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Abstract

Fingerprint evidence is routinely used by forensics and
law enforcement agencies worldwide to apprehend and con-
vict criminals, a practice in use for over 100 years. The use
of fingerprints has been accepted as an infallible proof of
identity based on two premises: (i) permanence or persis-
tence, and (ii) uniqueness or individuality. However, in the
absence of any theoretical results that establish the unique-
ness or individuality of fingerprints, the use of fingerprints
in various court proceedings is being questioned. This has
raised awareness in the forensics community about the need
to quantify the evidential value of fingerprint matching. A
few studies that have studied this problem estimate this ev-
idential value in one of two ways: (i) feature modeling,
where a statistical (generative) model for fingerprint fea-
tures, primarily minutiae, is developed which is then used to
estimate the matching error and (ii) match score modeling,
where a set of match scores obtained over a database is used
to estimate the matching error rates. Our focus here is on rigyre 1. probabilities of non-match for (a) mated and (b) non-
match score modeling and we develop metrics to evaluatemated pair with differing image quality values. Both the images
the effectiveness and reliability of the proposed evidential in (a) have the lowest quality as measured by NFIQ (NFIQ = 5)
measure. Compared to previous approaches, the proposed23] whereas the two images in (b) have the best quality (NFIQ =
measure allows explicit utilization of prior odds. Further, 1). While both these pairs of fingerprints have the same matching
we also incorporate fingerprint image quality to improve score (7 as computed by the Verifinger matcher [14]), the non-

the reliability of the estimated evidential value. match probabilities, after incorporating the quality value, are 0.57
and 0.90 for (a) and (b), respectively.

1. Introduction two different fingers. While both these pairs of fingerprint
images have the same matching score as computed by an
AFIS, they have different image quality values. This differ-
ence in their quality suggests that these two pairs be treated
differently for assigning probabilities of belonging to differ-
ent fingers. We call this therobability of non-matchThe
objective of this paper is to present an approach for comput-
ing the non-match probability and ways it can be evaluated.
A measure of fingerprint evidential value is crucial to
“AK. Jain is also with the Dept. of Brain and Cognitive Engineering, &ITive at a correct and conclusive forensic analysis of fin-
Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea. gerprints. The importance of this was established by the

The evidential value of fingerprints is a term that refers
to thevalueof fingerprints as a means of person identifica-
tion [10]. As stated by Galtonll(], a measure of evidential
value isthe probability that two fingerprints under consider-
ation are obtained from two different persoisg. 1 shows
two pairs of fingerprint images where the pair in Fiifa)
comes from the same finger and the pair in Eidp) is from




Daubert’s rule of evidence, or the Daubert standard, set byseparately for the mate and non-mate pairs. A measure of
the United States Supreme Court aubert v. Merrell the evidential value can then be obtained from these two
Dow Pharmaceutical§l]. One of the major requirements distributions.

in Daubert standard is that the admissibility of forensic evi-  Both the modeling approaches have their own potential

dence in court proceedings is contingent upon the availabil-strengths and limitations. In the case of feature modeling,
ity of the error rates of the forensic evidence. the evidential value computed for a particular configuration

The prevalent procedure for manually matching finger- of the two fingerprints being matched is expected to be reli-
prints, which typically involves matching a latent finger- able even for the case when only a limited number of rele-
print to a full fingerprint, follows a rigorous protocol,  vantfingerprint pairs are available in the training database to
known as the ACE-V protocol. However, the lack of any estimate the value. This is because of prior knowledge used
thorough study measuring the error rates of the protocolin modeling the fingerprint features. The main drawback of
has led to challenges to fingerprint evidence in a numberfeature modeling, however, is that it is difficult to model a
of court casesd]. The need for a reliable study of error variety of fingerprint features that are typically used by state
rates is further compounded by the imprecise specificationof the art matchers as well as latent examiners. This means
of the protocol as well as some inconsistencies among thethat the feature modeling studies could use only relatively
implementation of the protocollP]. Moreover, the out-  simple and often outdated features and matchers (typically
comes of latent matches that are inconsequential are seldorminutiae location and angle) for model construction. Note
recorded by the forensic agencies. Finally, a thorough sta-that the practice of using the “12 point rule” (which states
tistical modeling of the matching process is confounded duethat if there are at least 12 matching minutiae between two
to lack of extensive data and somewhat subjective nature offingerprints, they are declared as a match) was abandoned
matching by latent examiners. by the FBI in the early1970s [3].

There are two possible ways to circumvent this dilemma  The similarity score modeling, on the other hand, allows
[11]. In the first approach, a fingerprint related testimony the use of any state of the art matcher. One of the main
based on the experience of the testifier is permitted withoutdrawbacks of similarity score modeling is that in order to
stringent requirements on its scientific validity. The second estimate a tight confidence interval on the evidential value,
approach is to use an automatic fingerprint identification one needs to have a large training set of fingerprint pairs
system (AFIS) whose error rates can be easily estimated(both mated and non-mated).

The disadvantage of the first approach is an obvious lack In this paper we follow the similarity score modeling ap-
of scientific validity whereas the second approach is limited proach to compute the evidential value of fingerprints in the
due to a generally lower discriminative power of state of the form of non-match probability (NMP). We consider three
art AFIS on latent matching compared to the ability of an different approaches to estimate the required genuine and
experienced latent examiner. We believe it is indeed appro-impostor score distributiofis (i) histogram construction,
priate to adopt the second approach since the performancéii) kernel density estimation and (iii) parametric density es-
of the state of the art matchers is steadily improving and is timation. Based on a measure of reliability of the evidential
approaching the ability of latent examinefisS]. Note that value obtained through cross-validation, we show that the
latent matching based on the ACE-V protocol is not infal- non-match probability computed using the kernel density
lible either, as illustrated by the infamous case involving estimation performs the best.

Brandon Mayfield, who was wrongly accused and incar-  |tis well known that one factor that affects the fingerprint
cerated based on latent fingerprint evidence in the Madridmatching performance is the image qualify]] To study
bombing cased]. how image quality affects the evidential value, we partition

There are two main approaches that have been followedthe fingerprint database into two segments based on finger-
in the literature to obtain the evidential value of finger- printimage quality. Based on the computed evidential val-
prints’: (i) feature modeling, and (i) similarity score mod- ues, we show that its variance is significantly reduced if the
eling. In feature modeling approach, a statistical model for image quality is taken into account. Moreover, good qual-
the generative process of a set of fingerprint features (typ-ity images lead to a greater polarization of the evidential
ically minutiae) is obtained and the evidential values for values. That is, among the good quality images the eviden-
fingerprint pairs are obtained based on this model. In thetial values are more likely to be closer to the extrerjes]
similarity score modeling approach, the distribution of sim- indicating impostor or genuine matches.
ilarity scores between fingerprint pairs is directly modeled,  The rest of the paper is organized as follows. Section

IFull print to full print matching can be done effectively in “lights out” 3Genuine scores correspond to the match scores obtained from a pair
mode by AFIS unless the image quality is podr][ of fingerprints when the two fingerprints belong to the same finger (mates).

2We use the terms “evidential value” and “a measure for evidential The impostor scores correspond to the case when the two fingerprints are
value” interchangeably depending on the context. obtained from different fingers (non-mates).



2 presents a summary of previous approaches to estimat- ST
ing fingerprint evidential value. Secti@presents our pro- z
posed measure and methods for analyzing the evidential
value and Sectiod presents experimental results. Sum-
mary and discussions are presented in Seéion

2. Background

The first attempt to estimate the individuality of finger- T e %
prlnts was made .by Gal_ton B892 who proposed a St_a' Figure 2.Two fingerprints from NIST SD14 belonging to the same
t'St'(?"?‘l model _Of flnge_rp_rlnt features. His model required finger that have different characteristics due to skin distortion dur-
partitioning a fingerprint int@4 non-overlapping square re-  jnq image acquisition. This indicates the intra-class variability in
gions whose width was equal to six times the inter ridge dis- fingerprints which is one of the major obstacles in defining quan-
tancellL0]. He argued that each of these square regions cantitative measures of evidential value.
be correctly reconstructed with a probability;})if the in-
formation regarding the surrounding ridges is known. This
leads to a probability o(%)24 that the complete fingerprint  Moon [6] extended this model by using von-Mises distribu-
can be reconstructed, given the ridge structure in the regiontion to model the minutiae direction.
surrounding the squares. Galton further noted that the prob- Based on the observation that the minutiae tend to form
ability that the correct number of ridges entering and ex- clusters 0], Zhu et al. P35 used finite mixture models
iting the 24 squares iszt: and that the probability of oc- for modeling the distribution of minutiae. For each finger-
currence of specific type of fingerprint (e.g. whorl, loop, Print, a Gaussian distribution was fit to the minutiae loca-
arch, etc.) isj. This set of assumptions lead to a proba- tions and a von-Mises distribution was used for fitting the
bility of ﬁ » % y (%)24 — 1.45 x 10-1 for correctly minutiae directions in each C_or_npon_ent of mixtures. This
reconstructing a full fingerprint. This measure of finger- led to a supposedly more realistic est|ma_te of the PRC. Fang
print individuality is usually referred to as therobability et al. B e}nd _Su et al-. 1] extended th's. framework by
of Fingerprint Configuration (PFC)10]. A discussion on |nclorpolrat|ng information rggardlng the ndges. Chen and
a number of other related models is availableTié][ One Jain [7] incorporated three different typgs of fmgerpn'nt fga-
of the limitations of the PFC is that it does not take into ac- "®S’ level 1 (pattern type), level 2 (ridges and minutiae)
and level 3 (pores) features. Su et &2|[incorporated de-

count the differences in the characteristics of a fingerprint i : S . :
such as the number of minutiae in the fingerprint that is be- pendence between the neighboring minutiae using Bayesian
ing reconstructed networks. There are two main limitations of these stud-
The first rigorous and comprehensive study on featureies: i) the matching .criteri.a u;ed .in these tgchniques i.e.
modeling was proposed by Pankanti et 4.6 Given a the number of matching minutiae, is very rudimentary and
significantly biases the evidential value, and ii) intra-class

pair of fingerprints with a similarity value s, tiiRrobability o flocti h e i th hi
of Random Correspondence (PR€Jers to the probability variation (re (_actm_g the vgnatlons n the m_atc g scores
between multiple impressions of the same finger) is not ex-

that two randomly selected fingerprints will have similarit
y gerp y plicitly considered in the formulation of PRC.

value the same as s. More formally, PRC is defined as
The match score based approaches for computing the
PRC = P(s|I) 1) evidential value have also been reported in the literature.
, , ) ) ) Meagher et al.13] utilized the FBI's Integrated Automated
where | refe_zrs to th_e impostor pair of fingerprints, i.e. they Fingerprint Identification System (IAFIS) to compute the

belong to d_|fferer,1t fingers. . ) ) evidential value of fingerprints. They simulated latent im-

. Pankar_m etal’s approgch was limited to modeling minu- ages by cropping each of t56, 000 rolled fingerprints and
tiae locations and directions to calculate the PRC value. o 0ared them with the original rolled images to obtain the
They assumed a uniform distribution for minutiae location genuine and impostor match scores. Assuming that the gen-
and direction. Given a query fingerprint containing n minu-,ine and impostor distributions follow a Gaussian distribu-
tiae, they computed the PRC that an arbitrary template fin-yjo, \eagher et al. estimated the probability of false corre-
ge.rprl.nt comammg m minutiae will have exactly g mated spondence, i.e the probability of finding an exact match be-
minutiae with the query as tween two unrelated fingerprints to be equal®s®’. One

major shortcoming of this study is that the intra-class vari-
PRC = P(s|I,m,n). @) ation (see Fig?) is not accounted for since only one image
One limitation of this model is its relatively poor fit of per finger was utilized; the genuine scores were computed
uniform distribution to real minutiae distribution. Chen and by matching a cropped fingerprint with the full fingerprint



from which it was cropped. whereP(G|s), the posterior probability of a genuine match
Neumann et al!15], [14] developed a fingerprint match-  given a score, is given as

ing procedure based on different configurations of minutiae

and converted the resulting similarity valuento a likeli- P(Gls) =

hood ratio (LR) The likelihood ratio is proposed as a mea- P

sure of evidential value of fingerprints defined as

P(s|G)P(G)
(sI)P(I) + P(s|G)P(G)

©)

Here P(s|G) and P(s|I) denote the genuine and impos-
P(s|G) tor distribut_ions of miaFch scor,gandP(I) and P(G) de-
= PO 3) note the prior probability of an impostor or genuine match.
Note that unlike previous approaches, both the genuine and

where I refers to impostor fingerprint pairs (non-match impostor prior distributions are used in addition to the cor-
pairs) andG refers to genuine fingerprint pairs (true-match responding likelihoods in computing the NMP. Moreover,
pairs). Egli et al. ] also used match scores acquired from unlike the likelihood ratio values that range|iy co], NMP

an automatic fingerprint matcher to compute the eviden- vValues range ifd, 1], where a value close indicates that
tial value in the form of likelihood ratio. The main differ- the two fingerprints being matched are very likely to be a
ence among the various LR approaches is the method use§€nuine pair and a value close kdndicates that they are
for estimating the genuine and impostor densities, namelyVery likely to be an impostor pair.

P(s|G) and_ P(s|I): in [lE_J_kerneI densi_ty esti_mation IS 31 NMP Computation

used to estimate the densities whereadli} f mixture of

Gaussian is used. Egli et al. used two different parametric ~ Given a large training set of fingerprint pairs that has
distributions for fitting genuine and impostor score distribu- both genuine and impostor matches, the non-match prob-

LR

tions. ability associated with similarity value is the fraction of
pairs that are non-matches among all the pairs with their
3. Proposed Measure matching value. The prior distribution can be considered as

) ) i _the overall proportion of genuine and impostor matches in

In this section, we propose a new measure of fingerprintyhe {raining set; it can also reflect any additional evidence
evidential value, namely the non-match probability (NMP), gy ailable regarding the fingerprints in consideration being
which overcomes certain limitations of the existing mea- mated or not. This approach for computing NMP is effec-
sures such as PRC and LR. One of the drawbacks of thejye only if a very large fingerprint database is available. In

PRC is that it does not explicitly consider the probability {he ahsence of such a large database, robust techniques to
that the two fingerprints being matched can come from the ggimate the relevant probability densities need to be em-
same finger, namely the genuine match probabilitVhis ployed.

affects the validity of conclusions derived as a result of the *  Tne non-match probability is computed as:
evidential analysis. While the likelihood ratio does explic-
itly consider the probability that the two fingerprints being P(s|I)P(I)
considered belong to the same finger, it does not directly an- (s|[)P(I) + P(s|G)P(G)’
swer the question first posed by Galton, namtig, proba-
bility that two fingerprints under consideration are obtaine
from two different personsvhose answer is needed to elicit
the evidential value of fingerprints. Furthermore, according
to Taroni et al. [24], computation of likelihood ratio is just
a means to obtain the probability that the suspected finger
print is the true match which is essentially 1-NMP or the
probability of a match.

The proposed measure i.e. the non-match probability
(NMP) for a similarity value (match score between a pair
of fingerprints)s is given by

NMP =P(I|s) = P (6)
g HereP(s|I) and P(s|G) can be computed from the esti-
mated distributions. The values of priaP{7) and P(G)
reflect additional evidence that may be available. This is one
of the strengths of the proposed NMP measure as it helps
to utilize any available asymmetric information towards the
claim of genuine or impostor matcBi4]. Note that LR and
PRC do not have this capability.

Itis indeed possible to compute the NMP value from the
PRC and LR values using the following relationships:

sI)P(I) _ PRC x P(I)

NMP = P(I|s) = il

(7
P(s) P(s)
NMP = P(I|s) =1— P(G|s) (4) 1 1
NMP = P(I|s) = = 8
4Note that, in Pankanti et al1§], the hypothesis that two fingerprints (Z]s) % 14+ LR—I;),((?; ®)

come from same fingerprint is not rejected simply based on the fact that

the two fingerprints being compared have different number of minutiae. Note that the above expressions require estimates of
This is one way they consider intra-user variation. The tolerance used in

minutiae match also implicitly accounts for intra-user variation to some P(S)! P(G), and{D(I) tha.t inturn requ".e Sqme knOWIedge
extent. of both the genuine and impostor distribution.
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4. Experimental Results 0 L -

Match score (log scale)

There are two main criteria to evaluate a measure of therigure 4.Non-match probabilities based on histogram density es-
evidential value of a fingerprint match. The first is the error timates. The solid line shows the mean values of NMP whereas the
rate associated with the term used to compute the evidenbounding dotted lines show the minimum and maximum values of
tial value. The second is the confidence (variance) in the NMP. The average variance of NMP()25.
estimated evidential value. Since the error rates are depen-
dent on the specific matcher used for computing similarity
values, in this paper, we mainly focus on confidence in the
evidential value as a measure of its goodness. The confi-2S: N
dence of the evidential value is estimated using p-fold cross- NMP = % 9)
validation. We also incorporate fingerprint image quality in Ng(s) + Ni(s)
the estim_ation_ of evidential value to enh_an_ce the Cof‘ﬁde”_cewhereNg(s) and N7 (s) are the normalized bin values at
of th_e evidential value. Such an analysis is not available in gcqres for genuine and impostor matches, respectively. In
the literature. the case of kernel density estimation, a Gaussian kernel with
41. P a bandwidth ofl.5 was used to estimate the genuine and im-

.1. Protocol o . : .
postor distributions. In the case of parametric density esti-

We used the NIST SD14 fingerprint database in our ex- mation, Weibull distribution was used to model the genuine
periments which contains two rolled impressions for each of match scores and log-normal distribution was used to model
the 27,000 different fingers. Since the analysis of eviden- the impostor match scores. The choice of these parametric
tial value is mainly required in case of latent fingerprints  distributions follows/8].
we simulated latent fingerprints from this database by ran-
domly cropping four different subimages of si&) x 400 4.2. Reliability of Evidential Value
from the original fingerprint (see Fig.3). These simu-

match probability (NMP) at each score bin can be calculated

- . ) X The first set of experiments was conducted to determine
lated latent fingerprints were matched with the full finger- o \ariation in the NMP values obtained using the three
prmt; (not used in groppmg) to obtain a set ]cﬁf8|, OOOI density estimators across multiple partitions of the dataset.
genuine scgr_es. For |mp(>jost0r Shcoéei’ we rz_:lﬂdomdy sel ECteQote that an understanding of this variability will be useful
500 cropped images and matched them with randomly se-j, 16\iding a range for the most likely NMP values for a
lected non-mated full fingerprints to obtalnmillion im- pair of fingerprints being matched

postor scores. Fingerprint feature extraction and matching Fig. 4 shows the NMP curves obtained using the his-
were performed using Neurotechnology Verifinger software togram based density estimates forrandom partitions of

[4JVV\\;h'Ch oq(tjputs dmr? tch Zi?res in the rarjg;aQQO]. h the NIST SD14 database. These curves correspond to the
e considered three different ways to estimate the non'mean, the minimum and the maximum values of the non-

match p.robability, each differing in the way the probabil—. match probabilities over thé0 data partitions. Figs.5
ity density of the genuine and impostors match scores IS Andi6 show the corresponding curves for the kernel den-

computed_: (0) histogra__r_n based es_timate,_(ii) kernel de_nsity sity based and parametric density based estimates, respec-
base_d estlma_te, and (iii) parame_tnc den5|t_y_ baseq est'matetively. The average variances (averaged over different score
In this a“"?"ys'sv weuse equal prior probability for 'mp°5t°f values) of the estimates corresponding to histogram, kernel
and ggnwr;eN?;Ia\gs, |I.eP((I) = P(G)). for an easy inter- density and parametric estimates of score distributions are
pretation o values. ) _ 0.025, 0.025, and0.027, respectively.

In thg case O.f histogram based technique, the h|stqgrams Considering the mean NMP values obtained using the
of genuine and |mp_ostorscor.es are separat_ely normalized S‘(Pwistogram based density estimates as the ground truth, we
that the sum of their respective bin values is one. The non- 0 computed the bias in the kernel density based as well

5NIST SD27 is the only public domain latent fingerprint database avail- @S the parametric density based NMP estimates. The aver-
able. It contain®58 latents and their mated rolled impressions. age absolute difference between the histogram based NMP
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tion. The solid line shows the mean values of NMP whereas the _. . . . )
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bounding dotted lines show the minimum and maximum values of . .
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and bad) to a fingerprint. For our experiments, to maintain
an adequate number of fingerprint pairs of each quality type,
we divide the fingerprint pairs into two quality categories:
good and bad. The good category corresponds to those fin-
gerprint pairs where both the constituent fingerprints are at
least of good quality according to NFIQ (NF= 3). The
remaining fingerprint pairs are assigned to the bad category.
Among the genuine pairs, there are a totakbf527 good

Figure 6.Non-match probabilities based on parametric density es quality and26, 473 bad quality pairs while in the case of
timates. The solid line shows the mean values for of NMP whereaslmpqsmrs.’ there ares6, 667 good quality and 63, 333 bad
the bounding dotted lines show the minimum and maximum values qual_lty pairs. . .
of NMP. The corresponding average variance of NMP.i7. Since the numbers of samples in the bad quality category
is relatively small, dividing data intd0 partitions to obtain
the non-match probability could lead to large errors in es-
and kernel density based NMP (006 whereas that be-  timating the densities. So, here we divide the dataset into
tween histogram based NMP and parametric density basequst two partitions and estimate the average variance based
NMP is0.106. This shows that the parametric density based on 2-fold cross validation. In order to further improve the
estimate has a significant bias compared to kernel densityteliability of the NMP estimate, we perfori)0 2-fold par-
based estimates. Note that kernel density based computatitioning of the dataset to obtain the average variance. The
tion of NMP is more desirable than histogram based value quality based non-match probability curves are shown in
since it (in fact, parametric density based estimates as well)Fig. 7 for the case when the kernel density method is used
inherently extrapolates the NMP for the scores at which noto estimate the genuine and impostor match distributions.
matching pairs were observed in the reference database. Clearly, the quality of the fingerprint pair significantly af-

. . . fects the non-match probability values. Note that the closer

4.3. Quality-based Evidential Value the NMP versus match score curve is to a step function, the
It is well known that the performance of fingerprint more conclusive and useful are the NMP values. Based on

matchers (as well as that of latent examiners) depends orthis observation, as expected, the good quality fingerprint

the fingerprint image quality. As such, the non-match prob- pairs provide more conclusive NMP values than bad quality

ability should depend on the quality of the fingerprint im- fingerprint pairs. Further, separating the samples based on

ages in addition to the match scores. To investigate this, wequality also reduces the variance of NMP.

divide the genuine and impostor match scores based on the We also utilized the genuine and impostor density esti-

quality of the associated fingerprint pairs. We use the NFIQ mates (using kernel density) computed based on the NIST

fingerprint quality measure developed by the National Insti- SD14 database for computing the NMP values for the la-

tute of Standards and Technology (NISEZ] to calculate tentimages in the NIST SD27 database which cont2igs

the fingerprint image quality. The NFIQ measure assigns latent fingerprints and their mated full prints. TheXs

one of five quality levels (excellent, very good, good, fair latent prints were classified by latent examiners into three

w o @
T T T

Non-match probability
S

o o 2 o o o

o o
T

10 107 3
Match score (log scale)



80 ‘
70l 1 WGood
2 [Bad
8 601 Cugt
2
£ 50(]
=
%40
k]
5 307
Q
£ 20}
=
10f
0 L] s L fml fim] B ﬂ_‘ 5
0 01 02 03 04 05 06 07 08 09 1

6 0
Non-match probabilty (NMP)

Figure 8.Histograms of the NMP values for 258 latent prints in
NIST SD27 categorized as good, bad, and ugly when matched to
their corresponding (mated) rolled prints.

quality types, namely: good, bad and ugly. There &e
good, 85 bad and85 ugly latent images in the database.
For consistency with two-quality level partitioning of the
NIST SD14 database, we combine the ugly and bad qual- )
ity fingerprints into a single bad category and assume the (b)
quality category of the latent image as the quality category rigyre 9.Two sample latent fingerprints and their corresponding
of the latent-fingerprint pair under consideration. See Fig. full prints from NIST SD27. (a) A good quality latent-rolled pair
8 for a histogram of the NMP values f@68 latent prints (973), and (b) a bad quality latent-rolled pair (b115). The match
when matched with their mated rolled prints. Note that most scores for (a) and (b) a5 and9, respectively.

of the NMP values are close to zero indicating a genuine

match with high confidence; the high NMP values observed

& L MIDDLE

for some genuine matches indicate that those match deci: P RV R— Estimation oF evidental vaiue
sions are suspect. The match scores were computed base cse | scor | consdered | NP (emel [ IR (emel PR
on manually marked minutiae provided in the NIST SD27 | #73 65 Yes L4107 | 694107 | 776107
database using the Verifinger matcher _ o 447107 | 223107 | 23541077
Fig. 9 shows two latent-full print pairs; one is from the |~ | = a2 0510 | 0018
ig. 9 shows two latent-full print pairs; one is from the %o 078 0276 0021

gOtOd quallttﬁ/ cati(;\glory an(_jf_the cher Is from thde baadzqua“ty Table 1.Likelihood Ratio (LR) and PRC values for the two latent-
category (these two specific pairs were considereda) [ rolled print pairs in Fig. 9. Note that due to the definition of LR,

The NMP value for the first pair (Fig9(a)) without con- ¢ effect of considering quality information on the LR value is
sidering the quality information ig.47 x 107°¢ but the  gpposite of that on PRC and NMP values.

quality-based NMP value increasesltd4 x 10~°2. For
the second pair of bad quality (Fi@(b)), the NMP value
is decreased frord.784 to 0.521 as a result of considering

the quality information. This means that for a poor qual- times more likely than the chances of the same score value

iFy latent-rolled fingerprint pair, the genuine pajrs are more poing obtained from an impostor pair. The PRC value can,
likely to have low match scores thereby reducing the NMP o\ ever he understood using a simple counting experiment.
value. We also computed the PRC as well as LR values cor—po pRC value of abodt—° for the g73 latent-rolled print

responding to these two latent-full print pairs as reported in

Tablel. Note that an NMP value of abom;ﬁ forthe g73  hostor pairs observed in the past, only one of them had a
latent-rolled print pair means that out 09 pairs of fin- 5¢ching score 065. The drawback of this interpretation
gerprints that have the same matching score as that betwee tha¢ it does not explicitly consider the probability that a
the g73 latent-rolled print, only one of them is expected 10 gon jine pair has a match scoressf Consider a hypothet-
be an impostor pair while remaining pairs are expected 10ca| scenario where the probability that a genuine pair has
be genuine. Oglthc_e other hand, the corresponding likeli- 3 1atch scorés is 10-56 . Then the pair is likely to be a
hood ratio of10°" simply means that the chances of the yop ine match despite a seemingly very small PRC value.
same score value being obtained from a genuine pairis  \yhile we agree that such scenarios are rare, it does point to
6Since there is no SDK available to us for latent to full print matcher, the fact that certain aspects of the evidential value cannot be
we rely on the matcher for full to full print to compute the match score.  incorporated in PRC.

pair with a match score @b means that out of th&)® im-




5. Summary 3rd International Symposium on Information Assurance and

Security pages 423-428, August 2003

In this paper, we have_pres_ented a comp_rehens_ive framello] F. Galton.Finger Prints Macmillan, London, 18921, 3
work to analyze the evidential value of fingerprints and |11} | Haber and R. N. Haber. Experiential or scientific exper-
proposed a new measure, called the non-match probabil- tise. Law, Probability and Risk7(1):143-150, 20062
ity (NMP). This measure is more intuitive than the exist- [12] L. Haber and R. N. Haber. Scientific validation of fingerprint

ing measures based on the probability of random correspon- evidence under daubettaw, Probability and Risk7(1):87—
dence (PRC) and likelihood ratio (LR). Further, it is easier 109, 20082

to empirically analyze the reliability of this measure. We [13] S. B. Meagher, B. Buldowle, and D. Ziesig. 50k fingerprint

show that incorporating the image quality can lead to im- comparison test. USA v. Byron Mitchell, US District Court
provement in the confidence of evidential value of finger- Eastern District of Philadelphia. Government Exhibits 6-8
prints. In future, we plan to develop techniques to com- and 6-9 in Daubert Hearing before Judge J. Curtis Joyner,
bine evidence from multiple sources (e.g., multiple match- July 1999.3

ers and multiple latent prints of the same finger) and in- [14] C. Neumann, C. Champod, R. Puch-Solis, N. Egli, A. Antho-

crease the size of the database to estimate the genuine and
impostor distributions. We also plan to develop relationship
between the match score-NMP graph and the corresponding
Receiver Operating Characteristics (ROC) curve in order to
elicit the pros and cons of using NMP values as a threshold

nioz, and A. Bromage-Giriffiths. Computation of likelihood
ratios in fingerprint identification for configurations of any
number of minutiaeJournal of Forensic Sciencgs2(1):54—
63, 20074
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