidence combination rule of the D–S

theory within the ER framework and thus ensure that

(34)

Therefore, from (25a) and (25b), we have

(35)

As calculated by (24e) is always positive, we must

have

for all

and (36)

With criteria weights normalized using (22) and from (34) and

(36), there must be . From (25a), (25b), and (36),

we then have

and (37)

From (35) and (37), we therefore conclude

and

Q.E.D.
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B. Consensus Synthesis Theorem

In this section, we prove that the combined degrees of belief

generated using (24a)–(24e), (25a), and (25b) satisfy the con-

sensus axiom, as shown by the following theorem.

Theorem 3: If in (4) and for all

with and , then and

calculated using (25a) and (25b) satisfy that , for

all with and .

Proof: From (5) and (6), the basic probability assignments

are given by

(38)

(39)

(40)

(41)

Since , from (24c) and (41), we have

Suppose for . We then get

Therefore, there must be

for any (42)

Thus

(43)

Since for , from (39) and (40),

we have at

for any

Using (24a), we then get at

for

Suppose at with for

. Using (24a)–(24e) again, we

generate

for

Thus, we deduce

at any for

We therefore conclude that

for (44)

Combining (33), (43), and (44), we have

or

Therefore, . Q.E.D.

C. Complete Synthesis Theorem

We now prove that if all basic attributes are completely as-

sessed to a set of evaluation grades then the associated general

attribute is also completely assessed to the same subset of the

grades using the new ER approach.

Theorem 4: Let be a subset of defined by (3) and

the negation of , or , , ,

. Define and

. If ( ), and

( ) for all , then the combined

degrees of belief obtained using (24a)–(24e), (25a), and (25b)

satisfy and ( ).

Proof: From (5), (6), and (23), the basic probability as-

signments are given by

for

for

for

In the same way of proving (42), we can get

for all

Therefore

(45)

Since for , we then have at

for

Using (24a)–(24e), we then get for at .

Suppose for at . Using (24a)–(24e),

we generate

for

Thus, we deduce for at any .

We therefore conclude that

for
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Thus

(46)

From Theorem 1, (45) and (46), we finally conclude

Q.E.D

D. Incomplete Synthesis Theorem

If any basic assessment is not complete, we have the fol-

lowing conclusion.

Theorem 5: Suppose no basic attribute is given a weight of

zero (completely ignored) or a weight of one (dominating the as-

sessment). If the assessment of a basic attribute is not complete,

then the assessment for the associated general attribute will not

be complete either, or .

Proof: Suppose the assessment on basic attribute is not

complete, or and all other assessments are com-

plete. If no attribute is dominant and the weights of attributes

are normalized using (22), then there will be for all

. From (5) and (6), the basic remaining proba-

bility assignments are given by

(47)

(48)

(49)

Equation (24e) ensures that for any

. From (24d), we then have

for any

and thus . Therefore, (24c) leads to

Suppose for some . Then,

. Thus

We therefore conclude for any

and

Q.E.D.

Note that is the remaining degree of belief unassigned

to individual grades, measuring the degree of incompleteness

in the assessment. The new ER algorithm inherits the features

of the evidence combination rule of the D–S theory and ensures

that ( ), as the plausibility measure in the ER framework,

provides the upper bound of the degree of belief to which is

assessed to the grade .

IV. NUMERICAL STUDY

A. Motorcycle Assessment Problem

In this section, the new evidential reasoning approach is ap-
plied to analyzing the performance of four types of motorcycles,
including Kawasaki, Yamaha, Honda, and BMW. For the pur-
pose of demonstrating the ER algorithm, only qualitative per-
formance attributes are taken into account, though quantitative
attributes may also be included [23], [24], [28].

Three major performance attributes are considered which are
quality of engine, operation, and general finish. These attributes
are general and difficult to assess directly. Lower level attributes
are therefore used to facilitate the assessment of these three at-
tributes. For instance, the quality of an engine may be assessed
through the engine’s responsiveness, fuel economy, quietness,

vibration, and starting. An attribute hierarchy for evaluation of
motorcycles is shown in Fig. 2, where , , and denotes
relative weights of relevant attributes.

Qualitative evaluation information can be expressed using
statements such as 1)–3) as discussed in Section II-A. These
assessments can be summarized as in Table II, where typical
elements in a subjective judgment are listed, including the defi-
nitions of attributes, evaluation grades, and degrees of belief.

Using the grades defined in (1), the above three assessments
can be represented using the following three distributions as de-
fined in (4)

(50a)

(50b)

(50c)

Note that only grades with nonzero degrees of belief are listed
in the distributions. The other assessment information in terms
of the basic attributes as defined in Fig. 2 were extracted and
transformed from the published sources [24]. The assessment
problem is summarized as in Table III, where , , , , and
are the abbreviations of the evaluation grades poor, indifferent,

average, good, and excellent, respectively, and a number in a
bracket denotes a degree of belief to which an attribute is as-
sessed to a grade. For instance, E(0.8) means “excellent to a de-
gree of 0.8 (80%).”

In Table III, a subjective assessment is expressed in a con-
cise format. As shown for the brakes of Yamaha, for example,
statement 1) in Section II-A or (50a) is expressed by “A(0.3),
G(0.6),” statement 2) or (50b) by “G(1.0),” and statement 3) or
(50c) by “G(0.5), E(0.5).” Note that statement 1) is incomplete
and in Table III there are a number of incomplete assessments
similar to statement 1).
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Fig. 2. Evaluation hierarchy for motorcycle performance assessment.

TABLE II
SUBJECTIVE JUDGMENTS FOR EVALUATING BRAKES OF YAMAHA

B. Aggregating Assessments via Evidential Reasoning—A

Step-by-Step Illustration

A basic assessment problem is how the original judgments as
given in Table II or (50a)–(50c) could be aggregated to arrive at
an assessment about the quality of the brakes of Yamaha. It is in-
tuitively clear from Table II that the quality of Yamaha’s brakes

should be good to a large extent. To generate a precise assess-
ment, however, the relative importance of the three attributes
needs to be assigned. Several well-known methods could be
used for weight assignment [7], [11]. For the purpose of demon-

strating the ER algorithm, hypothetical weights are used in this
analysis. Without loss of generality, suppose the attributes are of
equal importance. The evidential reasoning approach can then
be applied to deal with the assessment problem.

To demonstrate the implementation procedure of the new ev-
idential reasoning algorithm, we first show the detailed calcula-
tion steps for generating the assessment for Yamaha’s brakes ( )
by aggregating three basic attributes: stopping power, braking

stability, and feel at control, as shown in (50a)–(50c) and de-
noted by , , and , respectively. The evaluation grades are
as defined in (1). Let , where denotes the
aggregation of two attributes.

From (50a)–(50c) and (4), we have
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TABLE III
GENERALIZED DECISION MATRIX FOR MOTORCYCLE ASSESSMENT

Suppose the three attributes are of equal importance. From (22)

we then have and . From (5),

(6), and (23), we can calculate basic probability masses as

follows:

We can now use the recursive equations (24a)–(24e) to calcu-

late the combined probability masses as follows. Let

for . First, we aggregate stopping power and

braking stability. Since

and ( ), we then have

Now, we combine the above results for stopping power and

braking stability with feel at control. Since
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and

, we then have

From (25a) and (25b), the combined degrees of belief are cal-

culated by

The assessment for Yamaha’s brakes by aggregating stopping

power, braking stability, and feel at control is therefore given by

the following distribution [see (26)]

Note that changing the order of combining the three basic at-

tributes does not change the final result at all.

Fig. 3. Distributed assessment for Yamaha.

C. Results and Analysis Generated Using Intelligent Decision

System (IDS)

A general assessment problem arises as to how the four types

of motorcycle could be assessed and ranked on the basis of the

attributes and the original assessments information related to the

basic attributes as shown in Table III. The relative weights of

attributes at a single level associated with the same upper level

attribute are defined by , , and for the attributes at

levels 2, 3, and 4, respectively, as shown in Table III and Fig. 2.

For the purpose of demonstrating the ER algorithm and without

loss of generality, we assume that all relevant attributes are of

equal relative importance, that is

(51a)

(51b)

(51c)

(51d)

(51e)

(51f)

It should be noted, however, that weights play an important role

and should be estimated with care. In general, it is advisable to

estimate a range of weights to test whether the generated assess-

ments are reliable.

A Windows-based intelligent decision system (IDS1 ) has

been developed to implement the new ER approach. All of the

following calculations and Figs. 3–5 were generated using IDS.

Given the evaluation information about the motorcycle assess-

ment problem as shown in Fig. 2, Table III, and (51a)–(51f),

the assessment for each motorcycle can be generated using

IDS. For instance, the aggregated assessments for the upper

level attributes are generated for Yamaha as follows:

1A demo version of the IDS software is available from the author via e-mail:
jian-bo.yang@umist.ac.uk.



302 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 3, MAY 2002

Fig. 4. Distributed assessment for four motorcycle.

The final assessment about Yamaha’s performance is generated

as follows:

(52)

The degree of incompleteness in the above evaluation for

Yamaha is 0.0138 (or 1.38%). This is incurred due to the in-

complete assessments in four of the basic attributes for Yamaha,

as shown in Table III. Compared with the four original incom-

plete assessments with the degree of incompleteness being each

10%, the overall incompleteness is significantly reduced due to

the relatively large number of complete assessments in other

basic attributes. The above distributed assessment for Yamaha

can be shown graphically as in Fig. 3. In a similar way, the per-

formances of the other three types of motorcycle are also as-

sessed as shown in Fig. 4.

From Figs. 3 and 4, the differences between some of the four

motorcycles can be identified and used to rank them, though

it may not be a straightforward task. For instance, it is clear

that Yamaha is preferred to Kawasaki as the former is to a large

degree assessed to the grades good and excellent and to a smaller

degree to the grades poor, indifferent, and average. Similarly, it

can be seen that Honda is preferred to Yamaha. It is also fair to

say that Honda is preferred to BMW as the former is assessed

to good and excellent to a total degree of over 85% while the

latter under 65%. However, it is not straightforward to tell the

difference between Yamaha and BMW.

To precisely rank the four motorcycles, their utilities need to

be estimated. To do so, the utilities of the five individual evalua-

tion grades need to be estimated first. The above partial rankings

of alternatives could be used to formulate regression models for

estimating the utilities of grades [30]. Alternatively, the proba-

bility method could be used for utility estimation [20]. We first

normalize utilities so that the worst grade is given a utility value

of zero and the best given one. Thus

Using the probability method, the utilities of the other grades

may be estimated as follows. To estimate the utility of the grade

average, for example, two hypothetical tickets are shown to the

decision-maker (DM). The first ticket offers a motorcycle with

average performance. The second ticket contains a lottery of-

fering one motorcycle having poor performance with a proba-

bility of and another motorcycle having excellent perfor-

mance with a probability of . The DM is asked which ticket he

prefers. The probability ( ) is regulated until the DM

is unable to differentiate between the two tickets.

Suppose the DM is indifferent to the two tickets when

. Then the utility of the grade average is calculated by

In a similar way, the utilities of the grades indifferent and good

could be estimated. Suppose indi�erent

and .
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Fig. 5. Utility intervals for four motorcycles.

The degrees of belief for Yamaha are given as follows [see

(52)]

Since is not zero, the assessment for Yamaha’s perfor-

mance is not unique and is characterized by the utility interval

where

The above utility interval can be shown graphically as in Fig. 5.

Similarly, we can generate the utility intervals for the other three

motorcycles, as shown in Fig. 5.

It is clear from Fig. 5 that the minimum utility of Honda is

larger than the maximum utilities of the other three motorcy-

cles. This means that the overall performance of Honda is the

most preferred among the four motorcycles. Based on the same

principle, the ranking of the four motorcycles is given by

where denotes “is preferred to.” The above ranking is conclu-

sive despite the imprecision present in the original assessments

shown in Table III. Note, however, that this ranking is generated

on the basis of the equal weighting assumed in (51a)–(51f). In

general, a range of weights could be used for sensitivity anal-

ysis to test whether or not the rankings generated are reliable. It

should also be noted that there may be overlap in utility inter-

vals if there is greater incompleteness in original assessments. In

such circumstances, it may be necessary to improve the quality

of the original information to achieve a reliable ranking.

V. CONCLUDING REMARKS

Real-world decision problems are complex in that they often

involve multiple attributes with uncertainty. It is essential to

conduct decision analysis in a way that is rational, reliable, re-

peatable, and transparent. In this paper, the evidential reasoning

approach is investigated and further developed. Its properties

were explored and the ER aggregation process was enhanced

to provide a rational means for aggregating multiple attributes.

This new ER approach satisfies all the four synthesis axioms as

discussed in this paper. In the new aggregation process, proper

compensation among attributes is allowed so that an attribute

can play a significant role relative to its weight, however small

the weight may be.

The evidential reasoning algorithm essentially establishes a

nonlinear relationship between an aggregated assessment for a

general attribute and original assessments for basic attributes.

To handle incomplete information, utility intervals were estab-

lished to describe the impact of missing information on decision

analysis. This provides a basis for improving the quality of orig-

inal data and for conducting sensitivity analysis. In general, the

theoretical results reported in this paper revealed the distinctive

features of the ER approach, which should also be of interest to

researchers who are developing or applying hybrid AI and OR

methods to deal with complex decision problems.

The numerical analysis of the paper dealt with a product

selection problem with the information taken from published

sources. It demonstrated the implementation process of the new

ER approach on a step-by-step basis. Using the Windows-based

IDS developed for implementing the ER approach, the user

is relieved from the tedious calculations and can concentrate

on model building and validation, scenario generation, and

sensitivity analysis. Although the example is taken from the

domain of engineering design, it is clear that the ER approach

can be applied to general MADA problems with or without

uncertainty.

ACKNOWLEDGMENT

The constructive comments on this paper from the three

anonymous referees are greatly appreciated.

REFERENCES

[1] G. Balestra and A. Tsoukias, “Multicriteria analysis represented by ar-
tificial intelligence techniques,” J. Oper. Res. Soc., vol. 41, no. 5, pp.
419–430, 1990.

[2] V. Belton and T. J. Stewart, Multiple Criteria Decision Analysis: An In-

tegrated Approach. Norwell, MA: Kluwer, 2002.
[3] B. G. Buchanan and E. H. Shortliffe, Rule-Based Expert Sys-

tems. Reading, MA: Addison-Wesley, 1984.
[4] A. Bufardi, “On the construction of fuzzy preference structures,” J.

Multi-Criteria Decision Analysis, vol. 7, no. 3, pp. 57–88, 1998.
[5] C. H. Cheng and D. L. Mon, “Evaluating weapon systems by analytical

hierarchy process based on fuzzy scales,” Fuzzy Sets Syst., vol. 63, no.
1, pp. 1–10, 1994.

[6] J. P. Evans, “Techno-economic analysis of retro-fit options,” Research
Report, Transmarine Ltd, Wallsend Research Station, Wallsend, Tyne,
and Wear, U.K., 1993.

[7] C. L. Huang and K. Yoon, Multiple Attribute Decision Making Methods

and Applications, A State-of-Art Survey. New York: Springer-Verlag,
1981.

[8] R. L. Keeney and H. Raiffa, Decisions With Multiple Objectives, 2nd
ed. Cambridge, U.K.: Cambridge Univ. Press, 1993.

[9] R. Lopez de Mantaras, Approximate Reasoning Models. Chichester,
U.K.: Ellis Horwood Ltd., 1990.

[10] B. Roy and D. Vanderpooten, “The European school of MCDA: Emer-
gence, basic features, and current works,” Eur. J. Oper. Res., vol. 99, no.
1, pp. 26–27, 1997.



304 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 3, MAY 2002

[11] T. L. Saaty, The Analytic Hierarchy Process. Pittsburgh, PA: Univ.
Pittsburgh, 1988.

[12] P. Sen and J. B. Yang, “Multiple criteria decision making in design se-
lection and synthesis,” J. Eng. Design, vol. 6, no. 3, pp. 207–230, 1995.

[13] G. Shafer, Mathematical Theory of Evidence. Princeton, NJ: Princeton
Univ. Press, 1976.

[14] T. J. Stewart, “A critical survey on the status of multiple criteria decision
making theory and practice,” OMEGA Int. J. Manage. Sci., vol. 20, no.
5/6, pp. 569–586, 1992.

[15] J. Wang, J. B. Yang, and P. Sen, “Safety analysis and synthesis using
fuzzy sets and evidential reasoning,” Reliab. Eng. Syst. Saf., vol. 47, no.
2, pp. 103–118, 1995.

[16] , “Multi-person and multi-attribute design evaluations using evi-
dential reasoning based on subjective safety and cost analysis,” Reliab.

Eng. Syst. Saf., vol. 52, pp. 113–127, 1996.
[17] J. Wang, “A subjective methodology for safety analysis of safety re-

quirements specifications,” IEEE Trans. Fuzzy Syst., vol. 5, pp. 1–13,
June 1997.

[18] J. Wang and J. B. Yang, “A subjective safety based decision making
approach for evaluation of safety requirements specifications in software
development,” Int. J. Reliab., Qual., Saf. Eng., vol. 8, no. 1, pp. 35–57,
2001.

[19] C. C. White, “A survey on the integration of decision analysis and expert
systems for decision support,” IEEE Trans. Syst., Man, Cybern., vol. 20,
no. 2, pp. 358–364, 1990.

[20] W. L. Winston, Operations Research—Applications and Algo-

rithms. Belmont, CA: Duxbury Press, 1994.
[21] R. R. Yager, “On the Dempster–Shafer framework and new combination

rules,” Inf. Sci., vol. 41, no. 2, pp. 93–137, 1987.
[22] , “Decision-making under various types of uncertainties,” J. Intell.

Fuzzy Syst., vol. 3, no. 4, pp. 317–323, 1995.
[23] J. B. Yang and M. G. Singh, “An evidential reasoning approach for

multiple attribute decision making with uncertainty,” IEEE Trans. Syst.,

Man, Cybern., vol. 24, no. 1, pp. 1–18, 1994.
[24] J. B. Yang and P. Sen, “A general multi-level evaluation process for hy-

brid MADM with uncertainty,” IEEE Trans. Syst., Man, Cybern., vol.
24, no. 10, pp. 1458–1473, 1994.

[25] , “Preference modeling by estimating local utility functions for
multiobjective optimization,” Eur. J. Oper. Res., vol. 95, pp. 115–138,
1996.

[26] , “Multiple attribute design evaluation of large engineering products
using the evidential reasoning approach,” J. Eng. Design, vol. 8, no. 3,
pp. 211–230, 1997.

[27] J. B. Yang and D. L. Xu, “Knowledge-based executive car evaluation
using the evidential reasoning approach,” in Advances in Manufacturing

Technology XII, Baines, Taleb-Bendiab, and Zhao, Eds. London, U.K.:
Professional Engineering, 1998, pp. 741–749.

[28] J. B. Yang, “Rule and utility based evidential reasoning approach for
multiple attribute decision analysis under uncertainty,” Eur. J. Oper.

Res., vol. 131, no. 1, pp. 31–61, 2001.
[29] J. B. Yang, B. G. Dale, and Siow, “Self-assessment of excellence: An

application of the evidential reasoning approach,” Int. J. Prod. Res., vol.
39, no. 16, pp. 3789–3812, 2001.

[30] J. B. Yang, M. Deng, and D. L. Xu, “Nonlinear regression to estimate
both weights and utilities via evidential reasoning for MADM,” in Proc.

5th Int. Conf. Optimization: Techniques and Applications, Hong Kong,
Dec. 15–17, 2001.

[31] J. B. Yang and D. L. Xu, “On evidential reasoning algorithms for mul-
tiattribute decision analysis under uncertainty,” IEEE Trans. Syst., Man,

Cybern. A, vol. 32, pp. 278–304, May 2002.
[32] J. Yen, “Generalizing the Dempster–Shafer theory to fuzzy Sets,” IEEE

Trans. Syst., Man, Cybern., vol. 20, no. 3, pp. 559–570, 1990.
[33] Z. J. Zhang, J. B. Yang, and D. L. Xu, “A hierarchical analysis model for

multiobjective decision making,” in Analysis, Design and Evaluation of

Man–Machine Systems. Oxford, U.K.: Pergamon, 1990, pp. 13–18.

[34] H. J. Zimmermann, “Problems and tools to model uncertainty in expert
and decision support systems,” Math. Comput. Model., vol. 14, pp. 8–20,
1990.

Jian-Bo Yang received the B.Eng. and M.Eng.
degrees in control engineering from the North
Western Polytechnic University, Xi’an, China, in
1981 and 1984, respectively, and the Ph.D. degree
in systems engineering from Shanghai Jiao Tong
University, Shanghai, China, in 1987.

He is currently Senior Lecturer in decision
and system sciences at the Manchester School of
Management of UMIST, Manchester, U.K. Prior to
his current appointment, he was a Faculty Member
of the University of Birmingham (1995–1997),

the University of Newcastle Upon Tyne (1991–1995), UMIST (1990), and
Shanghai Jiao Tong University (1987–1989). Over the last two decades, he
has been conducting research in the areas of multiple criteria decision analysis
using both quantitative and qualitative information with uncertainties, hybrid
decision methodologies combining OR methods with AI techniques, multiple
objective optimization, intelligent decision support systems, and dynamic
system modeling, simulation, and control for engineering and management
systems. His current applied research covers various areas such as design
decision-making, quality management, risk and safety analysis, supply chain
modeling and control, and supplier assessment. He has published three books
and over 120 papers in journals and conferences. He has also developed several
large software packages including a Windows-based intelligent decision system
(IDS) via evidential reasoning.

Dr. Yang was given the Science and Technology Award for Young Scientists
and Engineers by the China Association for Science and Technology in 1988
and Research Fellowships by British Council and the Alexander von Humboldt
Foundation of Germany in the 1990s.

Dong-Ling Xu received the B.Eng. degree in elec-
trical engineering from Hunan University, Changsha,
China, in 1983, and the M.Eng. and Ph.D. degrees in
system control engineering from Shanghai Jiao Tong
University, Shanghai, China, in 1986 and 1988, re-
spectively.

She is currently a Research Fellow in decision and
system sciences at the Manchester School of Man-
agement of UMIST, Manchester, U.K. She was a Se-
nior Software Engineer in an IT company from 1995
to early 2001, a Postdoctoral Research Associate at

the University of Newcastle Upon Tyne from 1993 to 1995, and a Lecturer and
an Associate Professor of East China University, Shanghai, from 1988 to 1993.
As a Co-designer, she developed a Windows-based assessment tool called “in-
telligent decision system” or “IDS.” The tool is now used in a wide range of
assessment activities such as organizational self-assessment in quality manage-
ment, product (e.g., cars, houses, and computers) evaluation, financial invest-
ment policy assessment, safety and risk assessment, and supplier evaluation.
She has published a book and over 50 papers in computerized traffic manage-
ment and control, optimization, decision analysis, control system design, sta-
tistical process control, and statistical analysis. Her current research interests
are in the areas of multiple attribute decision analysis under uncertainties, deci-
sion theory, utility theory, evidential reasoning approach and their applications
in quality management, environmental management, and engineering design.


