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Abstract

Fingerprint evidence is routinely used by forensics and
law enforcement agencies worldwide to apprehend and con-
vict criminals, a practice in use for over 100 years. The use
of fingerprints has been accepted as an infallible proof of
identity based on two premises: (i) permanence or persis-
tence, and (ii) uniqueness or individuality. However, in the
absence of any theoretical results that establish the unique-
ness or individuality of fingerprints, the use of fingerprints
in various court proceedings is being questioned. This has
raised awareness in the forensics community about the need
to quantify the evidential value of fingerprint matching. A
few studies that have studied this problem estimate this ev-
idential value in one of two ways: (i) feature modeling,
where a statistical (generative) model for fingerprint fea-
tures, primarily minutiae, is developed which is then used to
estimate the matching error and (ii) match score modeling,
where a set of match scores obtained over a database is used
to estimate the matching error rates. Our focus here is on
match score modeling and we develop metrics to evaluate
the effectiveness and reliability of the proposed evidential
measure. Compared to previous approaches, the proposed
measure allows explicit utilization of prior odds. Further,
we also incorporate fingerprint image quality to improve
the reliability of the estimated evidential value.

1. Introduction

The evidential value of fingerprints is a term that refers
to thevalueof fingerprints as a means of person identifica-
tion [10]. As stated by Galton [10], a measure of evidential
value isthe probability that two fingerprints under consider-
ation are obtained from two different persons. Fig. 1 shows
two pairs of fingerprint images where the pair in Fig.1(a)
comes from the same finger and the pair in Fig.1(b) is from
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Figure 1.Probabilities of non-match for (a) mated and (b) non-
mated pair with differing image quality values. Both the images
in (a) have the lowest quality as measured by NFIQ (NFIQ = 5)
[23] whereas the two images in (b) have the best quality (NFIQ =
1). While both these pairs of fingerprints have the same matching
score (7 as computed by the Verifinger matcher [14]), the non-
match probabilities, after incorporating the quality value, are 0.57
and 0.90 for (a) and (b), respectively.

two different fingers. While both these pairs of fingerprint
images have the same matching score as computed by an
AFIS, they have different image quality values. This differ-
ence in their quality suggests that these two pairs be treated
differently for assigning probabilities of belonging to differ-
ent fingers. We call this theprobability of non-match. The
objective of this paper is to present an approach for comput-
ing the non-match probability and ways it can be evaluated.

A measure of fingerprint evidential value is crucial to
arrive at a correct and conclusive forensic analysis of fin-
gerprints. The importance of this was established by the
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Daubert’s rule of evidence, or the Daubert standard, set by
the United States Supreme Court inDaubert v. Merrell
Dow Pharmaceuticals[1]. One of the major requirements
in Daubert standard is that the admissibility of forensic evi-
dence in court proceedings is contingent upon the availabil-
ity of the error rates of the forensic evidence.

The prevalent procedure for manually matching finger-
prints, which typically involves matching a latent finger-
print to a full fingerprint1, follows a rigorous protocol,
known as the ACE-V protocol. However, the lack of any
thorough study measuring the error rates of the protocol
has led to challenges to fingerprint evidence in a number
of court cases [2]. The need for a reliable study of error
rates is further compounded by the imprecise specification
of the protocol as well as some inconsistencies among the
implementation of the protocol [12]. Moreover, the out-
comes of latent matches that are inconsequential are seldom
recorded by the forensic agencies. Finally, a thorough sta-
tistical modeling of the matching process is confounded due
to lack of extensive data and somewhat subjective nature of
matching by latent examiners.

There are two possible ways to circumvent this dilemma
[11]. In the first approach, a fingerprint related testimony
based on the experience of the testifier is permitted without
stringent requirements on its scientific validity. The second
approach is to use an automatic fingerprint identification
system (AFIS) whose error rates can be easily estimated.
The disadvantage of the first approach is an obvious lack
of scientific validity whereas the second approach is limited
due to a generally lower discriminative power of state of the
art AFIS on latent matching compared to the ability of an
experienced latent examiner. We believe it is indeed appro-
priate to adopt the second approach since the performance
of the state of the art matchers is steadily improving and is
approaching the ability of latent examiners [18]. Note that
latent matching based on the ACE-V protocol is not infal-
lible either, as illustrated by the infamous case involving
Brandon Mayfield, who was wrongly accused and incar-
cerated based on latent fingerprint evidence in the Madrid
bombing case [5].

There are two main approaches that have been followed
in the literature to obtain the evidential value of finger-
prints2: (i) feature modeling, and (ii) similarity score mod-
eling. In feature modeling approach, a statistical model for
the generative process of a set of fingerprint features (typ-
ically minutiae) is obtained and the evidential values for
fingerprint pairs are obtained based on this model. In the
similarity score modeling approach, the distribution of sim-
ilarity scores between fingerprint pairs is directly modeled,

1Full print to full print matching can be done effectively in “lights out”
mode by AFIS unless the image quality is poor [17].

2We use the terms “evidential value” and “a measure for evidential
value” interchangeably depending on the context.

separately for the mate and non-mate pairs. A measure of
the evidential value can then be obtained from these two
distributions.

Both the modeling approaches have their own potential
strengths and limitations. In the case of feature modeling,
the evidential value computed for a particular configuration
of the two fingerprints being matched is expected to be reli-
able even for the case when only a limited number of rele-
vant fingerprint pairs are available in the training database to
estimate the value. This is because of prior knowledge used
in modeling the fingerprint features. The main drawback of
feature modeling, however, is that it is difficult to model a
variety of fingerprint features that are typically used by state
of the art matchers as well as latent examiners. This means
that the feature modeling studies could use only relatively
simple and often outdated features and matchers (typically
minutiae location and angle) for model construction. Note
that the practice of using the “12 point rule” (which states
that if there are at least 12 matching minutiae between two
fingerprints, they are declared as a match) was abandoned
by the FBI in the early1970s [3].

The similarity score modeling, on the other hand, allows
the use of any state of the art matcher. One of the main
drawbacks of similarity score modeling is that in order to
estimate a tight confidence interval on the evidential value,
one needs to have a large training set of fingerprint pairs
(both mated and non-mated).

In this paper we follow the similarity score modeling ap-
proach to compute the evidential value of fingerprints in the
form of non-match probability (NMP). We consider three
different approaches to estimate the required genuine and
impostor score distributions3: (i) histogram construction,
(ii) kernel density estimation and (iii) parametric density es-
timation. Based on a measure of reliability of the evidential
value obtained through cross-validation, we show that the
non-match probability computed using the kernel density
estimation performs the best.

It is well known that one factor that affects the fingerprint
matching performance is the image quality [17]. To study
how image quality affects the evidential value, we partition
the fingerprint database into two segments based on finger-
print image quality. Based on the computed evidential val-
ues, we show that its variance is significantly reduced if the
image quality is taken into account. Moreover, good qual-
ity images lead to a greater polarization of the evidential
values. That is, among the good quality images the eviden-
tial values are more likely to be closer to the extremes[0, 1]
indicating impostor or genuine matches.

The rest of the paper is organized as follows. Section

3Genuine scores correspond to the match scores obtained from a pair
of fingerprints when the two fingerprints belong to the same finger (mates).
The impostor scores correspond to the case when the two fingerprints are
obtained from different fingers (non-mates).



2 presents a summary of previous approaches to estimat-
ing fingerprint evidential value. Section3 presents our pro-
posed measure and methods for analyzing the evidential
value and Section4 presents experimental results. Sum-
mary and discussions are presented in Section5.

2. Background

The first attempt to estimate the individuality of finger-
prints was made by Galton in1892 who proposed a sta-
tistical model of fingerprint features. His model required
partitioning a fingerprint into24 non-overlapping square re-
gions whose width was equal to six times the inter ridge dis-
tance [10]. He argued that each of these square regions can
be correctly reconstructed with a probability of1

2 if the in-
formation regarding the surrounding ridges is known. This
leads to a probability of

(
1
2

)24
that the complete fingerprint

can be reconstructed, given the ridge structure in the region
surrounding the squares. Galton further noted that the prob-
ability that the correct number of ridges entering and ex-
iting the 24 squares is 1

256 and that the probability of oc-
currence of specific type of fingerprint (e.g. whorl, loop,
arch, etc.) is 1

16 . This set of assumptions lead to a proba-

bility of 1
256 × 1

16 ×
(

1
2

)24 = 1.45 × 10−11 for correctly
reconstructing a full fingerprint. This measure of finger-
print individuality is usually referred to as theProbability
of Fingerprint Configuration (PFC)[10]. A discussion on
a number of other related models is available in [19]. One
of the limitations of the PFC is that it does not take into ac-
count the differences in the characteristics of a fingerprint
such as the number of minutiae in the fingerprint that is be-
ing reconstructed.

The first rigorous and comprehensive study on feature
modeling was proposed by Pankanti et al. [16]. Given a
pair of fingerprints with a similarity value s, theProbability
of Random Correspondence (PRC)refers to the probability
that two randomly selected fingerprints will have similarity
value the same as s. More formally, PRC is defined as

PRC = P (s|I) (1)

where I refers to the impostor pair of fingerprints, i.e. they
belong to different fingers.

Pankanti et al.’s approach was limited to modeling minu-
tiae locations and directions to calculate the PRC value.
They assumed a uniform distribution for minutiae location
and direction. Given a query fingerprint containing n minu-
tiae, they computed the PRC that an arbitrary template fin-
gerprint containing m minutiae will have exactly q mated
minutiae with the query as

PRC = P (s|I, m, n). (2)

One limitation of this model is its relatively poor fit of
uniform distribution to real minutiae distribution. Chen and

Figure 2.Two fingerprints from NIST SD14 belonging to the same
finger that have different characteristics due to skin distortion dur-
ing image acquisition. This indicates the intra-class variability in
fingerprints which is one of the major obstacles in defining quan-
titative measures of evidential value.

Moon [6] extended this model by using von-Mises distribu-
tion to model the minutiae direction.

Based on the observation that the minutiae tend to form
clusters [20], Zhu et al. [25] used finite mixture models
for modeling the distribution of minutiae. For each finger-
print, a Gaussian distribution was fit to the minutiae loca-
tions and a von-Mises distribution was used for fitting the
minutiae directions in each component of mixtures. This
led to a supposedly more realistic estimate of the PRC. Fang
et al. [9] and Su et al. [21] extended this framework by
incorporating information regarding the ridges. Chen and
Jain [7] incorporated three different types of fingerprint fea-
tures: level 1 (pattern type), level 2 (ridges and minutiae)
and level 3 (pores) features. Su et al. [22] incorporated de-
pendence between the neighboring minutiae using Bayesian
networks. There are two main limitations of these stud-
ies: i) the matching criteria used in these techniques i.e.
the number of matching minutiae, is very rudimentary and
significantly biases the evidential value, and ii) intra-class
variation (reflecting the variations in the matching scores
between multiple impressions of the same finger) is not ex-
plicitly considered in the formulation of PRC.

The match score based approaches for computing the
evidential value have also been reported in the literature.
Meagher et al. [13] utilized the FBI’s Integrated Automated
Fingerprint Identification System (IAFIS) to compute the
evidential value of fingerprints. They simulated latent im-
ages by cropping each of the50, 000 rolled fingerprints and
compared them with the original rolled images to obtain the
genuine and impostor match scores. Assuming that the gen-
uine and impostor distributions follow a Gaussian distribu-
tion, Meagher et al. estimated the probability of false corre-
spondence, i.e the probability of finding an exact match be-
tween two unrelated fingerprints to be equal to10−97. One
major shortcoming of this study is that the intra-class vari-
ation (see Fig.2) is not accounted for since only one image
per finger was utilized; the genuine scores were computed
by matching a cropped fingerprint with the full fingerprint



from which it was cropped.
Neumann et al. [15], [14] developed a fingerprint match-

ing procedure based on different configurations of minutiae
and converted the resulting similarity values into a likeli-
hood ratio (LR). The likelihood ratio is proposed as a mea-
sure of evidential value of fingerprints defined as

LR =
P (s|G)
P (s|I)

(3)

where I refers to impostor fingerprint pairs (non-match
pairs) andG refers to genuine fingerprint pairs (true-match
pairs). Egli et al. [8] also used match scores acquired from
an automatic fingerprint matcher to compute the eviden-
tial value in the form of likelihood ratio. The main differ-
ence among the various LR approaches is the method used
for estimating the genuine and impostor densities, namely
P (s|G) and P (s|I): in [15] kernel density estimation is
used to estimate the densities whereas in [14] a mixture of
Gaussian is used. Egli et al. used two different parametric
distributions for fitting genuine and impostor score distribu-
tions.

3. Proposed Measure

In this section, we propose a new measure of fingerprint
evidential value, namely the non-match probability (NMP),
which overcomes certain limitations of the existing mea-
sures such as PRC and LR. One of the drawbacks of the
PRC is that it does not explicitly consider the probability
that the two fingerprints being matched can come from the
same finger, namely the genuine match probability4. This
affects the validity of conclusions derived as a result of the
evidential analysis. While the likelihood ratio does explic-
itly consider the probability that the two fingerprints being
considered belong to the same finger, it does not directly an-
swer the question first posed by Galton, namely,the proba-
bility that two fingerprints under consideration are obtained
from two different persons, whose answer is needed to elicit
the evidential value of fingerprints. Furthermore, according
to Taroni et al. [24], computation of likelihood ratio is just
a means to obtain the probability that the suspected finger-
print is the true match which is essentially 1-NMP or the
probability of a match.

The proposed measure i.e. the non-match probability
(NMP) for a similarity value (match score between a pair
of fingerprints)s is given by

NMP = P (I|s) = 1− P (G|s) (4)

4Note that, in Pankanti et al. [16], the hypothesis that two fingerprints
come from same fingerprint is not rejected simply based on the fact that
the two fingerprints being compared have different number of minutiae.
This is one way they consider intra-user variation. The tolerance used in
minutiae match also implicitly accounts for intra-user variation to some
extent.

whereP (G|s), the posterior probability of a genuine match
given a scores, is given as

P (G|s) =
P (s|G)P (G)

P (s|I)P (I) + P (s|G)P (G)
. (5)

Here P (s|G) and P (s|I) denote the genuine and impos-
tor distributions of match scores andP (I) andP (G) de-
note the prior probability of an impostor or genuine match.
Note that unlike previous approaches, both the genuine and
impostor prior distributions are used in addition to the cor-
responding likelihoods in computing the NMP. Moreover,
unlike the likelihood ratio values that range in[0,∞], NMP
values range in[0, 1], where a value close to0 indicates that
the two fingerprints being matched are very likely to be a
genuine pair and a value close to1 indicates that they are
very likely to be an impostor pair.

3.1. NMP Computation

Given a large training set of fingerprint pairs that has
both genuine and impostor matches, the non-match prob-
ability associated with similarity values is the fraction of
pairs that are non-matches among all the pairs withs as their
matching value. The prior distribution can be considered as
the overall proportion of genuine and impostor matches in
the training set; it can also reflect any additional evidence
available regarding the fingerprints in consideration being
mated or not. This approach for computing NMP is effec-
tive only if a very large fingerprint database is available. In
the absence of such a large database, robust techniques to
estimate the relevant probability densities need to be em-
ployed.

The non-match probability is computed as:

NMP = P (I|s) =
P (s|I)P (I)

P (s|I)P (I) + P (s|G)P (G)
. (6)

HereP (s|I) andP (s|G) can be computed from the esti-
mated distributions. The values of priorsP (I) andP (G)
reflect additional evidence that may be available. This is one
of the strengths of the proposed NMP measure as it helps
to utilize any available asymmetric information towards the
claim of genuine or impostor match [24]. Note that LR and
PRC do not have this capability.

It is indeed possible to compute the NMP value from the
PRC and LR values using the following relationships:

NMP = P (I|s) =
P (s|I)P (I)

P (s)
=

PRC × P (I)
P (s)

(7)

NMP = P (I|s) =
1

1 + P (s|G)P (G)
P (s|I)P (I)

=
1

1 + LRP (G)
P (I)

(8)

Note that the above expressions require estimates of
P (s), P (G), andP (I) that in turn require some knowledge
of both the genuine and impostor distribution.



Figure 3.Four different subimages from the same rolled finger-
print in the NIST SD14.

4. Experimental Results

There are two main criteria to evaluate a measure of the
evidential value of a fingerprint match. The first is the error
rate associated with the term used to compute the eviden-
tial value. The second is the confidence (variance) in the
estimated evidential value. Since the error rates are depen-
dent on the specific matcher used for computing similarity
values, in this paper, we mainly focus on confidence in the
evidential value as a measure of its goodness. The confi-
dence of the evidential value is estimated using p-fold cross-
validation. We also incorporate fingerprint image quality in
the estimation of evidential value to enhance the confidence
of the evidential value. Such an analysis is not available in
the literature.

4.1. Protocol

We used the NIST SD14 fingerprint database in our ex-
periments which contains two rolled impressions for each of
the27, 000 different fingers. Since the analysis of eviden-
tial value is mainly required in case of latent fingerprints5,
we simulated latent fingerprints from this database by ran-
domly cropping four different subimages of size400× 400
from the original fingerprint (see Fig.3). These simu-
lated latent fingerprints were matched with the full finger-
prints (not used in cropping) to obtain a set of108, 000
genuine scores. For impostor scores, we randomly selected
500 cropped images and matched them with randomly se-
lected non-mated full fingerprints to obtain1 million im-
postor scores. Fingerprint feature extraction and matching
were performed using Neurotechnology Verifinger software
[4] which outputs match scores in the range[0, 990].

We considered three different ways to estimate the non-
match probability, each differing in the way the probabil-
ity density of the genuine and impostors match scores is
computed: (i) histogram based estimate, (ii) kernel density
based estimate, and (iii) parametric density based estimate.
In this analysis, we use equal prior probability for impostor
and genuine pairs, i.e. (P (I) = P (G)), for an easy inter-
pretation of NMP values.

In the case of histogram based technique, the histograms
of genuine and impostor scores are separately normalized so
that the sum of their respective bin values is one. The non-

5NIST SD27 is the only public domain latent fingerprint database avail-
able. It contains258 latents and their mated rolled impressions.

Figure 4.Non-match probabilities based on histogram density es-
timates. The solid line shows the mean values of NMP whereas the
bounding dotted lines show the minimum and maximum values of
NMP. The average variance of NMP is0.025.

match probability (NMP) at each score bin can be calculated
as:

NMP =
N∗

I (s)
N∗

G(s) + N∗
I (s)

(9)

whereN∗
G(s) andN∗

I (s) are the normalized bin values at
scores for genuine and impostor matches, respectively. In
the case of kernel density estimation, a Gaussian kernel with
a bandwidth of1.5 was used to estimate the genuine and im-
postor distributions. In the case of parametric density esti-
mation, Weibull distribution was used to model the genuine
match scores and log-normal distribution was used to model
the impostor match scores. The choice of these parametric
distributions follows [8].

4.2. Reliability of Evidential Value

The first set of experiments was conducted to determine
the variation in the NMP values obtained using the three
density estimators across multiple partitions of the dataset.
Note that an understanding of this variability will be useful
in providing a range for the most likely NMP values for a
pair of fingerprints being matched.

Fig. 4 shows the NMP curves obtained using the his-
togram based density estimates for10 random partitions of
the NIST SD14 database. These curves correspond to the
mean, the minimum and the maximum values of the non-
match probabilities over the10 data partitions. Figs.5
and 6 show the corresponding curves for the kernel den-
sity based and parametric density based estimates, respec-
tively. The average variances (averaged over different score
values) of the estimates corresponding to histogram, kernel
density and parametric estimates of score distributions are
0.025, 0.025, and0.027, respectively.

Considering the mean NMP values obtained using the
histogram based density estimates as the ground truth, we
also computed the bias in the kernel density based as well
as the parametric density based NMP estimates. The aver-
age absolute difference between the histogram based NMP



Figure 5.Non-match probabilities based on kernel density estima-
tion. The solid line shows the mean values of NMP whereas the
bounding dotted lines show the minimum and maximum values of
NMP. The average variance of NMP is0.025.

Figure 6.Non-match probabilities based on parametric density es-
timates. The solid line shows the mean values for of NMP whereas
the bounding dotted lines show the minimum and maximum values
of NMP. The corresponding average variance of NMP is0.027.

and kernel density based NMP is0.006 whereas that be-
tween histogram based NMP and parametric density based
NMP is0.106. This shows that the parametric density based
estimate has a significant bias compared to kernel density
based estimates. Note that kernel density based computa-
tion of NMP is more desirable than histogram based value
since it (in fact, parametric density based estimates as well)
inherently extrapolates the NMP for the scores at which no
matching pairs were observed in the reference database.

4.3. Quality-based Evidential Value

It is well known that the performance of fingerprint
matchers (as well as that of latent examiners) depends on
the fingerprint image quality. As such, the non-match prob-
ability should depend on the quality of the fingerprint im-
ages in addition to the match scores. To investigate this, we
divide the genuine and impostor match scores based on the
quality of the associated fingerprint pairs. We use the NFIQ
fingerprint quality measure developed by the National Insti-
tute of Standards and Technology (NIST) [23] to calculate
the fingerprint image quality. The NFIQ measure assigns
one of five quality levels (excellent, very good, good, fair

Figure 7.Non-match probabilities for the good and bad quality
fingerprint pairs based on kernel density based estimates. The av-
erage variance values for the good and bad categories are0.002
and0.003, respectively. Note that these variances are much lower
than the variances reported in Figures 4-6 which are about0.025.

and bad) to a fingerprint. For our experiments, to maintain
an adequate number of fingerprint pairs of each quality type,
we divide the fingerprint pairs into two quality categories:
good and bad. The good category corresponds to those fin-
gerprint pairs where both the constituent fingerprints are at
least of good quality according to NFIQ (NFIQ<= 3). The
remaining fingerprint pairs are assigned to the bad category.
Among the genuine pairs, there are a total of81, 527 good
quality and26, 473 bad quality pairs while in the case of
impostors, there are836, 667 good quality and163, 333 bad
quality pairs.

Since the numbers of samples in the bad quality category
is relatively small, dividing data into10 partitions to obtain
the non-match probability could lead to large errors in es-
timating the densities. So, here we divide the dataset into
just two partitions and estimate the average variance based
on 2-fold cross validation. In order to further improve the
reliability of the NMP estimate, we perform100 2-fold par-
titioning of the dataset to obtain the average variance. The
quality based non-match probability curves are shown in
Fig. 7 for the case when the kernel density method is used
to estimate the genuine and impostor match distributions.
Clearly, the quality of the fingerprint pair significantly af-
fects the non-match probability values. Note that the closer
the NMP versus match score curve is to a step function, the
more conclusive and useful are the NMP values. Based on
this observation, as expected, the good quality fingerprint
pairs provide more conclusive NMP values than bad quality
fingerprint pairs. Further, separating the samples based on
quality also reduces the variance of NMP.

We also utilized the genuine and impostor density esti-
mates (using kernel density) computed based on the NIST
SD14 database for computing the NMP values for the la-
tent images in the NIST SD27 database which contains258
latent fingerprints and their mated full prints. These258
latent prints were classified by latent examiners into three



Figure 8.Histograms of the NMP values for 258 latent prints in
NIST SD27 categorized as good, bad, and ugly when matched to
their corresponding (mated) rolled prints.

quality types, namely: good, bad and ugly. There are88
good, 85 bad and85 ugly latent images in the database.
For consistency with two-quality level partitioning of the
NIST SD14 database, we combine the ugly and bad qual-
ity fingerprints into a single bad category and assume the
quality category of the latent image as the quality category
of the latent-fingerprint pair under consideration. See Fig.
8 for a histogram of the NMP values for258 latent prints
when matched with their mated rolled prints. Note that most
of the NMP values are close to zero indicating a genuine
match with high confidence; the high NMP values observed
for some genuine matches indicate that those match deci-
sions are suspect. The match scores were computed based
on manually marked minutiae provided in the NIST SD27
database using the Verifinger matcher6.

Fig. 9 shows two latent-full print pairs; one is from the
good quality category and the other is from the bad quality
category (these two specific pairs were considered in [22]).
The NMP value for the first pair (Fig.9(a)) without con-
sidering the quality information is4.47 × 10−56 but the
quality-based NMP value increases to1.44 × 10−52. For
the second pair of bad quality (Fig.9(b)), the NMP value
is decreased from0.784 to 0.521 as a result of considering
the quality information. This means that for a poor qual-
ity latent-rolled fingerprint pair, the genuine pairs are more
likely to have low match scores thereby reducing the NMP
value. We also computed the PRC as well as LR values cor-
responding to these two latent-full print pairs as reported in
Table1. Note that an NMP value of about10−52 for the g73
latent-rolled print pair means that out of1052 pairs of fin-
gerprints that have the same matching score as that between
the g73 latent-rolled print, only one of them is expected to
be an impostor pair while remaining pairs are expected to
be genuine. On the other hand, the corresponding likeli-
hood ratio of1051 simply means that the chances of the
same score value being obtained from a genuine pair is1051

6Since there is no SDK available to us for latent to full print matcher,
we rely on the matcher for full to full print to compute the match score.

(a)

(b)

Figure 9.Two sample latent fingerprints and their corresponding
full prints from NIST SD27. (a) A good quality latent-rolled pair
(g73), and (b) a bad quality latent-rolled pair (b115). The match
scores for (a) and (b) are65 and9, respectively.

Table 1.Likelihood Ratio (LR) and PRC values for the two latent-
rolled print pairs in Fig. 9. Note that due to the definition of LR,
the effect of considering quality information on the LR value is
opposite of that on PRC and NMP values.

times more likely than the chances of the same score value
being obtained from an impostor pair. The PRC value can,
however be understood using a simple counting experiment.
The PRC value of about10−55 for the g73 latent-rolled print
pair with a match score of65 means that out of the1055 im-
postor pairs observed in the past, only one of them had a
matching score of65. The drawback of this interpretation
is that it does not explicitly consider the probability that a
genuine pair has a match score of65. Consider a hypothet-
ical scenario where the probability that a genuine pair has
a match score65 is 10−56 . Then the pair is likely to be a
genuine match despite a seemingly very small PRC value.
While we agree that such scenarios are rare, it does point to
the fact that certain aspects of the evidential value cannot be
incorporated in PRC.



5. Summary

In this paper, we have presented a comprehensive frame-
work to analyze the evidential value of fingerprints and
proposed a new measure, called the non-match probabil-
ity (NMP). This measure is more intuitive than the exist-
ing measures based on the probability of random correspon-
dence (PRC) and likelihood ratio (LR). Further, it is easier
to empirically analyze the reliability of this measure. We
show that incorporating the image quality can lead to im-
provement in the confidence of evidential value of finger-
prints. In future, we plan to develop techniques to com-
bine evidence from multiple sources (e.g., multiple match-
ers and multiple latent prints of the same finger) and in-
crease the size of the database to estimate the genuine and
impostor distributions. We also plan to develop relationship
between the match score-NMP graph and the corresponding
Receiver Operating Characteristics (ROC) curve in order to
elicit the pros and cons of using NMP values as a threshold
in defining the operating point of a biometric recognition
system rather than the False Accept Rate that is commonly
used.
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