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On the Evolution Equations of
Viscous Gaseous Stars

PAOLO SECCHI

1. - Introduction

In this paper we study the non-stationary motion of a star regarded as a
compressible viscous fluid with self gravitation, bounded by a free surface. The
star is supposed to occupy a given bounded domain Qo of R. 3 at the initial time
t = 0, while for each subsequent instant t it occupies the domain Ot, not known
a priori. The equations governing the motion, obtained by the three laws of
conservation (momentum, mass and energy), are the following (see for instance
Serrin [7] and for detailed discussions in astrophysical context Ledoux-Walraven
C1]):

in DT.
The unknowns are the density p = p(t, y), the fluid velocity u = u(t, y)

==~(~1,~2,~3), the and the domain Q. Here u represents
the time derivative. The external force field per unit mass b and the heat supply

Pervenuto alla Redazione il 24 Giugno 1990.
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per unit mass per unit time r are known functions defined in ]0,7o[xR~. The
pressure p = p(p, 0) and the specific heat at constant volume c, = Cv (p, 0) are
given functions depending on the density and the temperature; the viscosity
coefficients tt and ~ and the coefficient of heat conductivity X are assumed to
be constant and to satisfy tz &#x3E; 0, ~ &#x3E; 0, X &#x3E; 0. Moreover 0 represents the
Newtonian gravitational potential given by

x standing for the constant of gravitation. We consider the following boundary
conditions. The velocity satisfies a dynamical condition expressing the continuity
of stress across the free boundary:

on sT = E 

Here p means the external pressure, a known function defined in

]0, To[xR; nt = nt(y) is the unit outward normal vector to aot at the point
y E ant. The free boundary aot must be subjected to another kinematic

condition, namely

(1.6) at each instant t of time it consists of the very same particles.

For a discussion on the above two boundary conditions see, for instance,
Wehausen-Laitone [9]. We consider also the following boundary condition for
the temperature:

where the external temperature 8 is a known function defined in ]0, To[xR
and h is a given positive constant. Finally we consider the following initial
conditions:

The free boundary problem for compressible Navier-Stokes equations
(without considering self-gravitation) has been studied by P. Secchi and A.
Valli [6] and by A. Tani [8]. T. Makino [4] investigated the Cauchy problem
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for the equations describing the evolution of a star regarded as an isentropic
ideal gas with self gravitation (i.e., equations (1.2), (1.1) without the viscous
terms and without considering (1.3); moreover, it is assumed that p = 

being the adiabatic exponent). In the present paper we find a solution of the
above problem in a space of Sobolev type for short time. The proof of existence
is obtained by linearization and by a fixed point argument as in [6]; to simplify
the proof, the solution is found to exist in a Sobolev space with less regularity.
In particular, if we neglect in (1.1) the term with the gravitational potential and
do not consider (1.4) (i.e., we set x = 0), we obtain a simpler proof of the
result in [6].

As usual in free boundary problems, it is convenient to write the problem
in the Lagrangian formulation, so that the domain of the unknowns becomes
fixed in time. 

_

Let 7y(~ -): Qo - R 3 be the solution of

so that (t, y) = (t, 1J(t, x)) for a suitable x E ’10. Then Qt = 1J(t, K2o) and, if 1J
is an homeomorphism, aK20) = K20)]. Hence condition (1.6) can be
substituted by (1.6)’. If we set v(t, x) = u(t, 77(t, x)), p(t, x) = x)), 0(t, x) =
(j(t, 1J(t, x)), ~(t, x) = ~(t, 1J(t, x)), b(t, x) = b(t, 1J(t, x)), r(t, x) = r(t, 1J(t, x)),
p’ (t, x) = pet, 1J(t, x)), 0’(t, x) = 0(t, 77 (t, x)), problem ( 1.1 )-( 1.10) becomes
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All indices run through 1, 2, 3; here and in the sequel, we adopt the
Einstein convention about summation over repeated indices. The coefficients

are the entries (k, i) of the Jacobian matrix [D1]]-I (where Dq has the
term Dkqj in the i-th row, k-th column) and N(t, x) is the normal to Qo)]
calculated in i.e., N(t, x) - When problem ( 1.11 )-( 1.21 ) is

solved, we can find a solution to the original problem ( 1.1 )-( 1.10) if q is a

regular enough homeomorphism. We shall see in Theorems A and B the precise
results. 

_

Set BR - { x E I  R } . Let us denote the space of
continuous (and bounded) functions on Qo and with (k positive integer)
the space of functions with derivatives up to order in Moreover,
if m is a positive integer, is the Sobolev space of functions with m
derivatives in L 2(Qo); we shall denote its norm by 11 - Ilm. For the definitions of

and (s not integer) see [2]. If X is a Banach space, L 2(0, T; X),
are the spaces of X-valued functions in

L2, Loo, and Hm, HI respectively. C"([0, T] ; X) is the space of X-valued Hölder
continuous functions with exponent a. We shall denote by ~ ’ - lp,m,T the norm
of T ; Hm (Qo)), 1  p  +oo, by I I - I I m,m/2,QT the norm in the space

the norm in the space

The norm in H’(0, T; X) (s not integer) is defined in this way:
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We shall prove the following results.

THEOREM A. Let no be a bounded connected open subset of II~ 3, locally
situated on one side of its boundary aQo; we assume ano E C3. Suppose that

for each

for each A
2ES?.o

Assume that the (necessary) compatibility conditions

are satisfied.
Then there exist T’ E]O, To],

and a diffeomorphism

such that (v, p, 0,,,,) is a solution of ( 1.11 )-( 1.21 ).

A direct consequence of Theorem A is the following result (see [6] for a
sketch of proof).

THEOREM B. If the hypotheses of Theorem A hold, then there exists

T’ E]O, To], and for each t E [0, T’] there exist a diffeomorphism x --~ ?7(t, x), a
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domain Qt = Qo), a velocity field u(t, ), a temperature 0(t, - ) and a density
pet, .) which are solution of ( 1.1 )-( 1.10). Moreover aSZt is of class and we
have

with p &#x3E; 0 in DT’,

2. - Proof of Theorem A

We prove the existence of a solution to ( 1.11 )-( 1.21 ) by a fixed

point argument, following the approach of [6]. From now on each constant
c, ci , c~, Ci, Cill Ti , T’ will depend at most on the data of the problem
no, To, p, g, X, UO, PO, eo, 1 p, cv, b, p, r. Moreover we shall assume the
outward unit normal no to aQ0 extended in a regular way, i.e., no E 
Define the operators

and the boundary operator

where co(x) = cv(po(x), oo(x)). First we consider the linear problem

Define the operator A in setting



301

To solve problem (2.4), we want to apply Theorem 3.2, chap. 4 of Lions-
Magenes [3] for H = Hence, some estimates are needed for the solution

D(A) of the problem .

where We introduce the bilinear form

Here and in the sequel f denotes integration over Qo. Then the weak
formulation of (2.5) is given by

As in [6], we have

LEMMA 2.1. If Re a &#x3E; k - 1 min , 3 /4 ), ax is a bounded and coerciveo = m 4
form in The coerciveness constant is independent of A.

LEMMA 2.2. For any A E C with Re a &#x3E; Ao, A+ A is an isomorphism from
D(A) (endowed with the graph norm) into Moreover, for any solution
w E D(A) and for any A E C with Re A &#x3E; Ao + 1,

where c does not depend on À.

for any solution w E D(A) we have

where c does not depend on À.

PROOF. From Lemma 2.1 one has

which gives
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with c independent of A. Taking the scalar product in of (2.5) by poAw,
gives

Integrating by parts yields

(see (2.9), (2.10) and the proof of Lemma 3.1 in [6]). From Kom’s inequality

for any w E we obtain

Moreover

Observing 0, Re A &#x3E; 0, from (2.9)-(2.12) we obtain

from which it follows
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the compatibility conditions

be satisfied. Then there exists a unique solution

of (2.4). Moreover

where the constant Co does not depend on T.

PROOF. The trace G(O) on at2o belongs to HI/2(aQo) so that it is possible
to find a function 1&#x3E; E HI/2,1/4(]O, such that 1&#x3E;(0) = G(O) and

where the constant c does not depend on T is the norm in

Now, we can extend G - O from [0, T] x ano to R x ano in such a way
that the extension P(G - C) E H3/2,3/4(R x peG - C) = 0 for t  0 and

where the constant c does not depend on T (extension by reflection around t = T:
see Lions-Magenes [2], Theorem 2.2, chap. 1 and Theorem 11.3, chap. 1). Hence
we have extended G to G = P(G - 1» + I&#x3E; and G E H3/2,3/4(]O, +00[Xaoo) with

Now, compatibility conditions (2.14) are necessary and sufficient to find
a function W E H3,3/2(]0, +00[XQO) such that

and satisfying the estimate
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where the constant c does not depend on T (see [6]). Let us consider the

problem .. 

Since Lemma 2.2 and Lemma 2.3 hold, we can apply Theorem 3.2, chap. 4
of [3], and find a solution

such that

where the constant c does not depend on T. The function w = V + W is the
solution of (2.4); from (2.16)-(2.18) we have

Finally,

gives (2.15).

In a similar way we solve the problem

We obtain

the compatibility condition

be satisfied. Then there exists a unique solution

of (2.19). Moreover
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where the constant Co does not depend on T.

We state a proposition which will be useful in the sequel (see [6]).

PROPOSITION 2.6. Let w E L2 (o, T; with

Then, for each

where

The constant c does not depend on T.

Set now

Let q be the solution of

it is easily verified that there exist constants Ci and C2 such that if, for an

arbitrary T  To, v, p and 1} satisfy IvI2,3,T +  CoE,  E,

in QT, then
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where ak2 = The constants C1 and C2 do not depend, as usual, on T.
Set now

First, we show that RT =/ 0 for each T. Proceeding as in the proof of
Lemma 2.4, we see that there exist two functions v’, 0’, in

such that Moreover

The constants c 1, c 1 are easily seen to be less than Co and Cb, respectively.
Using the compatibility conditions (1.22), (1.23) we have

Hence (v’, po, 0’) EE RT for any T. We can now construct a map A defined
in RT. We shall show that it has a fixed point, namely a solution of our problem.
Take (v*, p*, 0*) E RT. Let q* be the solution of

that is Moreover, :

Hence, for each 5
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Furthermore, there exists a constant C3 &#x3E; 1 such that, for an arbitrary
T  To, (v*, p*, 0*) E RT implies

Since

and for any pair of orthonormal vectors T2(x) we have

we can find TI E]0, To] such that

hence, for RT yields

for any pair of orthonormal vectors Tl (x), T2(x). Finally we have

and consequently
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Since

we can find an instant T2 Ti ] such that, for T  T2, (v*, p*, 8*) E RT implies

i.e., ?y*(~ ’) is injective for any t E [o, T ) . Define now the operators

and the boundary operator

where akj = is the entry (k, j) of the matrix [D1J*]-I, N* = N* (t, x) is
the unit outward normal to x), c*(t, x) = cv(p*(t, x), 0*(t, x)).
Since (v*,p*,0*) satisfy the initial conditions (1.18)-(1.21), we have

Consider the following problems
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First, we note that, if (v*, p*, 0*) e RT, then

and 1’Ij*12,3,T -I-  COE. Hence detDn* E T; and, since
for T  T2 (2.26) holds, we also have aki E H’(0, T; with åki E
HI(O, T; ; by interpolation åki E C°([0, T]; The norms of all
these functions are bounded by some constants depending on the data of the
problem but, from Proposition 2.6, independent of T. Assume T  T2; we want
now to solve (2.29). Since by (2.26), (2.28) q* is a diffeomorphism, instead of
(2.32) we can consider

for each t E [0, T], z Ei 0* t = ?7 * (t, For any t E [0, T], extend p*(t, . ) to R3
by 0 out of 0.0. The changement of variables z - z = (~ * )-1 (t, z) shows that
the function (t, z) - p* (t, (r~ * )-1 (t, z)) belongs to L"(0, T ; for any p &#x3E; 1.

Each norm is bounded by a constant depending on the data but independent of
T. By potential theoretic estimates V§* E L"(0, T ; for any p &#x3E; 3 /2.
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Hence we obtain V ø* E L"(0, T; W1,P(Qo)) for any p &#x3E; 3/2, with each norm
bounded by a constant independent of T. In particular,

Now we can estimate F* in L2(0, T; H1(QO)). We have

where and R is such that

Recalling that, if f E where X is a Banach space, we have

and that, I we have

we obtain

Next we estimate the boundary term We have

where

Since by conditions (2.26), (2.28) q*(t, .) is a diffeomorphism, for each
t E [0, T], in each local chart 0 = Ç2) of aQ0 the unit vector N* can be
written as 

_ , , , , _ - - ,
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where

From the estimates on v*, q*, we obtain

Hence we can proceed as for F* obtaining

To estimate the seminorm [G’*]3/4~o,Lr is more complicated; we observe
that

1. A

that åki bounded in L"(0, T ; gives

and that Dv* is bounded in Using also (2.36) we thus
obtain

Next we observe that p* bounded in Ll([O, TI; HI (00)) yields

moreover, by using Proposition 2.6, 0* E T ; gives

where 0  c  1/4. Hence we obtain

For the last term in G* we have
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Hence from (2.38)-(2.40) we obtain

Lemma 2.4 yields that there exists the solution v of (2.29) such that

Hence we can find T3 e]0,?2] such that for an arbitrary T  T3,
(v*, p*, 0*) E RT implies

Now we proceed with the estimates for 0. First we consider the estimate
of H* in Observe that H3~2+~(SZo) C LOO(Oo), 0  c  1/2, so
that if f E E then f g E We have

Observe that, by interpolation,

, so that
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Concerning the quadratic terms in Dv*, we observe that by interpolation
Dv* is bounded in HI/4-ê/2(0, T; H3/2+ê(QO)) c L 4/(1+2e)(0, T; H3/2+ê(QO)), where
0  c  1 ~2; hence

as usual the constants do not depend on T. In a similar way we estimate
the term containing D2p*. The other terms can be treated in a straightforward
manner. Thus we obtain

The estimate of K* in Hll’ ,1/4(y T) is similar to the one of G*. We obtain

where 0  e  1/4. Hence, from Lemma 2.5 there exists the solution 0 of

(2.30) such that

where we can take one same e, 0  c  1/4. Then there exists an instant

T4 ~]0,7s] such that for an arbitrary T  T4,

Now we consider problem (2.31). Let T  T4. From (2.23) we have

so that

,u

Let T’ e]0,24] such that

The solution of (2.31) is given by
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hence (v*, p*, 0*) E RT, implies

Moreover

From (2.23), (2.24), we have

Hence we have proved that the map A : (v*, p*, 0*) --+ (v, p, 0) satisfies

A(RT,) C RT,. Let us introduce the space

where e is a fixed small positive parameter, say 0  e  1 /2.

LEMMA 2.7. RTf is a convex and compact subset of X.

PROOF. is obviously convex and bounded in Y x Y x HI(O, T’; H2(QO)),
where

The space Y is continuously embedded in

which is, from Ascoli-ArzeIA’s and Rellich’s theorems, compactly embedded in
00([0, T’]; H2-ê(QO)). Analogously, HI(O, T’; H2(QO)) is compactly embedded in
00([0, T’]; H2-ê(QO)). Hence RT, is relatively compact in X. Finally, it is easily
verified that RT, is closed in X. 0

LEMMA 2.8 The map A is continuous from the topology of X into the
topology of CO([O, T’]; L2(QO)).

PROOF. Suppose that (v*, pn, 0:) RT, converge in X to (v*, p*, 0*) and
let (vn, Pn, 0n ) m A(v*, Pn, 0:), (v, P, 0) m A(v*, p*, 0*).We observe that 11: -+ 11*
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in T’]; H2-ê(00)) (with obvious notation). Assume that E is an extension
operator from Qo to lI~ 3, bounded in HI-6 and H2, i.e.,

so that f g E Since D1J: - in T’]; and D1J: is
bounded in then --~ ak$ in Observe
also that

Take the difference between the equations for (vn, pn, 0n) and (v, p, 0),
multiply by po(vn - v), (pn - p), poco(O,, - 0) respectively, and integrate over SZo.
Integrating by parts and using Kom’s inequality (2.10), from the equations for
the velocity we obtain

with obvious notations. Estimating the right-hand side, after long but straight-
forward calculations, gives

where go is a small positive parameter. Choosing co = 2:fço, we obtain by
Gronwall’s lemma



316

for any t e]0, V], where

bn (t, x) - fi4 (t , z) m Fix an arbitrary parameter
6-1 &#x3E; 0. We observe that -~ for each (t, x) E QT,. Since
b E L2(o, To; CO(B R)), 15 E Loo(O, To; CO(B R)), by Lebesgue’s theorem we can
find n &#x3E; 0 such that

for each n &#x3E; ni. Consider now the term with the gravitational potential.
Recalling the boundedness of 1J:, ?y*, we obtain

where p &#x3E; 3 so that c ~n (t, (r~n &#x3E;-1 (t, z))~
~’(~~) = ~*(t, (r~*)-1(t, z)). Recall that Vø:, V§* e for

any p &#x3E; 3/2; here and in the right hand side of (2.43) the gradients of ~n, ~ *
are with respect to the variable z. Consider the second term in the right-hand
side of (2.43). (§§J - §*)(t, z) satisfies the equation

for each t E [o, T’], z e R 3, where pn(t, (r~n)-1(t, z)) and similarly
for p*. We multiply (2.44) by ~~ - ~ *, integrate over Il~ 3, integrate by parts.
Using the estimate we obtain

Here p* is considered 0 out of Qo, so that we define
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Let define

from which we obtain

(see the calculations which lead to (2.28)). On the other hand, the Lebesgue
measure of (here A stands for the symmetric difference of
the two sets) goes to zero as n - +oo, uniformly for t E [0, T’]. Then, from
the continuity of p*, we can find n2 &#x3E; ni such that

for each n &#x3E; n2. Finally, since V~* E LI(O, T’; CO(PR)), by Lebesgue’s theorem
we can find n3 &#x3E; n2 such that

for each n &#x3E; n3. Hence, from (2.41)-(2.43), (2.45)-(2.47) we obtain the

convergence of vn to v in In an analogous way we obtain
the convergence of Bn to 0. The convergence of pn to p is obtained by a direct
computation. 0

By a compactness argument, A is continuous from the topology of X into
the topology of X. We can finally apply the Schauder’s fixed point theorem,
and find a fixed point (v, p, 0) = A(v, p, 0), that is a solution of our problem. The
proof of theorem A is complete.
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