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Abstract

This paper expands on a 1997 study of the amount and distri-
bution of near-duplicate pages on the World Wide Web. We
downloaded a set of 150 million web pages on a weekly basis
over the span of 11 weeks. We then determined which of
these pages are near-duplicates of one another, and tracked
how clusters of near-duplicate documents evolved over time.
We found that 29.2% of all web pages are very similar to other
pages, and that 22.2% are virtually identical to other pages.
We also found that clusters of near-duplicate documents are
fairly stable: Two documents that are near-duplicates of one
another are very likely to still be near-duplicates 10 weeks
later. This result is of significant relevance to search en-
gines: Web crawlers can be fairly confident that two pages
that have been found to be near-duplicates of one another
will continue to be so for the foreseeable future, and may
thus decide to recrawl only one version of that page, or at
least to lower the download priority of the other versions,
thereby freeing up crawling resources that can be brought to
bear more productively somewhere else.

1. Introduction

In a 1997 study, Broder et al. [4] presented a technique
for estimating the degree of similarity among pairs of docu-
ments. Their technique, which they call shingling, is purely
syntactic; it does not rely on any linguistic knowledge other
than the ability to tokenize documents into a list of words.
Their technique extracts all �-word sequences of adjacent
words (herein called shingles); two documents are consid-
ered equal if they contain the same set of shingles, and highly
similar if their sets of shingles significantly overlap. Broder
et al. used an unbiased deterministic sampling technique
to reduce the set of shingles to a small, yet representative,
subset. This sampling reduces the storage requirements for
retaining information about each document, and it reduces
the computational effort of comparing documents. Broder
et al. applied their technique to a set of 30 million web
pages obtained from an AltaVista crawl, and grouped these
pages into clusters of very similar documents. They found

that roughly one third of the pages in their data set were
near-duplicates of other pages.

There are several techniques that are very similar to shin-
gling, but that use sequences of adjacent characters instead of
word sequences. Manber developed such a technique to find
similar files in a file system [11]. Heintze developed a simi-
lar technique for detecting near-duplicate documents [9]. He
applied it to a set of technical reports to determine how simi-
lar they are, and proposed to use it track updates to technical
papers, and as a method for detecting plagiarism.

Shivakumar and Garcia-Molina proposed a different tech-
nique for locating plagiarized documents. Their technique
segments a document into a set of non-overlapping chunks,
and stores a hash value for each chunk in a table. They
consider word-sized, sentence-sized, document-sized, and
variable-sized chunks (variable-sized chunks are sequences
of words whose length is determined by the hash values of
individual words).

The study of web clusters is related to the study of “mir-
rors” on the web (see for example [1, 7, 2, 6]). Two web sites
are mirrors of one another if a substantial portion of the pages
on one site is duplicated (or near-duplicated) on the other
site, and if each replicated page on both sites is addressed
by URLs with the same suffix. Some mirrors are caused
by an organization replicating their content across multiple
web servers, for the purpose of geographic distribution or
rebranding. Others are caused by independent organizations
maintaining collections of standards documents, e.g. uni-
versities maintaining collections of RFCs and Unix manual
pages. One could characterize a set of mirror sites as a large
set of clusters, where each cluster covers all versions of a
replicated page.

In a 1999 study, Bharat and Broder [1] examined 180
million URLs to look for patterns of shared URL suffices,
identifying about 30,000 candidate mirror pairs. They then
downloaded around 20 URLs from each candidate mirror and
checked if the corresponding pages were near-duplicates.
This technique validated almost 17,000 of their candidate
mirror pairs as actual mirror pairs.

Broder et al. proposed to use shingling to characterize how
pages change over time. The PageTurner study [8] realized
this goal. In that study, we downloaded a set of 150 million
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web pages on a weekly basis, over the span of 11 weeks, and
measured the amount of change per URL, and investigated
which aspects of a web page are predictive of change. We
used a variant of Broder et al’s shingling technique to reduce
the amount of data retained for each downloaded document.
In the PageTurner study, we considered only the evolution of
individual pages, whereas this study considers the evolution
of clusters of near-duplicate pages.

This paper expands on Broder et al.’s 1997 of the amount
and distribution of near-duplicate pages on the World Wide
Web. The study at hand is based on the data set collected
by the PageTurner experiment. Here, we consider which of
these pages are near-duplicates of one another. We found
that 29.2% of all web pages are very similar to other pages,
and that 22.2% are virtually identical to other pages. Apart
from covering a larger set of web pages than Broder et al.,
the main contribution of our study is to explore the temporal
aspects of clusters; that is, we investigate how clusters of
near-duplicate pages evolve over time. We also found that
clusters of near-duplicate documents are fairly stable: Two
documents that are near-duplicates of one another are very
likely to still be near-duplicates 10 weeks later. This result is
of significant relevance to search engines: Web crawlers can
be fairly confident that two pages that have been found to be
near-duplicates of one another will continue to be so for the
foreseeable future, and may thus decide to recrawl only one
version of that page, or at least to lower the download priority
of the other versions, thereby freeing up crawling resources
that can be brought to bear more productively somewhere
else. We are currently examining our data for the presence
of mirrors, and are studying the evolution of such mirrors.

The remainder of this paper is structured as follows: Sec-
tion 2 describes our experimental framework, contrasting
our techniques to those used in previous studies. Section 3
presents the results of our investigation. Finally, Section 4
puts our results into perspective and identifies avenues of
future work.

2. Experimental Framework

Our results are based on data collected in the course of
the “PageTurner” project [8]. This project was aimed at
measuring the amount of textual changes in individual web
pages over time. To this end, we crawled a set of slightly over
150 million web pages once a week, starting in November
2002 and continuing for 11 weeks. For every downloaded
page, we recorded a vector of 84 features, together with
other salient information, such as the URL, the HTTP status
code (or any DNS or TCP error), the document’s length, the
number of words, etc.

We computed the feature vectors using a modified ver-
sion of the document shingling technique due to Broder et
al. [4], which uses a metric of document similarity based
on syntactic properties of the document. In order to com-
pare two documents, we map each document into a set of

�-word subsequences (groups of adjacent words or “shin-
gles”), wrapping at the end of the document, so that every
word in the document starts a shingle.

Two documents are considered to be identical if they map
to the same set of shingles; they are considered to be similar
if they map to similar sets of shingles. Quantitatively, the
similarity of two documents is defined to be the number of
distinct shingles appearing in both documents divided by
the total number of distinct shingles. This means that two
identical documents have similarity 1, while two documents
that have no shingle in common have similarity 0.

We collected the data using the Mercator web crawler [12],
customized to collect feature vectors for each downloaded
page. Our feature vector extraction module substituted HTML
markup by whitespace, and then segmented the document
into 5-word shingles, where each word is an uninterrupted
sequence of alphanumeric characters. Next, it computed
a 64-bit checksum of each shingle, using Rabin’s finger-
printing algorithm [3, 13]. We call these fingerprints the
“pre-images”. Next, the module applied 84 different (ran-
domly selected but fixed thereafter) one-to-one functions to
each pre-image. Each function is a 64-bit Rabin fingerprint-
ing function. The 84 fingerprinters use different randomly-
chosen primitive polynomials of degree 64. The functions
are one-to-one because Rabin fingerprints map distinct 64-
bit values to distinct results. We cannot prove that these
functions are min-wise independent [5], but they seem ac-
ceptable in practice. For each function, we retained the pre-
image which results in the numerically smallest image. This
resulted in a vector of 84 pre-images, which is the desired
feature vector. Given the feature vectors of two documents,
two corresponding elements of the vectors are identical with
expectation equal to the similarity of the documents.

It is worth noting that this variant of shingling differs from
those described by Broder et al. [4] in their 1997 paper on
“syntactic clustering of the web”. They, like us, use Rabin’s
fingerprinting algorithm to map shingles to pre-images, but
our approaches differ in how pre-images are sampled. We use
a fixed number of one-to-one functions to map pre-images
to images and then select for each one-to-one function the
pre-image that maps to the minimal image. We end up with
a constant number of features, regardless of the number of
words in the original document; this technique was first em-
ployed by Broder, Burrows, and Manasse in 1998. It works
even for documents that contain very few words, unlike our
earlier techniques. Finally, this technique allows us to mea-
sure the similarity between two documents by comparing
only corresponding elements from two feature vectors.

Broder et al. suggest two alternative methods for sam-
pling the set of shingles: The “MOD�” technique selects all
those pre-images whose value modulo � is zero; in other
words, this method produces a variable-length feature set
(as opposed to an ordered, fixed-sized vector), where shorter
documents will have fewer features, and very short docu-
ments might have no features at all. A variant, the “MOD�� ’
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method, attempts to rectify these problems by adjusting �

such that a roughly constant number of elements is selected.
The MIN� method selects the � numerically smallest pre-
images (or all the pre-images, if there are fewer than �).
In all of these earlier techniques, measuring the similarity
between two documents is more complicated that simply
comparing only corresponding elements from two feature
vectors; it requires computing the intersection of two feature
sets.

Crawling left us with 44 very large logs (produced by the
eleven crawls on the four crawlers), each spanning multiple
files, one per day. The logs totaled about 1,200 GB, whereas
the sampled documents took up a mere 59 GB.

As they were, these logs were not suitable for analysis yet,
because the URLs occurred in non-deterministic order in
each log. We sorted the logs to remove this nondeterminism,
and then merged and condensed the logs. Each combined
record contained information that allowed to determine how
documents changed over time, but in particular it contained
six “supershingles” for each of the 11 versions of each URL.
Each “supershingle” represents the concatenation of 14 adja-
cent pre-images. Broder et al. [4] described supershingling,
but their method for aggregating features into supershingles
is highly sensitive to the insertion of words into a document.

Due to the independence of the one-to-one functions used
to select pre-images, if two documents have similarity �, each
of their supershingles matches with probability ���. For two
documents that are 95% similar, each supershingle matches
its counterpart with probability 49%. Given that we retain
six supershingles, there is a probability of almost 90% that at
least two of the six supershingles will agree for documents
that are 95% or more similar.

To more efficiently discover pairs of documents sharing
at least two supershingles, we perform the concatenation of
all pairs of distinct supershingles, with the lesser-numbered
supershingle first, thereby producing 6 choose 2 (i.e. 15)
“megashingles”. Two documents that are 95% similar thus
will have an almost 90% chance of having a megashingle in
common, while two documents which are 80% similar only
have a 2.6% chance of having a megashingle in common.

We use megashingles to compute clusterings of near-dupli-
cate documents (that is, documents having two supershin-
gles in common). In particular, we maintain 15 hash tables,
one of each pair of supershingles. 1 The hash tables map
megashingles to “document identifiers” (integers identifying
a record in the condensed logs of the PageTurner experi-
ment). For each document we are considering, we compute
its 15 megashingles (based on the 6 supershingles found in
the condensed logs). For each megashingle, we check the
1Numerical matches between shingles produced by two different
fingerprinting functions is coincidental. By the same token, nu-
meric matches between supershingles that are the combination of
unrelated shingles is coincidental, as are numeric matches between
megashingles that are derived from unrelated supershingles. Main-
taining a separate hash table for each combination of supershingles
ensures that such coincidental matches are not interpreted as near-
similarity between documents.
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Figure 1. Distribution of sizes of clusters of very similar
documents in week 1

corresponding hash table to determine if that megashingle has
been encountered before. If the megashingle is not contained
in the hash table, we add it together with the corresponding
document ID. Conversely, if the hash table already contains
a mapping from this megashingle to another document ID,
the two documents belong in the same cluster. To maintain
the clustering, we build a Union-Find data structure [10].

Using hash tables of megashingles and union-find forests
of document ID sets, our running time is close to linear
in the number of documents. This is in sharp contrast to
the approach taken by Broder et al. Their 1997 experiment
required more than 10 CPU days to cluster 30 million docu-
ments at the 50% similarity level; we are able to cluster 150
million documents in about 3 hours, using three year newer
hardware.

3. Results

We used the clustering algorithm described in the previous
section to partition the documents into sets of very similar
documents, that is, documents that have at least two super-
shingles in common. We clustered each of the 11 weeks
separately. Of the 150,836,209 documents that we down-
loaded during the first week, 57,305,947 were similar to some
other document downloaded that week, while 93,530,262
documents were not similar to any other document. The
documents that were similar to others fell into 13,283,856
clusters. In other words, 44,022,091 documents, or 29.2% of
all the documents downloaded, were near-duplicates of the
13,283,856 “canonical” documents representing the clusters.

Figure 1 shows the distribution of the sizes of clusters of
very similar documents in the first week. The horizontal
axis depicts the cluster size, on a logarithmic scale (“1E+3”
indicates clusters of size ���); the vertical axis shows the
number of disjoint clusters of that size (again on a logarith-
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Table 1. Characterization of the 20 largest clusters of very similar documents

#URLs #Hosts #Machines Description Representative URL

921374 6286 3 Pornography http://fr.gncix.cc/page1.html

315788 335 199 (+ 2) Tucows software download pages http://games.fastnet.it/news.html

201869 15 15 Health food store http://www.usrma.com/vitamins/jodahl/jodahl.htm

118530 4 2 Directory of car sites http://www.100topauto.com/SiteMap

100428 11977 14 Pornography http://hot.fuckjpg.com/

92629 43906 31422 (+ 1306) Nothing but title “Untitled document” http://gc.dk/

91207 53532 2 Pornography http://www.the-girl.net/Sex/sex

84421 121 1 CitySearch login page http://boise.citysearch.com/review/29/add

75766 4 2 Directory of clip art sites http://www.100topclipart.com/SiteMap

70081 3 1 Directory of career sites http://career.100topcareer.com/SiteMap

69589 3 1 Directory of art-related sites http://www.100topart.com/SiteMap

64297 29713 10 (+ 18418) Pornography http://gay-day.com/

63714 3 2 Directory of music sites http://music.100topmusic.com/SiteMap

63298 3 1 Directory of education-related sites http://www.100topeducation.com/SiteMap

61318 3 2 Directory of business-related sites http://www.100topbusiness.com/SiteMap

60923 3 1 Directory of cartography sites http://www.100topmap.com/SiteMap

59848 4 2 Directory of golf sites http://www.100topgolf.com/SiteMap

59358 22 20 (+ 1) Tucows themes pages http://freethemes.ip.pt/golf.html

57870 4 1 Directory of news sites http://www.100topnews.com/SiteMap

53555 162 133 (+ 1) Tucows software download pages http://tucows.mts.net/preview/194076.html

mic scale). The bulk of the curve fits a linear trend, which
(given the logarithmic scale of the axes) suggests a power
law distribution with an exponent of roughly 2.5.

Note that there are several regions in the curve where the
datapoints deviate from the trendline. In particular, for clus-
ter sizes of around 100, we see numerous clusters where the
number of clusters of a given size exceeds the trendline by
a factor of 5 to 10. We have investigated some of these out-
liers. In every case we have examined, the anomaly is due
to mirroring. For example, for cluster size 108, over 90% of
the clusters of that size each consist of URLs from the Tu-
cows collection, each of these clusters contains very similar
(possibly identical) Tucows2 web pages that are served by
around 100 different web servers.

Figure 2 is similar to figure 1, but shows the cluster size
distribution for the last week of the PageTurner crawl (black
points) superimposed onto that of the first week (light red
points). As can be seen, the trendline of the last week has
been vertically translated down by a tiny amount, reflecting
the fact that some URLs that were live during the first week
have subsequently become unreachable. The slopes of the
two curves do not differ, indicating that the exponent of the
power law distribution remained constant.

Table 1 lists the 20 largest clusters. The first column
shows the number of distinct URLs in each cluster (listed
in decreasing order). The second column shows the number
of distinct symbolic host names of these URLs. The third

2Tucows is a popular directory of Freeware and Shareware appli-
cations.

column shows the number of distinct machines (we assume
two different symbolic host names are served up by the same
machine if they resolve to the same IP address3). The fourth
column describes the content of each cluster. Finally, the
fifth column gives an exemplary URL from that cluster.

For 17 of the 20 clusters shown in table 1, the web pages
contained in each cluster do not differ in any meaningful
way. For example, the web pages in the third cluster are
store fronts of an online health food retailer. The 201,869
store front pages are identical to one another, with the ex-
ception of the name of the franchisee changing. In other
words, a search engine would be well-advised to index only
a canonical representative from these 17 clusters. On the
other hand, the pages in each of the three Tucows clusters,
while being very similar to all other pages in the same cluster,
differ in one important aspect: the name of the software item
to download. Given that this change constitutes the most
relevant part of the page, a search engine should index all the
pages (or at least all the changing portions).

As we explained above, we consider two documents to be
very similar if they have two supershingles in common. We
used this notion of similarity when performing the clustering
whose distribution is shown in figures 1 and 2. We have per-
formed another clustering using a more stringent definition of

3By the time we performed these DNS resolutions (which was
about six months after we performed the initial web crawl), a num-
ber of the domain registrations had expired, leaving us unable to
resolve the affected symbolic host names. The notation m(+ n) in-
dicates that we were unable to resolve n of the host names, while
the others resolved to IP addresses suggesting m physical machines.

Proceedings of the First Latin American Web Congress (LA-WEB 2003) 
0-7695-2058-8/03 $17.00 © 2003 IEEE 



Table 2. Characterization of the 20 largest clusters of virtually identical documents

#URLs #Hosts #Machines Description Representative URL

118529 4 2 Directory of car sites http://www.100topauto.com/SiteMap

92629 43906 31422 (+ 1306) Nothing but title “Unitled document” http://gc.dk/

75766 4 2 Directory of clip art sites http://www.100topclipart.com/SiteMap

70081 3 1 Directory of career sites http://career.100topcareer.com/SiteMap

69588 3 1 Directory of art-related sites http://www.100topart.com/SiteMap

64297 29713 10 (+ 18418) Pornography http://gay-day.com/

63714 3 2 Directory of music sites http://music.100topmusic.com/SiteMap

63298 3 1 Directory of education-related sites http://www.100topeducation.com/SiteMap

61318 3 2 Directory of business-related sites http://www.100topbusiness.com/SiteMap

60923 3 1 Directory of cartography sites http://www.100topmap.com/SiteMap

59848 4 1 Directory of golf sites http://www.100topgolf.com/SiteMap

57870 4 2 Directory of news sites http://www.100topnews.com/SiteMap

51399 3 1 Directory of floral sites http://www.100topflower.com/SiteMap

48267 2 1 Directory of weather-related sites http://www.100topweather.com/SiteMap

47461 2 1 Directory of book-related sites http://www.100topbook.com/SiteMap

41092 4 1 Directory of government and political sites http://www.100topgovernmentsites.com/SiteMap

39888 3 2 Directory of reference sites http://www.100toplibrary.com/SiteMap

39338 3 1 Directory of chat sites http://www.100topchat.com/SiteMap

38398 2 1 Directory of humor sites http://www.100topjoke.com/SiteMap

36792 3 1 Directory of software sites http://www.100topsoftware.com/SiteMap

document similarity, where two documents are considered to
be virtually identical if they have all six supershingles in ac-
cord, which is indicative of similarity exceeding 99%. Using
this metric, 45,492,400 were similar to some other document
downloaded that week, while 105,343,809 documents were
not similar to any other document. The documents that were
similar to others fell into 12,019,235 clusters. In other words,
33,473,165 documents, or 22.2% of all the documents down-
loaded, were near-duplicates of the 12,019,235 “canonical”
documents representing the clusters.

Figure 3 superimposes the distribution of sizes of clusters
of very similar documents (black points) upon the distribution
of sizes of clusters of virtually identical documents (light
orange points). As in figures 1 and 2, the axes are on a
logarithmic scale, and the distributions roughly fit a power
law. However, the exponent of the distribution of sizes of
clusters of virtually identical documents is visibly smaller.
Other gross features of the two distributions are similar; e.g.
both spot a similar anomaly for cluster sizes around 100.

Table 2 lists the 20 largest clusters of virtually identical
documents. The meaning of the columns is identical to those
of table 1. As is to be expected, using this more stringent sim-
ilarity metric eliminates all the “interesting clusters” (that is,
those whose constituent documents contain small but mean-
ingful differences). This suggests that search engines that
want to exclude all but one web page of each cluster from
their index should use this similarity metric when performing
the clustering.

Figure 4, 5 and 6 illustrate how clusters grow and shrink

over time. In order to describe the figures, we have to in-
troduce some notation. Let ����� be the cluster of URLs
containing URL � in week �. The cluster containment coef-
ficient ��

� ��� of week � in week � for URL � is defined to
be:

��
� ��� �

������ � ������

�������

Likewise, the cluster similarity coefficient ��
� ��� of weeks

� and � for URL � is defined to be:

��
� ��� �

������ � ������

������ � ������

We further define � �
� to be the set of all URLs occurring in a

cluster of size between � and 	 in week 1, i.e.

�
�
� � �� � � � ������� � 	�

The curves in these three figures show averages of � and
� over all the URLs in a set � �

� . Each curve represents
different choices of � and 	; that is, it aggregates all the
URLs in clusters whose sizes in week 1 were in the range
��
 		.

Figure 4 shows the rate at which documents depart from the
clusters they occupied in the first week. The figure shows
seven curves; each curve represents clusters whose sizes
ranged between � and 	 in week 1. A data point ��
 �� on
curve �–	 indicates that

� �

�
���

�

�
��
�
���

�� �
� �
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Figure 2. Distribution of sizes of clusters of very similar
documents in week 1 vs. week 11

More colloquially speaking, the data point ��
 �� shows that
in week �, a fraction � of the URLs that were clustered
together in the first week remain in the same cluster. There
are a number of features in figure 4 that deserve mention.

First, note that the curve for clusters of size 1 is a straight
line at 1. In other words, clusters of size one have perfect
retention – not surprising since they contain only one URL,
and the document behind the URL will always resemble
itself.

Second, the general trendline of the curves representing
non-singleton clusters shows a slight downward slope. Clus-
ters of 10 or fewer URLs appear to have better retention than
larger clusters, but beyond that, there seems to be little corre-
lation between cluster size and rate of retention. Except for
the category of cluster containing more than 100,000 docu-
ments (which encompasses only five clusters, as can be seen
from table 1), the average retention rate in each category is
between 78% and 95%.

Third, there is a prominent dip in retention in the third
week, affecting clusters of all sizes (other than singleton
clusters). This dip is caused by a disk failure we encountered
during our third week of crawling, which caused us to loose
all information about URL from a quarter of the hosts in
our sample set.4 Losing information about some URLs may
cause clusters to split: Some fraction of the URLs in a cluster
will be handled by the machine with the failed disk (and
thus move in week 3 into the “could not download” cluster),
while those URLs in the cluster that are handled by non-
failed crawlers will remain in the original cluster. We also

4The Mercator web crawler distributes URLs across crawler ma-
chines by hashing the URL’s host component; in other words,
URLs referring to the same web server are handled by the same
crawling machine.
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Figure 3. Distribution of sizes of clusters of very similar
vs. virtually identical documents in week 1
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Figure 4. Containment of week n clusters in week 1 clus-
ters

see a more uniform impact of the crash on retention based on
the size of the cluster, because larger clusters are more likely
to span multiple hosts.

Fourth and finally, the curve of the clusters containing
more than 100,000 documents – which, as mentioned above,
contains only five clusters – is far noisier than the curves
of smaller clusters. We have two explanations for this phe-
nomenon: First, one of the five clusters originates from two
web server machines, another from just three; a transient fail-
ure of one of those machines will cause the corresponding
cluster to fragment. Second, our observation of the pages
in a cluster is drawn out over a span of days (possibly up to
a week). Therefore, if the content of the pages in a cluster
changes during that week, the cluster appears to have frag-
mented from our point of view. This effect is amplified by
clusters that originate from different web servers if the syn-
chronization of content among those servers is time-delayed.

Figure 5 shows the similarity between each cluster in week
1 and its counterpart in subsequent weeks. As in figure 4, the
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Figure 5. Similarity of week 1 and week n clusters

figure shows seven curves; each curve in this figure represents
clusters whose sizes ranged between � and 	 in week 1. A
data point ��
 �� on curve �� 	 indicates that

� �

�
���

�

�
��
� ���

�� �
� �

More colloquially speaking, the data point ��
 �� shows that
in week �, what fraction � of the URLs that were clustered
together either week were indeed clustered together in both
weeks. By definition, these numbers are smaller than those
in figure 4 (since ��

���� �� ��
���� for all �, �, �).

Note that the curve of clusters that were of size 1 in the first
week is not constant at 1, as it was in figure 4. This is partly
due to the fact that URLs that constituted a singleton cluster
in the first week might become unavailable in subsequent
weeks, and thus move to the large “could not download”
cluster.

Despite this, it is remarkable how similar figures 4 and 5
are. This suggests that the evolution of clusters in our sam-
pled set was dominated by URLs becoming unavailable.
However, it should be acknowledged that our study was not
designed to witness the birth of new web pages, and conse-
quently could not observe any such new pages being added
to existing clusters. Performing such a study remains an
intriguing avenue for future research.

In an attempt to isolate the arrival rate of URLs into ex-
isting clusters, we computed the reverse cluster containment
coefficient, as depicted in figure 6. Once again, each curve
in this figure represents clusters whose sizes ranged between
� and 	 in week 1. A data point ��
 �� on curve ��	 indicates
that

� �
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���

�

�
��
����

�� �
� �

As it turns out, this figure does not reveal any interesting
arrival statistics, but it does shed light on the retention dip
for very large clusters that showed up so prominently in
figure 4. We observe a correlated dip in this figure, but the
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Figure 6. Containment of week 1 clusters in week n clus-
ters

coefficients are much closer to 1. This is inconsistent with
the primary explanation being the failure of a web server,
suggesting that instead the content of the pages in the cluster
has changed in the midst of our observation. Our raw data
contains timestamps indicating when we fetched the pages;
we are in the process of investigating whether this “version
skew” was caused by the temporal spread of our observation,
or by slow replication of content among mirrored web sites.

We now turn to considering the relationship between clus-
tering of documents and the amount of change from week to
week. Figure 7 shows the correlation between how much a
web page changes week over week and the size of the cluster
it is contained in. The horizontal axis indicates how many
features two successive successful downloads of a URL have
in common. A value of 0 indicates that two successive down-
loads of a URL have no features in common, a value of 84
means that they agree in all features, and a value of 85 means
that they are bitwise identical, including the HTML markup.
The bars in the graph are divided into seven colored regions,
encoding cluster size on a logarithmic scale. The region rep-
resenting clusters of size 1 (i.e. documents that do not have
near-duplicates) dominates. The vertical axis of the graph
quantifies this by showing what percentage of documents
from any given change-bucket fall belong to clusters of a
given size.

Two feature in this figure stand out: First, clustered docu-
ments are more likely than unclustered documents to either
change by a small amount, or to change almost completely.
Documents that are contained in small clusters of ten or
fewer documents are disproportionately likely to contribute
to either phenomenon. Clustered documents are also more
likely to change only in their markup. Second, we note that
very large clusters exhibit change almost exclusively by a
middling amount, or not at all.

Figure 8 shows this last observation more clearly by nor-
malizing the data of the previous graph. Recall that in fig-
ure 7, a bar associated with a cluster size range  (indicated
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Figure 7. Cumulative distribution by document change
amount of cluster size

by a color coding) of height � in change bucket � indicates
a fraction � of all the documents in change bucket � belong
to clusters in cluster size range . The average height � of
cluster size range  is the average height of all 86 bars associ-
ated with cluster size range . Figure 8 shows �

�
for each of

the change buckets and cluster size ranges. the vertical axis
is shown on a logarithmic scale. Were it shown on a linear
scale, the area below each curve would be identical. Values
above 1 indicate change buckets where a given cluster size
range is contributing more than its fair share.

The figure illustrates that clusters containing more than
100,000 documents are disproportionately likely to have 40
to 50 unchanged features from week to week, are propor-
tionally likely to not change at all, and are disproportionately
unlikely to exhibit any other change rate. Similarly, clus-
ters containing between 10,001 and 100,000 documents are
disproportionately like to change in fewer than half of their
features.

Figure 9 shows us the absolute distribution of change rate
in each cluster size range. Each bar is divided into 6 re-
gions, corresponding to the following six change clusters,
from top to bottom: complete change (0 common features),
large change (1-28 common features), medium change (29-
56 common features), small change (57-83 common fea-
tures), no text change (84 common features), and no change
(subset 85: 84 common features and a common checksum).
The height of each region is indicative of the fraction of docu-
ments falling into a cluster of the appropriate size, and having
a certain week-to-week change. Comparing the heights of
the colored bars, we once again see that documents drawn
from large clusters are far less likely to change than other
documents. Documents in clusters containing more than
100 and at most 10,000 URLs are more likely to change than
documents in smaller or larger clusters.
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4. Conclusions

This paper describes a large-scale study on the prevalence
and evolution of clusters of very similar (“near-duplicate”)
web pages. It confirms Broder et al.’s observation of wide-
spread duplication of web pages. In particular, we found
that about 28% of all web pages are duplicates of some
pages in the remaining 72%, and 22% are virtually identical.
We examined the documents in the 20 largest clusters and
categorized them.

The present study also examines the rate at which docu-
ments exit clusters, and found that clusters are fairly stable
over time; clusters of intermediate size are generally the least
stable. This finding has practical importance, since it implies
that search engines do not need to perform frequent recrawls
of any but one of the web pages in a cluster. Of course, omit-
ting duplicate pages from a crawl will change the observed
link structure; namely, the number of in-links of pages re-
ferred to by duplicate pages will decrease. It will also affect
link-based quality metrics; for example, the PageRank of a
page will decrease if we omit duplicate pages referring to
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it. Although search engines could compensate for this (for
example by adding by adding “phantom links”), they might
well decide not to do so, since replicated links can be viewed
as multiple, colluding endoresements, which should count
for less than independent endorsements. Either way, our
techniques afford search engines a choice.

Finally, we investigated the relationship between cluster
size and rate and degree of change. We found that doc-
uments in large clusters change less than those in smaller
ones, and that documents in medium-sized clusters change
the most. Combining this observation about medium-sized
clusters with our previous observation about medium-sized
cluster being the least stable implies that incremental web
crawlers will sadly enough not be able to ignore documents
in medium-sized clusters.
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